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1 Introduction 
 

Cloth simulation has been a long-standing 
problem in the field of computer graphics. 
Physically, fabric is a material defined by 
small interactions between tiny interwoven 
threads. Recreating the exact physical 
properties of cloth based on these interactions 
would be possible, given time, but for most 
applications the staggering amount of 
computations needed to reproduce a 
physically accurate fabric are not worth the 
time or effort. 
 

Historically, the most popular way of 
approximating cloth for simulation has been 
the mass-spring method [12]. Instead of 
treating the cloth as a continuous object of 
interwoven threads, the cloth is divided into 
a series of finite elements or particles 
(typically the vertices of a mesh), each of 
which has a mass associated with it. These 
masses are then connected to each other by a 
network of springs, and the resulting mesh 
acts as a sheet of “cloth” that responds 
realistically to applied external forces. 
 

However, while this method of modelling 
cloth is computationally efficient, it lacks the 
ability to recreate the actual physical 
properties of fabric and clothing, which can 
be easily detected by the human eye. Further, 
it is difficult to add user-end functionality to 
this model, thus making it difficult to have 
different samples of fabric created with the 
mass-spring method look different enough 
from each other to have a user or viewer 
believe that they are actually different 
samples of fabric. 
 

In this paper, I investigate a different way of 
modelling cloth proposed by Volino and 
Magnenat-Thalmann [14] based on 
continuum mechanics. Typically, cloth 
simulation is divided into three areas – the 
cloth model itself, the integration method 
used for the physical simulation, and 

collision detection and response. I focus 
mostly on the applications of the cloth model, 
with some attention paid to integration and 
none given to collisions. 
 
2 Previous Work 
 

2.1 Mass-Spring 
 

When it comes to modelling cloth, the mass-
spring method is ubiquitous. As its main 
advantage is computational efficiency while 
retaining a physically accurate response to 
outside elements, there has been much effort 
put into making this model even more 
efficient. Most of the progress in this model’s 
efficiency has taken place in the integration 
step, the most important being the work of 
Baraff and Witkin [1], who were the first to 
propose using the Backwards Euler method 
to integrate the cloth particles’ velocity and 
positions implicitly. Explicit integrators 
estimate the velocity of each particle at the 
next time step based on the forces exerted on 
each particle by calculating the Taylor series 
of the velocity (typically up to 4 or 5 steps for 
the sake of better accuracy) [13]. 
Unfortunately, explicit integrators often 
don’t remain stable unless the time step is 
very small, making them poor choices for 
real-time applications. Baraff and Witkin 
proposed an implicit method, wherein the 
partial derivatives of the forces on the mass 
points with respect to their positions are used 
to construct a linear system of equations, 
which than then be solved by iterative 
methods [1]. Iterating towards the solution 
has an associated cost, but because implicit 
integrators are able to use much larger time 
steps, this cost is outweighed. 
 

Much effort has gone into making implicit 
integrators even more efficient. Kang and 
Cho [4] modified the implicit integration so 
that it could be completed piecewise, without 
each particle having to consider the velocity 
of every other particle at each time step. They 
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also shortened the iterations to 
one iterative step, judging that 
this approximation was close 
enough to the actual solution, 
provided some damping forces 
were added. More recently, Liu 
et. al. [7] increased the speed of 
implicit solves for mass-spring 
systems by adding an additional 
local step that finds the optimal 
spring directions. By using this 
local step, they are able to 
separate their matrix used to solve 
the linear system of equations in 
the global step from being 
dependent on the current state, 
meaning that this matrix doesn’t 
have to be computed every frame. 
 

Despite being efficient, the mass-spring 
model still suffers from inaccuracies. One of 
these is that cloth in the real world does not 
droop as much under its own weight as cloth 
created by the mass-spring model. In fact, it 
often droops very little, to the point where the 
mass-spring model looks very unrealistic by 
comparison (figure 1). It would be possible to 
‘tighten up’ a mass-spring system by 
increasing the spring constants of the 
structural springs, but increasing the spring 
constants drives up convergence time [2]. 
 

To combat this, Goldenthal et. al. [2] created 
a model for inextensible cloth, or cloth that 
does not stretch under its own weight. The 
cloth object is composed of mostly quads and 
some tris, and quad edges are constrained to 
be aligned to the weft and warp directions of 
the fabric. These edges are then constrained 
to maintain their original length. Shear forces 
are modeled with springs on both diagonals 
of each quad. Goldenthal et. al. then 
formulate an implicit integrator that’s 
efficient at enforcing the edge length 
constraints using Constrained Lagrangian 
Mechanics. Their model utilizes the 
efficiency of the mass-spring model while 
making up for one of its greatest weaknesses. 

 

2.2 Position-Based Dynamics 
 

While the mass-spring model has proven to 
be quite efficient, this efficiency is often not 
efficient enough for virtual reality and games 
applications. One of the most common 
methods used to simulate cloth in modern 
gaming systems is position-based dynamics, 
a method proposed by Müller et. al. [9]. Most 
integrators will derive point positions and 
velocities from the forces exerted on the 
points. In position-based dynamics, this step 
is skipped, and the position of a point at the 
next time step is determined by a set of 
constraints. These constraints include 
maintaining physical realism, but also 
include collision detection, making handling 
collisions that much more efficient.  
 

This model removes the time step issue of 
explicit solvers, meaning explicit integration 
methods, which are easier to comprehend and 
program, can be used without much 
associated cost. However, in the case of 
cloth, because the integration only works 
based on such as stretch and bending 
constraints it may be hard to represent 
particular types of cloth by controlling only 
these limited factors. 
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This model was adapted for use in APEX 
Clothing [10], Nvidia’s cloth solver. It has 
been integrated into several game engines, 
such as Unreal 3 and 4, and has been used in 
several Batman Arkham games, as well as 
Bioshock Infinite. 
 

2.3 Physically Accurate Model 
 

On the other end of the spectrum from models 
optimized for efficiency, there are models 
designed to represent and simulate the actual 
physical behaviors and properties of cloth, 
where material behavior is defined by 
interactions between tiny threads. Sheet-
based cloth models can work well when 
approximating fabric made by even 
interwoven threads running orthogonally to 
each other, but much of our clothing is 
knitted or woven. Knitted clothing, such as t-
shirts, sweats, and much of our everyday 
casualwear, is especially difficult to simulate; 
as knitted fabrics are often composed of a 
single length of thread or yarn, there are 
thousands of self-collisions occurring at 
every time step.  
 

Kaldor et. al. [3] propose a method to reduce 
yarn contact processing time by reusing data 
from previous contact steps, as locally, yarn-
yarn contacts don’t see much change over the 
course of a simulation. They further 
approximate the contact force between yarn 
strands as a corotational force, since yarn in 
knitted fabrics is typically looped around 

other strands. Their methods resulted in 
calculations taking place over four times 
faster than previous models, but per-frame 
calculations still took nearly a minute to 
complete. Impressively, their model exhibits 
behaviors unique to the particular stitch used 
to construct the item of clothing. 
 

2.4 Continuum Mechanics 
 

Volino et. al. [14] attempted to bridge the gap 
between the efficiency of the mass-spring 
method and the realism of physically 
accurate models by still treating the fabric 
object as a sheet, for the sake of efficiency, 
while modifying the way forces were 
calculated to more accurately emulate real-
world fabric behavior. One of the main 
reasons the mass-spring method fails to 
accurately simulate how cloth behaves is 
because it assumes the forces acting 
internally are linear forces, and can thus be 
approximated with Hooke’s Law. This is not 
true—for many fabrics, the internal forces are 
not at all proportional to the deformations 
that occur, and these deformations can vary 
based on the orientation of the fabric’s weft 
and warp directions. Volino et. al. decided to 
base the mass point force calculations on 
force/displacement data taken from actual 
cloth samples. Their methods are the main 
subject of this paper and will be discussed in 
great detail in section three. 
 

It is worth noting that their system of 
measurements used three tests from the 
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Kawabata Evaluation System to measure 
their cloth: testing elongation in the weft, 
warp, and shear directions (shear being 
evaluated in the weft direction by pulling one 
end of the cloth in a direction parallel to its 
opposite end). It has been noted that this 
system of evaluation ignores many of the 
cross-dependencies that could exist between 
the three modes. Miguel et. al. [8] proposed 
an improved way of measuring these factors 
by capturing deformations in full 3D. Their 
tests do try to isolate the weft, warp, and 
shear factors, but these requirements are 
relaxed to get more realistic results. They 
also include bending tests that were left out 
of Volino et. al.’s model.  
 

For my project, I was unable to produce 
hardware from either [14] or [8] in order to 
conduct my own fabric tests, so I used the 
data from [14] as the basis for my cloth object 
(figure 2). 
 
3 Methods 
 

3.1 Cloth model 
 

The cloth model for this project assumes a 
mesh object composed of triangles for which 
no more than two triangles share an edge. The 
vertices of the triangles are treated as mass 
points and are given a mass equal to one-third 
of the object’s total mass times the surface 
area of an attached triangle, summed over 
each triangle attached to the vertex. These 
triangles need not be arranged in a grid 
pattern, and although similarly sized triangles 
are preferred, it isn’t necessary for the model 
to work correctly. 
 

In the starting state, the cloth is assumed have 
its weft-warp directions orthogonally 
aligned; that is, the cloth is not experiencing 
any internal forces, so there is no strain on the 
fabric internally that would cause the weft-
warp vectors to deform from their starting 
orthogonal state. From here on, the vector per 

triangle in the weft direction will be called u, 
and in the warp direction v. 
 

Each of the three vertices of a triangle are 
mapped from 3D world coordinates to 2D 
parametric coordinates. These parametric 
coordinates must produce the same surface 
area as the 3D world coordinates in order to 
be considered valid. The easiest mapping 
from 3D to 2D has the cloth object lie flat on 
one of the x, y, or z-axes, but my 
implementation allows for that not to be the 
case. The goal of these 2D coordinates is to 
be able to calculate the deformation state of 
the triangle, or the change in the magnitude 
and direction of u and v. By assuming u = [1, 
0] and v = [0, 1] in the initial state, weights 
for each of the vertices of the triangle (a, b, c) 
can be calculated as follows: 
 

 
Where d is two times the surface area of the 
triangle in the initial state. During the 
simulation, these weights can be used to 
calculate u and v as follows: 

 
Where Pi is the location of vertices (a, b, c) in 
3D world coordinates. 
 

This model is based on the idea that the strain 
state of the cloth object can be completely 
derived from the point positions of the 
triangle vertices. All of the internal forces 
produced by this model are derived from the 
magnitude of u and v, as well as the angle 
between these vectors for the shear forces. 
 
The material behavior of the cloth is defined 
by the relationship between the strain on the 
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cloth and the stress (pressure) that results 
from the strain. This relationship is derived 
from the three force-displacement tests done 
for each of the weft, warp, and shear 
directions (also referenced as uu, vv, and uv 
directions). The force-displacement data is 
converted into strain-stress data using the 
appendix in [13]. A b-spline curve is then 
interpolated between the data points and used 
as a function defining the strain-stress 
relationship of the material. 
 

The strain state of a given triangle can be 
derived from u and v as follows: 
 

𝜀"" = 	
1
2
(𝒖)𝒖 − 1) 

 

𝜀,, = 	
1
2
(𝒗)𝒗 − 1) 

 

𝜀", = 	
1
2
(𝒖)𝒗 + 𝒗)𝒖) 

 

By plugging these strain values into their 
associated strain-stress curves, one acquires 
the stress state values suu, svv, and suv. The 
stress is then used to calculate the internal 
forces created by the distortions in this 
triangle. 
 

3.2 Force calculations 
 

For each triangle, forces are computed for 
each of the three vertices (a, b, c). For any j 
in (a, b, c), the force on a point from this 
triangle is as follows: 
 

𝑭0 = −𝑠 2𝜎""𝑟"0𝒖 +	𝜎,,𝑟,0𝒗

+	𝜎",5𝑟"0𝒗 +	𝑟,0𝒖67 
 

Where s is the surface area of the triangle. 
Accumulating these forces for each triangle 
in the mesh accounts for all the internal forces 
in this cloth model. Forces can then be 
integrated with techniques from mass-spring 
systems, as those integrators also integrate 
over forces on individual mass points. 
 

This force equation is enough information for 
explicit integration, but computing the 

Jacobian of the forces, or the partial 
derivatives of the forces on the mass points 
with respect to their positions, is necessary 
for implicit integration. For each triangle, and 
for any i and j among (a, b, c), the local 
Jacobian matrix can be computed as follows: 
 

𝑱09 =
𝜕𝑭0
𝜕𝑃9

= −𝑠 <
𝜕𝜎""
𝜕𝜀""

𝑟"0𝑟"9𝒖𝒖)

+	
𝜕𝜎,,
𝜕𝜀,,

𝑟,0𝑟,9𝒗𝒗)

+	
𝜕𝜎",
𝜕𝜀",

5𝑟"0𝑟,9𝒖𝒗)

+	𝑟,0𝑟"9𝒗𝒖)6
+	2𝜎""𝑟"0𝑟"9 +	𝜎,,𝑟,0𝑟,9

+	𝜎",5𝑟"0𝑟,9 +	𝑟,0𝑟"967 𝑰> 
 

The Jacobian consists of a stiffness 
component, the component created by the 
terms multiplied by strain-stress derivates, 
and a geometric component, the component 
created by the terms multiplied by the stress 
s. For my implementation, the partial 
derivatives of stress related to strain are 
computed as the derivatives of the associated 
curve (uu, vv, uv). They are included as 
partial derivatives because stress may depend 
on more than one factor of e, the strain in the 
(uu, vv, uv) directions, or e’, the change in 
strain in those directions. However, based on 
the measurements I used in this project, no 
cross-dependencies were included in the 
model. 
 

The local Jacobian is a 3x3 matrix composed 
of nine 3x3 block matrices and appears as 
follows: 

𝑱?@AB? = 	 C
𝑱BB 𝑱BD 𝑱BA
𝑱DB 𝑱DD 𝑱DA
𝑱AB 𝑱AD 𝑱AA

E 

 

The global J-matrix is an nxn matrix 
composed of 3x3 block matrices Jkl, where n 
is the number of mass points in the cloth, k is 
the entry of the mass point being acted upon, 
and l is the entry of the mass point whose 
position is exerting a force on point k. 
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Because Jlocal is created for each triangle, 
there are potentially multiple contributions to 
each Jkl. For instance, in the case where k = l, 
Jkk has a contribution from every triangle k is 
a part of. When k is not equal to l, Jkl has a 
contribution from every triangle where k and 
l share an edge, which in the case of this 
model is up to two triangles. 
 

To construct the global J-matrix, the mass 
point values of the triangle vertices (a, b, c) 
are noted. Each local Jaa is added to the total 
value accumulated for the corresponding Jkk, 
and each Jab is added to the total value 
accumulated for the corresponding Jkl. This is 
repeated for each of the matrices in Jlocal, and 
accumulated over each triangle in the model, 
until the total global J-matrix has been 
calculated. It can then be used in implicit 
integration schemes. 
 

Volino et. al. also provide the necessary math 
to compute the Jacobian matrix of the forces 
with respect to the point velocities. 
Unfortunately, in order to compute this 
Jacobian, I would need access to data that 
defined the relationship between s and e’, or 
the relationship between stress and the 
change in strain. This relationship was 
difficult to measure with the Kawabata 
Evaluation System, so Volino et. al. did not 
use it in their implementation. With the 
measuring equipment in [8], it would likely 
be easier to track this relationship and the 
velocity Jacobian would then be able to be 
computed. 
 

3.3 Integration 
 

For this project, I implemented both RK4 
explicit integration [5, 11] and Baraff and 
Witkin’s modified Conjugate Gradient 
Method for implicit integration [1]. RK4 

involves recalculating the internal triangle 
forces for each step in the Taylor series (in 
this case, 4 steps) based on the state created 
by the previous step. Because of the small 
time step sizes needed to keep RK4 stable and 
having to recalculate all internal forces four 
times per step, it performs quite slowly. 
 

Baraff and Witkin [1] show that the equation 
to solve for the change in velocity for this 
time step can be rephrased in the context of a 
linear system Ax = b, where: 
 

𝑨 = 	 <𝑴 − ℎ
𝜕𝒇
𝜕𝒗	− ℎ

J 𝜕𝒇
𝜕𝒙> 

 

𝒃 = ℎ𝒇M +	ℎJ
𝜕𝒇
𝜕𝒙𝒗M 

 

𝒙 = 	Δ𝒗 
 

Where h is the time step, f0 and v0 are the 
initial force and velocity vectors, and M is an 
nxn matrix composed of 3x3 block matrices, 
whose diagonal values Mkk are equivalent to 
the mass of mass point k. These values for A 
and b are able to be plugged into the 
conjugate gradient method as normal in order 
to solve for x, the change in velocity at this 
time step for each mass point. 
 

Baraff and Witkin further modify the 
conjugate gradient method to account for 
instances where the points in the cloth might 
become fixed in any given direction during 
the simulation, such as when a collision or 
self-collision is detected. For my 
implementation, I added this mass point 
filtering process in order to fix points in space 
to hang and drape the cloth, but it could easily 
be modified to help the cloth respond to 
collisions properly. 
 

In order to filter the mass point forces and 
velocities, Baraff and Witkin construct a 

filtering matrix S of the 
same size of M and J 
such that the diagonal 
3x3 block matrix Sii is 
as in (figure 3). 
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Applying this filtering matrix to certain steps 
in the conjugate gradient method allows the 
affected points to stay fixed without 
disrupting the forces of the connecting points. 
For my purposes, I was only concerned with 
cases where the point i had either 3 degrees 
of freedom or none. For the initial guess of 
Dv, fixed points would acquire the change in 
velocity that was given in this opening guess. 
 

Baraff and Witkin also employed a 
preconditioning matrix P, whose diagonal 
values are equal to the inverse of the diagonal 
values of A. The filtering operation involved 
multiplying the input vector by the filtering 
matrix S. With that in mind, this is the 
modified conjugate gradient method 
algorithm: 
 

Dv ¬ initial guess, values for fixed points 
dtest ¬ filter(b)T P filter(b) 
r ¬ filter(b - ADv) 
q ¬ filter(P-1 r) 
dnew ¬ rT c 
g ¬ small test value, such as 1e-5 
while dnew > g2 dtest   

a ¬ OPQR
𝐪T	UVWXYZ(𝐀𝐪)

 

 Dv ¬ Dv + aq 
 r ¬ r - a filter(Aq) 
 z ¬ P-1 r 
 dold ¬ dnew 
 dnew ¬ rT z 
 q ¬ filter(z + \]^_

\`ab
 q) 

 

By comparing dnew to the test value created 
by filtering b and inter-multiplying the 
preconditioning matrix, the algorithm can 
converge even when there are values in Dv 
that will not change from their starting 
values, due to being fixed points. 
 

For my implementation, this was not 
enough to maintain stability of the 
simulation. I judged that because I’d 
shortened the original A by removing the 
c𝒇
c𝒗

 term (the Jacobian matrix with respect 

to velocity) that there were not any viscous 
forces represented to damp the system. I 
decided to introduce the damping system 
used in [4], as it was simple to implement, 
and I’d had experience with it before. This 
involved the addition of a damping 
coefficient to both sides of the equation, such 
that: 
 

𝑨 = 	<𝑴 − ℎJ
𝜕𝒇
𝜕𝒙> +	

(𝑛9ℎ	𝑐f𝑰) 
 

𝒃 = ℎ𝒇M +	ℎJ <
𝜕𝒇
𝜕𝒙 + ℎ	𝑐f𝑰>𝒗M 

 

Where cd is the damping coefficient, and ni is 
the number of mass points connected to point 
i. This method worked to damp the system 
and make the simulation stable, but at the cost 
of increased convergence time in the 
conjugate gradient algorithm. I was unable to 
investigate different methods of damping, but 
for future work it would be good to either use 
the Jacobian matrix with respect to velocity, 
or use a more efficient means of damping the 
system for stability. 
 
4 Results 
 

4.1 Against Mass-Spring 
 

The method presented by Volino et. al. 
certainly looks more realistic to the human 
eye than the mass spring method (figure 4). 
Without introducing constraints on the edge 
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lengths as in [2], it manages not to sink under 
its own weight as the mass-spring model 
does, and it even folds over quite well, 
despite not having any bending forces 
included in the model. 
 

Volino et. al. proved in their work that their 
model was able to correctly reproduce the 
data fed into it when the same tests were run 
in the simulation [14]. Miguel et al. showed 
similar results with their model [8], which 
incorporated more cross-dependencies 
between the weft, warp, and shear modes of 
fabric in their measurements. Because I was 
unable to measure data myself for this 
project, in either of the ways presented in [8, 
14], I did not complete these tests myself, as 
the data for this model was the same as used 
in [14].  
 

In my view, that is one of the main downsides 
of this model—measuring from real cloth 
samples does give this model a certain 
credibility not present in other sheet-based 
cloth models, but acquiring said equipment or 
building it yourself can be prohibitively 
difficult. If there were some sort of online 
database containing raw force-displacement 
graph data from a multitude of fabric 
samples, that would make using this model in 
commercial practice much more viable. 
Unfortunately, the only data readily available 
are figures that summarize the graph created, 
such as its linearity of the sample or the area 
under the created curve. This data, while 
useful for fashion designers, is not enough to 
recreate the actual data points necessary for 
this model. 

 

Another downside of this model is that it is 
still not as efficient as the mass-spring 
method. It is difficult to track performance 
between the two for several reasons. Firstly, 
both examples that I have were created by 
myself, so they’re subject to errors in 
efficiency. Further, the mass-spring model I 
made was based on [4], which makes several 
approximations in order to speed up the 
simulation, so it is not the most accurate 
comparison point. 
 

I decided for the comparison to make a note 
of the number of mathematical operations 
necessary to calculate the forces and 
Jacobians with respect to position per-frame, 
assuming both need to be updated 
dynamically, and assuming since both can 
use similar methods, they will have similar 
performances when integrated. These costs 
are per-calculation, and it is pretty easy to see 
that the model put forward by Volino et. al. 
(hereafter called GNATV for ‘General 
Nonlinear Anisotropic Tensile 
Viscoelasticity’) is much more costly than 
the mass-spring method (figures 5, 6). 
 

It is worth noting that these costs do not 
include the operations necessary to compute 
the stress (for the forces) or the stress partial 
derivative (for the Jacobians). Depending on 
the implementation, this may be computed 
any number of ways. If done by projecting a 
function onto the data, it may only add a few 
multiplications and additions on top of the 
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load present. However, 
in my implementation 
as in Volino et. al.’s, a 
b-spline interpolator 
was used to connect 
the space between the 
data points, as cloth 
data is not always 
guaranteed to follow 
an easily expressible 
function. This adds a 
fair bit onto the 
associated costs of the 
model per-frame. 
 

Other efficiency costs shown in my 
implementation may only be specific to my 
work; as previously noted, I needed to add 
damping forces to maintain stability in the 
model, which resulted in much higher 
convergence times. It would be worth 
investigating which damping forces, if any, 
are needed for this model to work and how 
efficient each method is. 
 

4.2 Adjusting Data Points 
 

Since I was unable to acquire data outside 
from that used in [14], I decided to expose the 
base b-spline data to the user and do some 
light experiments on changing the data the 
model is based on. I discovered that changing 
things willy-nilly will often lead to the cloth 
tearing itself apart (figure 7), so it seems 
some adherence to realism is necessary in 
order to maintain stability. I had the most 
success in manipulating the step in the strain 
direction and increasing the strain maximum, 
moving data points up to follow in as realistic 
of a manner as could be managed given the 
interface (figures 8 - 11). 
 

Interestingly, increasing the step size for the 
warp direction by orders of ten greatly 
decreased convergence times. This suggests 
that this model might suffer from a similar 
problem as the mass spring – increasing 
stiffness too much may prohibitively increase 

convergence. For my purposes, it is difficult 
to separate my convergence times from other 
factors, so it is difficult to draw any 
conclusions from this result. 
 
5 Conclusion 
 

The model presented by Volino et. al. does 
produce more realistic results than the mass-
spring method, but it is more expensive 
computationally. However, their setup, 
wherein all the forces are derived strictly 
from the positions of the mass points, would 
allow this algorithm to be fully evaluated on 
the GPU, which would greatly help speed and 
efficiency. In my opinion, for this model to 
be successful, better cloth measurements 
need to be taken, with cross-dependencies 
between the modes of cloth taken into 
consideration. For this model to be used 
generally, it may need a few speed-ups and 
approximations, as has been done with the 
mass-spring model. It would also require data 
from cloth testing experiments to be 
generally available so that each person 
wanting to implement this model wouldn’t 
have to measure the data themselves. 
 

Looking forward in cloth simulation, this will 
probably not be the model that people shift to 
when looking for a combination of efficiency 
and realism. As with most fields in computer 
science, research done with deep learning 
networks far outperforms any other work. 



 11 

Lähner et. al. recently published a very 
impressive work in which neural networks 
were used to map a clothing item onto a 
model, and from there create a normal map 
while the model animated that realistically 
recreated highly detailed wrinkle patterns on 
the item of clothing [6]. The network does 
need to be retrained for different fabric 
materials, and as with all deep learning 
algorithms, the main issue with the model is 

acquiring and labelling data to train the 
network. However, once that work has been 
completed, a neural network can be used very 
efficiently in real time. If someone were to 
put in the work to make this into a viable 
product, I have no doubt it would be very 
successful and quickly become the most 
popular method of adding realism to cloth 
simulation. 
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Implimentation can be found on my github: https://github.com/rstrohkorb/GNATV_cloth_sim 


