
Some Basic (pre)
Algebra maths

Friday, 19 October 12

The Identity Element

• This special element is know as the identity
element for the addition operator

x + 0 = x

0 + x = x

5 + 0 = 5

Friday, 19 October 12

1’s are special too
• When we add 0 it does nothing

• The same is true with 1 for multiplication, this is
know as the multiplication identity element

1x = x
1(3) = 3

Friday, 19 October 12

The inverse operation

• The “inverse” of addition is subtraction.

• You can think of subtraction as A + (! 1)B

(x + y) ! y = x

(3 + 6) ! 6 = 3

Friday, 19 October 12

Associative rule
• The Associative rule says that the order of

operation are not important as long as the
operands do not change

• Operands are the variables in this case

(x+ y) + z = x+ (y + z)
(2 + 3) + 1 = 2 + (3 + 1)

5 + 1 = 2 + 4
6 = 6

Friday, 19 October 12

Commutativity
• Commutativity allows us to change the order of

operations without changing the end result.

xy = yx

x⇥ y ⌘ xy

2 ! 4 = 4 ! 2
"

2 á4 = 4 á2
"

2 # 4 = 4 # 2
8 = 8

Friday, 19 October 12

Inverse Operation

• The inverse of multiplication is division

xy

y

= x; y != 0

2á4
2 = 2á4

2 = 4

Friday, 19 October 12

Associative Multiplication
• Like addition multiplication is also associative

(xy)z = x(yz)

(3 á4)2 = 3(4 á2)
(12)2 = 3(8)

24

Friday, 19 October 12

Distributive Multiplication
• This property is useful in algebra when we need to

factor things

• It is also used in Matrix manipulation and boolean logic

(x + y)z = xz + yz
(7 + 3)2 = 7 · 2 + 3 · 2

10 · 2 = 14 + 6
20 = 20

Friday, 19 October 12

Associative Division
• There is a similar rule for division

a
✓

b
c

◆
=

ab
c

6
!
5
2

"
= 6á5

2

30
2 = 15

!
2.5 ! 6 = 15

5
2 = 2 .5

Friday, 19 October 12

Convert decimals to fractions

• This may seem complex but it’s actually fairly
simple

1. Write down the decimal and divide it by one
(decimal /1)

2. Multiply top and bottom of fraction by 10 for
each number after the decimal point

3. Simplify the new fraction

Friday, 19 October 12

Example
0.325
0.325

1

0.325
1 · 1000

1000

325
1000

13
40

divide by 1

3 decimal
places so * 1000

Simplify

Friday, 19 October 12

Greatest Common Factor
• AKA Greatest Common Divisor

• In the previous example to simplify we need to find
the greatest common factor of the numerator and
denominator

• In this case it is fairly intuitive if we know about
numbers and especially 5

Friday, 19 October 12

325
1000

325
5

1000
5

65
200

65
5

200
5

13
40

We could also have noticed that both are
multiples of 25 (another number trick)

325
25

1000
25

= 13
40

Friday, 19 October 12

Some python
• Python is a strongly typed language.

• This means that the python interpreter keeps
track of all of the data types

• When using maths we have two types

• integers (number without decimal points)

• floating point numbers

Friday, 19 October 12

A simple python script

#!/usr/bin/python

integer=1

floating=0.25

print integer

print "%0.4f " %(floating)

which python to
use

declare some
variables

print out values

Friday, 19 October 12

reading values in
• Python uses a function called raw_input to read

values from the shell

• These values are always character values (even
when we press the numbers)

• If we wish to read numbers in we need to convert
the text to a numeric value

• This is shown in the next example

Friday, 19 October 12

• int ([value]) will attempt to convert the value into
an integer

• float ([value]) will attempt to convert the value into
a float

#! /usr/bin/python

a=int (raw_input (" enter an int value >"))
b=float (raw_input (" enter a float value >"))

print a,b

Friday, 19 October 12

Arithmetic expressions
• Most programs are algorithmic in nature which means we

have to do some maths

• The table below shows the available arithmetic operators

Operator Meaning Examples

+ addition 5 + 2 is 7
5.0 + 2.0 is 7.0

- subtraction 5 - 2 is 3
5.0-2.0 is 3.0

* multiplication 5*2 is 10
5.0*2.0=10.0

/ division 5/2 is 2
5.0/2.0 is 2.5

% remainder (modulus) 5%2 is 1

Friday, 19 October 12

The / Operator
• When applied to two positive integers the division

operator computes the integral part of the result dividing
its first operand by its second

• For example

• If the / Operator is used with a negative and positive
integer, the results vary from one implementation to
another

• For this reason you should avoid division by -ve integers

7.0 / 2.0 is 3.5
7 / 2 is 3
299.0 / 100.0 is 2.99 (float value)
299 / 100 is 2 (integer value)

Friday, 19 October 12

The % (modulus) Operator
• The remainder operator (%) returns the integer

remainder of the result of dividing the first operand
with the second

• For example the value of 7 % 2 is 1

• The magnitude of m % n must always be lest than
the division n

7/ 2 299/ 100
! !

7 Ö 2 = 3 299Ö 100 = 2
3 " 2 = 6 2 " 100 = 200

6
7! 6 # 7 % 2 = 1 200

299! 200 = 299 % 100 = 99

Friday, 19 October 12

Expressions with Multiple Operators
• There are rules as to how expressions are evaluated

• Parentheses Rule : All expressions in parentheses
must be evaluated separately. Nested parenthesised
expressions must be evaluated from the inside out,
with the innermost expression evaluated first.

• Operator precedence rule : Operators in the same
expression are evaluated in the following order.

unary +, - first
*, /, % next
binary +,- last

Friday, 19 October 12

Expressions with Multiple Operators
• Associativity Rule : Unary operators in the same sub-

expression and at the same precedence levels (such
as + and -) are evaluated right to left.

• Binary operators in the same sub-expression and the
same precedence level (such as + and -) are
evaluated left to right.

• To help avoid problems with the order of evaluation
it is best to use parenthesis

x * y * z + a / b -c * d;

can be written

(x * y * z) + (a / b) - (c * d);

Friday, 19 October 12

Mathematical Formulas as
Python expressions

Mathematical Formula Python Expression
b2 ! 4ac b * b - 4 * a * c
a + b! c a + b - c

a+b
c+d (a + b) / (c + d)
1

1+x 2 1 / (1 + x * x)
a" ! (b+ c) a * -(b + c)

Friday, 19 October 12

#!/usr/bin/python

a=float(raw_input("enter a >"))

b=float(raw_input("enter b >"))

c=float(raw_input("enter c >"))

d=float(raw_input("enter d >"))

x=float(raw_input("enter x >"))

answer=b

*

b-4

*

a

*

c

print answer

answer=a+b-c

print answer

answer=(a+b)/(c+d)

print answer

answer=1.0/(1+x

*

x)

print answer

answer=a

*

-(b+c)

print answer

Friday, 19 October 12

Law of Indices
• The Law of Indices can be expressed as

am � an = am+n

am ÷ an = am�n

(am)n = amn

• Examples

23 ! 22 = 8 ! 4 = 32 = 25

24 Ö 22 = 16 Ö 4 = 4 = 22

(22)3 = 64 = 26

Friday, 19 October 12

The pow function

#!/usr/bin/python

a=float(raw_input("enter an int value >"))

b=float(raw_input("enter a float value>"))

print "aˆb = ", pow(a,b)

Friday, 19 October 12

Indices.py

• We can also do powers in python using the ** syntax

• a**b means ab
1 #! /usr/bin/python
2
3 a=int (raw_input (" Enter a value for a >"))
4 m=int (raw_input (" Enter a value for m >"))
5 n=int (raw_input (" Enter a value for n >"))
6
7 print " for values a=%d and m=%d n=%d" %(a,m,n)
8
9 print " Multiplication "

10 print " aöm * aön = " , a * * m * a* * n
11 print " sum of indices = " ,m+n
12 print " aö(m+n) = " ,a * * (m+n)
13
14 print " Division "
15
16 print " aöm / aön = " , a * * m / a* * n
17 print " difference of indices = " ,m- n
18 print " aö(m+n) = " ,a * * (m- n)
19
20 print " Powers "
21
22 print " (aöm) ön = " , (a* * m)* * n
23 print " aö m* n == " ,a * * (m* n)

Friday, 19 October 12

Law of Indices
• From the previous examples, it is evident that

a0 = 1
a�p = 1

ap

a
p
q = q

!
ap

Friday, 19 October 12

Indices2.py
1 #! /usr/bin/python
2
3 from math import *
4 a=int (raw_input (" Enter a value for a > "))
5 p=int (raw_input (" Enter a value for p > "))
6
7 print " aö0 = " , a * * 0
8
9 print " aö- p = " , a * * - p

10 print " 1/ aöp = " , 1. 0 / (a* * p)

Friday, 19 October 12

Roots

• Most programming languages have a function to find
the square root (usually sqrt)

• However higher roots are no implemented.

• We can use the law of indices shown previously to
calculate higher roots

#!/usr/bin/python

import math

a=int(raw_input("enter a value"))

print math.sqrt(a)

Friday, 19 October 12

Roots.py
1 #! /usr/bin/python
2
3 from math import *
4 a=int (raw_input (" Enter a value for a > "))
5
6 # here we loop in the range 1 to 10 as the range
7 # function returns the values range (s,e - 1)
8
9 for n in range (1, 11) :

10 print " the %d root of %d = " %(n,a) ,a * * (1. 0/n)

Friday, 19 October 12

Logarithms
• Two people are associated with logarithms:

• John Napier (1550-1617) and Joost Bürgi
(1552-1632).

• Logarithms exploit the addition and subtraction of
indices and are always associated with a base

• For Example, if

ax = n
loga n = x
Where a is the base.

Friday, 19 October 12

Logarithms

• It can be said "10 has been raised to the power 2 to
equal 100"

• The log operation finds the power of the base for a
given number

102 = 100
log10100 = 2

Friday, 19 October 12

Logarithms
• Multiplication's can be translated into an addition

using logs

• We then add the numbers and convert back

36�24 = 864
log10 36 + log10 24 = log10 864
1.5563025007+1.38021124171=2.963651374248

• The two bases used in calculators and computer software are 10
and 2.718281846..., the second value is know as the
transcendental number e

• Logs to the base 10 are written as log

• Logs to the base e are written as ln
Friday, 19 October 12

Logs.py
1 #!/usr/bin/python
2
3 from math import *
4
5 a=int(raw_input("Enter a value for a > "))
6 b=int(raw_input("Enter a value for b > "))
7
8 print "Using * the answer is ",a*b
9

10 log10a=log10(a)
11 log10b=log10(b)
12 lna=log(a)
13 lnb=log(b)
14
15 print "log10(a) + log10(b) = %f + %f =" %(log10a,log10b), log10a+log10b
16 print "log(a) + log(b) = %f + %f =" %(lna,lnb), lna+lnb
17
18 print "Anti Logs "
19 c=log10a+log10b
20 print "log 10"
21 print "%f = 10ˆ%f =" %(c,c), 10**c
22 c=lna+lnb
23 print "Natural log (e)"
24 print "%f = exp(%f) = " %(c,c), exp(c)

Friday, 19 October 12

Logarithms

log(ab) = log a + log b
log(a

b) = log a� log b
log(an) = n log a
log(n

⇥
a) = 1

n log a

Friday, 19 October 12

References

• Mathref http://happymaau.com/projects/math-ref/

• http://python.org/

• "Essential Mathematics for Computer Graphics fast" John
VinceSpringer-Verlag London

• http://en.wikipedia.org/wiki/Johannes_Kepler

•

Friday, 19 October 12

http://happymaau.com/projects/math-ref/
http://happymaau.com/projects/math-ref/
http://python.org/
http://python.org/
http://en.wikipedia.org/wiki/Johannes_Kepler
http://en.wikipedia.org/wiki/Johannes_Kepler

