
 1

An Investigation into the Viability of a Nonlinear
Anisotropic Cloth Model for Simulation

Rachel Strohkorb
19 August 2019

MSc Computer Animation and Visual Effects

 2

1 Introduction

Cloth simulation has been a long-standing
problem in the field of computer graphics.
Physically, fabric is a material defined by
small interactions between tiny interwoven
threads. Recreating the exact physical
properties of cloth based on these interactions
would be possible, given time, but for most
applications the staggering amount of
computations needed to reproduce a
physically accurate fabric are not worth the
time or effort.

Historically, the most popular way of
approximating cloth for simulation has been
the mass-spring method [12]. Instead of
treating the cloth as a continuous object of
interwoven threads, the cloth is divided into
a series of finite elements or particles
(typically the vertices of a mesh), each of
which has a mass associated with it. These
masses are then connected to each other by a
network of springs, and the resulting mesh
acts as a sheet of “cloth” that responds
realistically to applied external forces.

However, while this method of modelling
cloth is computationally efficient, it lacks the
ability to recreate the actual physical
properties of fabric and clothing, which can
be easily detected by the human eye. Further,
it is difficult to add user-end functionality to
this model, thus making it difficult to have
different samples of fabric created with the
mass-spring method look different enough
from each other to have a user or viewer
believe that they are actually different
samples of fabric.

In this paper, I investigate a different way of
modelling cloth proposed by Volino and
Magnenat-Thalmann [14] based on
continuum mechanics. Typically, cloth
simulation is divided into three areas – the
cloth model itself, the integration method
used for the physical simulation, and

collision detection and response. I focus
mostly on the applications of the cloth model,
with some attention paid to integration and
none given to collisions.

2 Previous Work

2.1 Mass-Spring

When it comes to modelling cloth, the mass-
spring method is ubiquitous. As its main
advantage is computational efficiency while
retaining a physically accurate response to
outside elements, there has been much effort
put into making this model even more
efficient. Most of the progress in this model’s
efficiency has taken place in the integration
step, the most important being the work of
Baraff and Witkin [1], who were the first to
propose using the Backwards Euler method
to integrate the cloth particles’ velocity and
positions implicitly. Explicit integrators
estimate the velocity of each particle at the
next time step based on the forces exerted on
each particle by calculating the Taylor series
of the velocity (typically up to 4 or 5 steps for
the sake of better accuracy) [13].
Unfortunately, explicit integrators often
don’t remain stable unless the time step is
very small, making them poor choices for
real-time applications. Baraff and Witkin
proposed an implicit method, wherein the
partial derivatives of the forces on the mass
points with respect to their positions are used
to construct a linear system of equations,
which than then be solved by iterative
methods [1]. Iterating towards the solution
has an associated cost, but because implicit
integrators are able to use much larger time
steps, this cost is outweighed.

Much effort has gone into making implicit
integrators even more efficient. Kang and
Cho [4] modified the implicit integration so
that it could be completed piecewise, without
each particle having to consider the velocity
of every other particle at each time step. They

 3

also shortened the iterations to
one iterative step, judging that
this approximation was close
enough to the actual solution,
provided some damping forces
were added. More recently, Liu
et. al. [7] increased the speed of
implicit solves for mass-spring
systems by adding an additional
local step that finds the optimal
spring directions. By using this
local step, they are able to
separate their matrix used to solve
the linear system of equations in
the global step from being
dependent on the current state,
meaning that this matrix doesn’t
have to be computed every frame.

Despite being efficient, the mass-spring
model still suffers from inaccuracies. One of
these is that cloth in the real world does not
droop as much under its own weight as cloth
created by the mass-spring model. In fact, it
often droops very little, to the point where the
mass-spring model looks very unrealistic by
comparison (figure 1). It would be possible to
‘tighten up’ a mass-spring system by
increasing the spring constants of the
structural springs, but increasing the spring
constants drives up convergence time [2].

To combat this, Goldenthal et. al. [2] created
a model for inextensible cloth, or cloth that
does not stretch under its own weight. The
cloth object is composed of mostly quads and
some tris, and quad edges are constrained to
be aligned to the weft and warp directions of
the fabric. These edges are then constrained
to maintain their original length. Shear forces
are modeled with springs on both diagonals
of each quad. Goldenthal et. al. then
formulate an implicit integrator that’s
efficient at enforcing the edge length
constraints using Constrained Lagrangian
Mechanics. Their model utilizes the
efficiency of the mass-spring model while
making up for one of its greatest weaknesses.

2.2 Position-Based Dynamics

While the mass-spring model has proven to
be quite efficient, this efficiency is often not
efficient enough for virtual reality and games
applications. One of the most common
methods used to simulate cloth in modern
gaming systems is position-based dynamics,
a method proposed by Müller et. al. [9]. Most
integrators will derive point positions and
velocities from the forces exerted on the
points. In position-based dynamics, this step
is skipped, and the position of a point at the
next time step is determined by a set of
constraints. These constraints include
maintaining physical realism, but also
include collision detection, making handling
collisions that much more efficient.

This model removes the time step issue of
explicit solvers, meaning explicit integration
methods, which are easier to comprehend and
program, can be used without much
associated cost. However, in the case of
cloth, because the integration only works
based on such as stretch and bending
constraints it may be hard to represent
particular types of cloth by controlling only
these limited factors.

 4

This model was adapted for use in APEX
Clothing [10], Nvidia’s cloth solver. It has
been integrated into several game engines,
such as Unreal 3 and 4, and has been used in
several Batman Arkham games, as well as
Bioshock Infinite.

2.3 Physically Accurate Model

On the other end of the spectrum from models
optimized for efficiency, there are models
designed to represent and simulate the actual
physical behaviors and properties of cloth,
where material behavior is defined by
interactions between tiny threads. Sheet-
based cloth models can work well when
approximating fabric made by even
interwoven threads running orthogonally to
each other, but much of our clothing is
knitted or woven. Knitted clothing, such as t-
shirts, sweats, and much of our everyday
casualwear, is especially difficult to simulate;
as knitted fabrics are often composed of a
single length of thread or yarn, there are
thousands of self-collisions occurring at
every time step.

Kaldor et. al. [3] propose a method to reduce
yarn contact processing time by reusing data
from previous contact steps, as locally, yarn-
yarn contacts don’t see much change over the
course of a simulation. They further
approximate the contact force between yarn
strands as a corotational force, since yarn in
knitted fabrics is typically looped around

other strands. Their methods resulted in
calculations taking place over four times
faster than previous models, but per-frame
calculations still took nearly a minute to
complete. Impressively, their model exhibits
behaviors unique to the particular stitch used
to construct the item of clothing.

2.4 Continuum Mechanics

Volino et. al. [14] attempted to bridge the gap
between the efficiency of the mass-spring
method and the realism of physically
accurate models by still treating the fabric
object as a sheet, for the sake of efficiency,
while modifying the way forces were
calculated to more accurately emulate real-
world fabric behavior. One of the main
reasons the mass-spring method fails to
accurately simulate how cloth behaves is
because it assumes the forces acting
internally are linear forces, and can thus be
approximated with Hooke’s Law. This is not
true—for many fabrics, the internal forces are
not at all proportional to the deformations
that occur, and these deformations can vary
based on the orientation of the fabric’s weft
and warp directions. Volino et. al. decided to
base the mass point force calculations on
force/displacement data taken from actual
cloth samples. Their methods are the main
subject of this paper and will be discussed in
great detail in section three.

It is worth noting that their system of
measurements used three tests from the

 5

Kawabata Evaluation System to measure
their cloth: testing elongation in the weft,
warp, and shear directions (shear being
evaluated in the weft direction by pulling one
end of the cloth in a direction parallel to its
opposite end). It has been noted that this
system of evaluation ignores many of the
cross-dependencies that could exist between
the three modes. Miguel et. al. [8] proposed
an improved way of measuring these factors
by capturing deformations in full 3D. Their
tests do try to isolate the weft, warp, and
shear factors, but these requirements are
relaxed to get more realistic results. They
also include bending tests that were left out
of Volino et. al.’s model.

For my project, I was unable to produce
hardware from either [14] or [8] in order to
conduct my own fabric tests, so I used the
data from [14] as the basis for my cloth object
(figure 2).

3 Methods

3.1 Cloth model

The cloth model for this project assumes a
mesh object composed of triangles for which
no more than two triangles share an edge. The
vertices of the triangles are treated as mass
points and are given a mass equal to one-third
of the object’s total mass times the surface
area of an attached triangle, summed over
each triangle attached to the vertex. These
triangles need not be arranged in a grid
pattern, and although similarly sized triangles
are preferred, it isn’t necessary for the model
to work correctly.

In the starting state, the cloth is assumed have
its weft-warp directions orthogonally
aligned; that is, the cloth is not experiencing
any internal forces, so there is no strain on the
fabric internally that would cause the weft-
warp vectors to deform from their starting
orthogonal state. From here on, the vector per

triangle in the weft direction will be called u,
and in the warp direction v.

Each of the three vertices of a triangle are
mapped from 3D world coordinates to 2D
parametric coordinates. These parametric
coordinates must produce the same surface
area as the 3D world coordinates in order to
be considered valid. The easiest mapping
from 3D to 2D has the cloth object lie flat on
one of the x, y, or z-axes, but my
implementation allows for that not to be the
case. The goal of these 2D coordinates is to
be able to calculate the deformation state of
the triangle, or the change in the magnitude
and direction of u and v. By assuming u = [1,
0] and v = [0, 1] in the initial state, weights
for each of the vertices of the triangle (a, b, c)
can be calculated as follows:

Where d is two times the surface area of the
triangle in the initial state. During the
simulation, these weights can be used to
calculate u and v as follows:

Where Pi is the location of vertices (a, b, c) in
3D world coordinates.

This model is based on the idea that the strain
state of the cloth object can be completely
derived from the point positions of the
triangle vertices. All of the internal forces
produced by this model are derived from the
magnitude of u and v, as well as the angle
between these vectors for the shear forces.

The material behavior of the cloth is defined
by the relationship between the strain on the

 6

cloth and the stress (pressure) that results
from the strain. This relationship is derived
from the three force-displacement tests done
for each of the weft, warp, and shear
directions (also referenced as uu, vv, and uv
directions). The force-displacement data is
converted into strain-stress data using the
appendix in [13]. A b-spline curve is then
interpolated between the data points and used
as a function defining the strain-stress
relationship of the material.

The strain state of a given triangle can be
derived from u and v as follows:

𝜀"" = 	
1
2
(𝒖)𝒖 − 1)

𝜀,, = 	
1
2
(𝒗)𝒗 − 1)

𝜀", = 	
1
2
(𝒖)𝒗 + 𝒗)𝒖)

By plugging these strain values into their
associated strain-stress curves, one acquires
the stress state values suu, svv, and suv. The
stress is then used to calculate the internal
forces created by the distortions in this
triangle.

3.2 Force calculations

For each triangle, forces are computed for
each of the three vertices (a, b, c). For any j
in (a, b, c), the force on a point from this
triangle is as follows:

𝑭0 = −𝑠 2𝜎""𝑟"0𝒖 +	𝜎,,𝑟,0𝒗

+	𝜎",5𝑟"0𝒗 +	𝑟,0𝒖67

Where s is the surface area of the triangle.
Accumulating these forces for each triangle
in the mesh accounts for all the internal forces
in this cloth model. Forces can then be
integrated with techniques from mass-spring
systems, as those integrators also integrate
over forces on individual mass points.

This force equation is enough information for
explicit integration, but computing the

Jacobian of the forces, or the partial
derivatives of the forces on the mass points
with respect to their positions, is necessary
for implicit integration. For each triangle, and
for any i and j among (a, b, c), the local
Jacobian matrix can be computed as follows:

𝑱09 =
𝜕𝑭0
𝜕𝑃9

= −𝑠 <
𝜕𝜎""
𝜕𝜀""

𝑟"0𝑟"9𝒖𝒖)

+	
𝜕𝜎,,
𝜕𝜀,,

𝑟,0𝑟,9𝒗𝒗)

+	
𝜕𝜎",
𝜕𝜀",

5𝑟"0𝑟,9𝒖𝒗)

+	𝑟,0𝑟"9𝒗𝒖)6
+	2𝜎""𝑟"0𝑟"9 +	𝜎,,𝑟,0𝑟,9

+	𝜎",5𝑟"0𝑟,9 +	𝑟,0𝑟"967 𝑰>

The Jacobian consists of a stiffness
component, the component created by the
terms multiplied by strain-stress derivates,
and a geometric component, the component
created by the terms multiplied by the stress
s. For my implementation, the partial
derivatives of stress related to strain are
computed as the derivatives of the associated
curve (uu, vv, uv). They are included as
partial derivatives because stress may depend
on more than one factor of e, the strain in the
(uu, vv, uv) directions, or e’, the change in
strain in those directions. However, based on
the measurements I used in this project, no
cross-dependencies were included in the
model.

The local Jacobian is a 3x3 matrix composed
of nine 3x3 block matrices and appears as
follows:

𝑱?@AB? = 	 C
𝑱BB 𝑱BD 𝑱BA
𝑱DB 𝑱DD 𝑱DA
𝑱AB 𝑱AD 𝑱AA

E

The global J-matrix is an nxn matrix
composed of 3x3 block matrices Jkl, where n
is the number of mass points in the cloth, k is
the entry of the mass point being acted upon,
and l is the entry of the mass point whose
position is exerting a force on point k.

 7

Because Jlocal is created for each triangle,
there are potentially multiple contributions to
each Jkl. For instance, in the case where k = l,
Jkk has a contribution from every triangle k is
a part of. When k is not equal to l, Jkl has a
contribution from every triangle where k and
l share an edge, which in the case of this
model is up to two triangles.

To construct the global J-matrix, the mass
point values of the triangle vertices (a, b, c)
are noted. Each local Jaa is added to the total
value accumulated for the corresponding Jkk,
and each Jab is added to the total value
accumulated for the corresponding Jkl. This is
repeated for each of the matrices in Jlocal, and
accumulated over each triangle in the model,
until the total global J-matrix has been
calculated. It can then be used in implicit
integration schemes.

Volino et. al. also provide the necessary math
to compute the Jacobian matrix of the forces
with respect to the point velocities.
Unfortunately, in order to compute this
Jacobian, I would need access to data that
defined the relationship between s and e’, or
the relationship between stress and the
change in strain. This relationship was
difficult to measure with the Kawabata
Evaluation System, so Volino et. al. did not
use it in their implementation. With the
measuring equipment in [8], it would likely
be easier to track this relationship and the
velocity Jacobian would then be able to be
computed.

3.3 Integration

For this project, I implemented both RK4
explicit integration [5, 11] and Baraff and
Witkin’s modified Conjugate Gradient
Method for implicit integration [1]. RK4

involves recalculating the internal triangle
forces for each step in the Taylor series (in
this case, 4 steps) based on the state created
by the previous step. Because of the small
time step sizes needed to keep RK4 stable and
having to recalculate all internal forces four
times per step, it performs quite slowly.

Baraff and Witkin [1] show that the equation
to solve for the change in velocity for this
time step can be rephrased in the context of a
linear system Ax = b, where:

𝑨 = 	 <𝑴 − ℎ
𝜕𝒇
𝜕𝒗	− ℎ

J 𝜕𝒇
𝜕𝒙>

𝒃 = ℎ𝒇M +	ℎJ
𝜕𝒇
𝜕𝒙𝒗M

𝒙 = 	Δ𝒗

Where h is the time step, f0 and v0 are the
initial force and velocity vectors, and M is an
nxn matrix composed of 3x3 block matrices,
whose diagonal values Mkk are equivalent to
the mass of mass point k. These values for A
and b are able to be plugged into the
conjugate gradient method as normal in order
to solve for x, the change in velocity at this
time step for each mass point.

Baraff and Witkin further modify the
conjugate gradient method to account for
instances where the points in the cloth might
become fixed in any given direction during
the simulation, such as when a collision or
self-collision is detected. For my
implementation, I added this mass point
filtering process in order to fix points in space
to hang and drape the cloth, but it could easily
be modified to help the cloth respond to
collisions properly.

In order to filter the mass point forces and
velocities, Baraff and Witkin construct a

filtering matrix S of the
same size of M and J
such that the diagonal
3x3 block matrix Sii is
as in (figure 3).

 8

Applying this filtering matrix to certain steps
in the conjugate gradient method allows the
affected points to stay fixed without
disrupting the forces of the connecting points.
For my purposes, I was only concerned with
cases where the point i had either 3 degrees
of freedom or none. For the initial guess of
Dv, fixed points would acquire the change in
velocity that was given in this opening guess.

Baraff and Witkin also employed a
preconditioning matrix P, whose diagonal
values are equal to the inverse of the diagonal
values of A. The filtering operation involved
multiplying the input vector by the filtering
matrix S. With that in mind, this is the
modified conjugate gradient method
algorithm:

Dv ¬ initial guess, values for fixed points
dtest ¬ filter(b)T P filter(b)
r ¬ filter(b - ADv)
q ¬ filter(P-1 r)
dnew ¬ rT c
g ¬ small test value, such as 1e-5
while dnew > g2 dtest

a ¬ OPQR
𝐪T	UVWXYZ(𝐀𝐪)

 Dv ¬ Dv + aq
 r ¬ r - a filter(Aq)
 z ¬ P-1 r
 dold ¬ dnew
 dnew ¬ rT z
 q ¬ filter(z + \]^_

\`ab
 q)

By comparing dnew to the test value created
by filtering b and inter-multiplying the
preconditioning matrix, the algorithm can
converge even when there are values in Dv
that will not change from their starting
values, due to being fixed points.

For my implementation, this was not
enough to maintain stability of the
simulation. I judged that because I’d
shortened the original A by removing the
c𝒇
c𝒗

 term (the Jacobian matrix with respect

to velocity) that there were not any viscous
forces represented to damp the system. I
decided to introduce the damping system
used in [4], as it was simple to implement,
and I’d had experience with it before. This
involved the addition of a damping
coefficient to both sides of the equation, such
that:

𝑨 = 	<𝑴 − ℎJ
𝜕𝒇
𝜕𝒙> +	

(𝑛9ℎ	𝑐f𝑰)

𝒃 = ℎ𝒇M +	ℎJ <
𝜕𝒇
𝜕𝒙 + ℎ	𝑐f𝑰>𝒗M

Where cd is the damping coefficient, and ni is
the number of mass points connected to point
i. This method worked to damp the system
and make the simulation stable, but at the cost
of increased convergence time in the
conjugate gradient algorithm. I was unable to
investigate different methods of damping, but
for future work it would be good to either use
the Jacobian matrix with respect to velocity,
or use a more efficient means of damping the
system for stability.

4 Results

4.1 Against Mass-Spring

The method presented by Volino et. al.
certainly looks more realistic to the human
eye than the mass spring method (figure 4).
Without introducing constraints on the edge

 9

lengths as in [2], it manages not to sink under
its own weight as the mass-spring model
does, and it even folds over quite well,
despite not having any bending forces
included in the model.

Volino et. al. proved in their work that their
model was able to correctly reproduce the
data fed into it when the same tests were run
in the simulation [14]. Miguel et al. showed
similar results with their model [8], which
incorporated more cross-dependencies
between the weft, warp, and shear modes of
fabric in their measurements. Because I was
unable to measure data myself for this
project, in either of the ways presented in [8,
14], I did not complete these tests myself, as
the data for this model was the same as used
in [14].

In my view, that is one of the main downsides
of this model—measuring from real cloth
samples does give this model a certain
credibility not present in other sheet-based
cloth models, but acquiring said equipment or
building it yourself can be prohibitively
difficult. If there were some sort of online
database containing raw force-displacement
graph data from a multitude of fabric
samples, that would make using this model in
commercial practice much more viable.
Unfortunately, the only data readily available
are figures that summarize the graph created,
such as its linearity of the sample or the area
under the created curve. This data, while
useful for fashion designers, is not enough to
recreate the actual data points necessary for
this model.

Another downside of this model is that it is
still not as efficient as the mass-spring
method. It is difficult to track performance
between the two for several reasons. Firstly,
both examples that I have were created by
myself, so they’re subject to errors in
efficiency. Further, the mass-spring model I
made was based on [4], which makes several
approximations in order to speed up the
simulation, so it is not the most accurate
comparison point.

I decided for the comparison to make a note
of the number of mathematical operations
necessary to calculate the forces and
Jacobians with respect to position per-frame,
assuming both need to be updated
dynamically, and assuming since both can
use similar methods, they will have similar
performances when integrated. These costs
are per-calculation, and it is pretty easy to see
that the model put forward by Volino et. al.
(hereafter called GNATV for ‘General
Nonlinear Anisotropic Tensile
Viscoelasticity’) is much more costly than
the mass-spring method (figures 5, 6).

It is worth noting that these costs do not
include the operations necessary to compute
the stress (for the forces) or the stress partial
derivative (for the Jacobians). Depending on
the implementation, this may be computed
any number of ways. If done by projecting a
function onto the data, it may only add a few
multiplications and additions on top of the

 10

load present. However,
in my implementation
as in Volino et. al.’s, a
b-spline interpolator
was used to connect
the space between the
data points, as cloth
data is not always
guaranteed to follow
an easily expressible
function. This adds a
fair bit onto the
associated costs of the
model per-frame.

Other efficiency costs shown in my
implementation may only be specific to my
work; as previously noted, I needed to add
damping forces to maintain stability in the
model, which resulted in much higher
convergence times. It would be worth
investigating which damping forces, if any,
are needed for this model to work and how
efficient each method is.

4.2 Adjusting Data Points

Since I was unable to acquire data outside
from that used in [14], I decided to expose the
base b-spline data to the user and do some
light experiments on changing the data the
model is based on. I discovered that changing
things willy-nilly will often lead to the cloth
tearing itself apart (figure 7), so it seems
some adherence to realism is necessary in
order to maintain stability. I had the most
success in manipulating the step in the strain
direction and increasing the strain maximum,
moving data points up to follow in as realistic
of a manner as could be managed given the
interface (figures 8 - 11).

Interestingly, increasing the step size for the
warp direction by orders of ten greatly
decreased convergence times. This suggests
that this model might suffer from a similar
problem as the mass spring – increasing
stiffness too much may prohibitively increase

convergence. For my purposes, it is difficult
to separate my convergence times from other
factors, so it is difficult to draw any
conclusions from this result.

5 Conclusion

The model presented by Volino et. al. does
produce more realistic results than the mass-
spring method, but it is more expensive
computationally. However, their setup,
wherein all the forces are derived strictly
from the positions of the mass points, would
allow this algorithm to be fully evaluated on
the GPU, which would greatly help speed and
efficiency. In my opinion, for this model to
be successful, better cloth measurements
need to be taken, with cross-dependencies
between the modes of cloth taken into
consideration. For this model to be used
generally, it may need a few speed-ups and
approximations, as has been done with the
mass-spring model. It would also require data
from cloth testing experiments to be
generally available so that each person
wanting to implement this model wouldn’t
have to measure the data themselves.

Looking forward in cloth simulation, this will
probably not be the model that people shift to
when looking for a combination of efficiency
and realism. As with most fields in computer
science, research done with deep learning
networks far outperforms any other work.

 11

Lähner et. al. recently published a very
impressive work in which neural networks
were used to map a clothing item onto a
model, and from there create a normal map
while the model animated that realistically
recreated highly detailed wrinkle patterns on
the item of clothing [6]. The network does
need to be retrained for different fabric
materials, and as with all deep learning
algorithms, the main issue with the model is

acquiring and labelling data to train the
network. However, once that work has been
completed, a neural network can be used very
efficiently in real time. If someone were to
put in the work to make this into a viable
product, I have no doubt it would be very
successful and quickly become the most
popular method of adding realism to cloth
simulation.

 12

 13

References

[1] D. Baraff, A.Witkin, 1998, Large Steps in Cloth Simulation. Computer Graphics
(SIGGRAPH’98 proceedings), ACM Press, pp 43-54.

[2] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, E. Grinspun, 2007, Efficient Simulation
of Inextensible Cloth. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007), 26(3).

[3] J.M. Kaldor, D.L. James, S. Marschner, 2010, Efficient Yarn-Based Cloth with Adaptive
Contact Linearization. ACM Transactions on Graphics, 29(4).

[4] Kang, Y. M., and Cho, H. G., 2002, Complex deformable objects in virtual reality. VRST '02
Proceedings of the ACM symposium on Virtual reality software and technology, ACM, 49-56.

[5] M. Kutta, 1901, Beitrag zur näherungweisen Integration totaler Differentialgleichungen.

[6] Z. Lähner, D. Cremers, T. Tung, 2018, Deep Wrinkles: Accurate and Realistic Clothing
Modeling. CoRR, 1808.

[7] T. Liu, A.W. Bargteil, J.F. O’Brien, L. Kavan, 2013, Fast Simulation of Mass-Spring Systems.
ACM Trans. Graph., 32.

[8] E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M.A. Otaduy, S. Marschner,
2012, Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum, 31(2, 2),
519 – 528.

[9] M. Müller, B. Heidelberger, M. Hennix, J. Ratcliff, 2007, Position Based Dynamics. J. Vis.
Comun. Image Represent, 18(2), 109–118.

[10] PhysXInfo, 2012. APEX Clothing. PhysXWiki, last modified April 2016.
http://physxinfo.com/wiki/APEX_Clothing

[11] C.D.T. Runge, 1895, Über die numerische Auflösung von Differenntialgleichungen.
Mathematische Annalen, Springer, 46(2), 167-178.

[12] M. Seymour, 2018, Cloth Simulation, Opening the Kimono. Fxguide.com, last modified
December 2018. https://www.fxguide.com/fxfeatured/cloth-simulation-opening-the-kimono/

[13] T. Stuyck, 2018, Cloth Simulation for Computer Graphics, Morgan & Claypool Publishers.

[14] P. Volino, N. Magnenat-Thalmann, F. Faure, 2009, A Simple Approach to Nonlinear Tensile
Stiffness for Accurate Cloth Simulation. ACM Transactions on Graphics, Association for
Computing Machinery, 28(4).

Implimentation can be found on my github: https://github.com/rstrohkorb/GNATV_cloth_sim

