Some Basic (pre)
Algebra maths

Friday, 19 October 12

The ldentity Element

® This special element is know as the identity
element for the addition operator

r+0= g

Friday, 19 October 12

I’s are special too

® When we add 0 it does nothing

® The same is true with | for multiplication, this is
know as the multiplication identity element

IX = X
1(3) =3

The inverse operation

® The‘“inverse’ of addition is subtraction.

® You can think of subtractionas A + (! 1)B

(X+y)! y=xX
(3+6)! 6=3

Friday, 19 October 12

Associative rule

® The Associative rule says that the order of
operation are not important as long as the
operands do not change

® Operands are the variables in this case

(r+y)+z=a+(y+2)
(2+43)+1=2+(3+1)
54+1=244

6 =06

Friday, 19 October 12

Commutativity

® Commutativity allows us to change the order of
operations without changing the end result.

21 4 =41 2
LY = Yo "
rXYy=xy 284 =4 a2

2H#H4=4#2

8 =38

Friday, 19 October 12

Inverse Operation

® The inverse of multiplication is division

~ —r:y E0

Friday, 19 October 12

Associative Multiplication

® | ike addition multiplication is also associative

(Xy)z = x(yz)

(3 44)2 = 3(4 42)
(12)2 = 3(8)
24

Friday, 19 October 12

Distributive Multiplication

® This property is useful in algebra when we need to
factor things

® |tis also used in Matrix manipulation and boolean logic
(X +VY)Z =XZ +YyZ

(7T+3)2=7-243-2
10-2=14+ 6
20 = 20

Friday, 19 October 12

Associative Division

® There is a similar rule for division

(b) ak
al - | = —
C C

Friday, 19 October 12

Convert decimals to fractions

® This may seem complex but it’s actually fairly
simple

|. Write down the decimal and divide it by one
(decimal /1)

2. Multiply top and bottom of fraction by 10 for
each number after the decimal point

3. Simplify the new fraction

Friday, 19 October 12

Example

0.325
0.325 divide by |
1 P
0.325 1000

. ~— 3 decimal
1 1000 places so * 1000

325 13 -

1000 40 - Simplify
A—— ~——

Friday, 19 October 12

Greatest Common Factor

® AKA Greatest Common Divisor

® |n the previous example to simplify we need to find

the greatest common factor of the numerator and
denominator

® |n this case it is fairly intuitive if we know about
numbers and especially 5

We could also have noticed that both are
multiples of 25 (another number trick)

52— 13

10000 — 40
SE 40

Friday, 19 October 12

Some python

® Python is a strongly typed language.

® This means that the python interpreter keeps
track of all of the data types

® When using maths we have two types

® integers (number without decimal points)

® floating point numbers

A simple python script

declare some which python to
variables ! use ,
R—— - //"--~ -
v

#!/usr/bin/python

integer=1
floating=0.25

print integer
print "%0.4f " % (floating)

print out values

AR —

Friday, 19 October 12

reading values in

® Python uses a function called raw_input to read
values from the shell

® These values are always character values (even
when we press the numbers)

® |f we wish to read numbers in we need to convert
the text to a humeric value

® This is shown in the next example

Friday, 19 October 12

#! Jusr/bin/python

a=int (raw_input ("enter _an_int _value _>"))
b=float (raw input ("enter _a float value >"))

print a,b

® int ([value]) will attempt to convert the value into
an integer

® float ([value]) will attempt to convert the value into
a float

Friday, 19 October 12

Arithmetic expressions

® Most programs are algorithmic in nature which means we
have to do some maths

® The table below shows the available arithmetic operators

Operator Meaning Examples

. 5+2is7/
i addition 5.0 + 2.0 is 7.0
- subtraction >-210s 3
5.0-2.0is 3.0
* multiplication >*21is 10
5.0%2.0=10.0
/ division 221 2
5.0/2.0 is 2.5
% remainder (modulus) 5%2 is |

Friday, 19 October 12

The / Operator

® When applied to two positive integers the division
operator computes the integral part of the result dividing
its first operand by its second

® For example

7.0/2.0is 3.5

//21s3

299.0/ 100.0 1s 2.99 (float value)
299 /100 s 2 (integer value)

® |f the / Operator is used with a negative and positive

integer, the results vary from one implementation to
another

® For this reason you should avoid division by -ve integers

Friday, 19 October 12

The % (modulus) Operator

® The remainder operator (%) returns the integer
remainder of the result of dividing the first operand
with the second

® For example the value of 7 % 2 is |

® The magnitude of m % n must always be lest than
the division n

72 299 100

! |
702 =3 2990 100 =2
3"2=06 2" 100 = 200

et T%2=1 555555 =299% 100 = 9¢

Friday, 19 October 12

Expressions with Multiple Operators

® There are rules as to how expressions are evaluated

® Parentheses Rule : All expressions in parentheses
must be evaluated separately. Nested parenthesised
expressions must be evaluated from the inside out,
with the innermost expression evaluated first.

® Operator precedence rule : Operators in the same
expression are evaluated in the following order.

unary +, - first
* 1, % next
binary +,- last

Friday, 19 October 12

Expressions with Multiple Operators

® Associativity Rule : Unary operators in the same sub-
expression and at the same precedence levels (such
as + and -) are evaluated right to left.

® Binary operators in the same sub-expression and the
same precedence level (such as + and -) are
evaluated left to right.

® TJo help avoid problems with the order of evaluation
it is best to use parenthesis

X*y*z+alb-c*d,
can be written

(x*y*z)+(al/b)-(c*d);

Friday, 19 October 12

Mathematical Formulas as
Python expressions

Mathematical Formula Python Expressic

b’ ! 4ac b*b-4*a*c

a+ bl c a+b-c
ath (a+b)/(c+d)
o 1/(1+X*Xx)

al! (b+ ¢ a*-(b+c)

Friday, 19 October 12

#!/usr/bin/python
a=float (raw_1input ("enter_a >"))
b=float (raw_input ("enter_b_>"))
c=float (raw_input ("enter_c_>"))
d=float (raw_input ("enter d >"))
x=float (raw_input ())

— L

"enter x >"

— L

answer=pxb—-4*axc
print answer

answer=a+b—-c
print answer

answer= (a+b) / (c+d)
print answer

answer=1.0/ (1l+x*x)
print answer

answer=ax— (b+c)
print answer

Friday, 19 October 12

Law of Indices

® The Law of Indices can be expressed as
a™ x " = aq™m™ "
a't +a"' =a
(am)n — qmn

"L —T11

* Examples
231 22 =81 4=32=2°
29022 =1604 =4 = 22
(2°)° =64 =2°

Friday, 19 October 12

The pow function

#!/usr/bin/python

a=float (raw_input ("enter an int, value >"))
b=float (raw_input ("enter a float value>"))

print "a"b_ =", pow(a,Db)

I R N |

Friday, 19 October 12

® We can also do powers in python using the ** syntax

® 3*b means aP

Indices.py

0 ~J1 O\ DN K~ W -

[\O I \O TN O T N0 I e N e e e i e D
W= OOV JON WUV B~ W= O\

#! [usr/bin/python

a=int (raw_input
meint (raw_input
n=int (raw_input

print

print
print
print
print

print

print °
print °
print °

print

print
print

(" Enter _a,_value _for _a_>"))
(" Enter _a,_value _for _m>"))
(" Enter _a,_value _for _n_>"))
“for _values _a=%l_and_ m=% n=%" 9% a,m,n)
" Multiplication
"aomx _aon_= ", a**m* axr*n
"sum_of _indices =" ,m+n
“ao(mtn) _=_",a **(mtn)
" Division
aom/ _aon_ =", a**m [/ a**n
difference _of _indices _=_",m-n
ao(mtn) = ", a*x(mn)
"Powers "
"(abmon_=_", (a**m)x*n
"ad_ mn_==_",ax*x*x(mn)

Friday, 19 October 12

Law of Indices

® From the previous examples, it is evident that

O:1

—p — L
= an

%:qap

L O X

Friday, 19 October 12

Indices2.py

#! [usr/bin/python

from math import =
a=int (raw_input ("Enter _a_ value _for _a >"))
p=int (raw_input (" Enter _a_value _for p_>_"))

print "aoc0_ =", a**0

print "ao-p =", a**-p
print "1/ aop_=", 1.0 /(ax*p)

S OO0 JON U K W -

[

[jmacey@neuromancer:Lecture2]$./Indices2.py
Enter a value for a > 2

Enter a value for p > 4

aMd = 1

ar-p = 0.0625

1/arp = 0.0625

Friday, 19 October 12

Roots

® Most programming languages have a function to find
the square root (usually sqrt)

® However higher roots are no implemented.

® We can use the law of indices shown previously to
calculate higher roots

#!/usr/bin/python
import math
a=int (raw_input ("enter a value™))

print math.sqgrt (a)

Friday, 19 October 12

OO ~NOOOTDSWN B

=
o

Roots.py

#! /usr/bin/python

from math import =
a=int (raw_input (" Enter _a, value

for _a > "))

here we loop in the range 1 to 10 as the range
(s,e -1)

function returns the values range

for n in range (1, 11)
print "the %l root _of %l =" %n,a) ,a =*=*(1.0/n)

[jmacey@neuromancer:Lecture2]$./Roots.py

o> 2**10 Enter a value for a > 1024
102 4 the 1 root of 1024 = 1024.0
the 2 root of 1024 = 32.0
* % the 3 root of 1024 = 10.0793683992
>>> 32%%2 the 4 root of 1024 = 5.65685424949
1024 the 5 root of 1024 = 4.0
the 6 root of 1024 = 3.17480210394
>>> 4%*%*5 the 7 root of 1024 = 2.69180038526
1024 the 8 root of 1024 = 2.37841423001
the 9 root of 1024 = 2.16011947778
. l:] the 10 root of 1024 = 2.0 _

Friday, 19 October 12

Logarithms

® [wo people are associated with logarithms:

® John Napier (1550-1617) and Joost Burgi
(1552-1632).

® | ogarithms exploit the addition and subtraction of
indices and are always associated with a base

® For Example, if

al =n

log, n ==
Where a 1s the base.

Logarithms

104 = 100
lOgl()lOO — 2

® |t can be said "10 has been raised to the power 2 to
equal 100"

® The log operation finds the power of the base for a
given number

Friday, 19 October 12

Logarithms

® Multiplication’s can be translated into an addition
using logs

® \We then add the numbers and convert back

36 %24 = 864
10g10 36 loglo 24 — loglo 864
1.956302500741.38021124171=2.963651374248

® The two bases used in calculators and computer software are |0
and 2.718281846..., the second value is know as the
transcendental number e

® |ogs to the base |10 are written as log

® Logs to the base e are written as In

Friday, 19 October 12

Logs.py

1| #!/usr/bin/python

2

3| from math import =

4

5| a=int (raw_input ("Enter_a value_ for_a >_"))

6 | b=int (raw_input ("Enter_a value_ for b > "))

7

8 | print "Using_*_the answer_ is_",axb

9

10| 1logl0a=1o0gl0 (a)

11| 1ogl0b=10gl0 (b)

12| 1na=log(a)

13| 1nb=1log (b)

14

15| print "loglO(a), , + 1logl0(b) = %f + %f =" %(logl0Oa,loglOb), loglOa+loglOb

16 | print "log(a)_ + . log(b) = %f + .%f =" %$(lna,lnb), lna+lnb

17

18 | print "Anti_Logs "

19| c=logl0a+logl0b

0 giiﬁt ";i:iiw%ff" o) 10se [jmacey@neuromancer:Lecture2]$./Logs.py
22| c=1lna+1nb Enter a value for a > 1234
23| print "Natural,log,(e)" Enter a value for b > 4321
24 | print "S$f_ = _exp(%f)_=_" %$(c,c), exp(c)

logl@(a) + logl@(b) = 3.091315 + 3.635584 = 6.72689942601
log(a) + log(b) = 7.118016 + 8.371242 = 15.4892583404
Anti1 Logs

log 10

6.726899 = 10/6.726899 = 5332114.0

Natural log (e)

15.489258 = exp(15.489258) = 5332114.0

Friday, 19 October 12

Logarithms

(ab) = loga + logk
log(%) = loga —logh
log(a™) = nloga
log({/a) = = loga

log

Friday, 19 October 12

References

® Mathref http://happymaau.com/projects/math-ref/

® http://python.org/

® "Essential Mathematics for Computer Graphics fast” John
VinceSpringer-Verlag London

® http://en.wikipedia.org/wiki/Johannes_Kepler

Friday, 19 October 12

http://happymaau.com/projects/math-ref/
http://happymaau.com/projects/math-ref/
http://python.org/
http://python.org/
http://en.wikipedia.org/wiki/Johannes_Kepler
http://en.wikipedia.org/wiki/Johannes_Kepler

