
Bournemouth University

MSc CAVE - Master’s Thesis - NCCA

Demystifying Denoisers: A Simple Pipeline for
Denoising Renders with Neural Networks

Chris Leu
August 19, 2018

Contents

0.1 Introduction . 2
0.2 Previous Work . 2
0.3 Technical Background . 3
0.4 Implementation . 4

0.4.1 Setup . 4
0.4.2 Maya Script . 4
0.4.3 Additional Files . 5
0.4.4 Training . 5

0.5 Results . 6
0.6 Future Work and Conclusion . 7
0.7 Appendix . 9

1

0.1 Introduction

Image noise is as undesirable as it is pervasive in vi-
sual effects and videography as a whole. Causes of im-
age noise can be lighting and camera equipment in the
live-action realm, or sampling rates and material prop-
erties in computer generated scenes. This project will
focus on the latter. The noise caused by under sam-
pling in monte carlo renders is a double-edged sword,
on one hand the solution is extremely simple: up your
samples; however, this leads to extremely long renders.
The workflow at Bournemouth University is reliant on
CPU renders that can be slowed down by multiple
courses vying for time on one render farm, therefore
render times will always be a serious prohibiting factor
when students are working on projects. Denoising as
a post-process could allow students to maintain high
render quality and give them the time they need to do
multiple iterations of a project on a tight schedule.

When examining the field of removing image noise
created in renders, the denoiser has the possible ben-
efit of utilizing different passes and arbitrary output
values (AOVs) to understand the image better. How-
ever, this does add some difficulty in use because it
places restrictions on how the artist can render their
scene. CG denoising solutions can also be heavy in
terms of libraries and supporting scripts they require
to run, meaning the time to setup such a system on
each machine could end up being quite expensive if
the artist is left to figure it out on their own. Most de-
noisers are written in separate python or matlab files
meaning at the very least there will be some tedious
file management involved. An ideal denoiser would not
only improve the image, but also integrate itself seam-
lessly into the workflow already in place. The goal of
this project will be to take a very powerful denoiser
built from ”Kernel-Predicting Convolutional Networks
for Denoising Monte Carlo Renderings” [1], and then
do the necessary modification and augmentations to
make something that fits into Bournemouth Univer-
sity’s unique pipeline.

0.2 Previous Work

Image denoising is not a new task, even before monte
carlo renders people were looking to remove imperfec-
tions, known as grain, from analog film using similar
techniques to ones used in the digital age. Solutions
to image noise can be a simple as blurring, ie averag-
ing a pixel’s color based on its neighbors. Many ad-
vanced denoisers inherit from this simple principle by
creating small filters that give localized blurring and
preserve the edges of objects in a way a gaussian blur
function would not. This process is commonly known
as bilateral filtering. The “bi” referring to the idea of
correcting a noisy pixel by looking at both pixels that
are nearby, and pixels that similar to it (regardless of
where it may be positioned in image space). These
methods falter when seeking to understand the differ-
ence between noise and detail. Thinking of how to de-

termine between a sandy beach and a noisy tan surface
is a common example of this problem. Conveniently for
VFX applications, using multiple frames of a shot can
help illuminate which is persistent detail and which is
random noise in cases like this. Even when given a
scene with clear cut objects, filtering methods such as
this can produce color banding or aura artifacts (see
Fig. 1).

Figure 1: Aura effect in denoised image

The BM3D algorithm is one of the best image de-
noising technologies from before neural networks swept
across the industry. Similar to the previously dis-
cussed filtering methods, it relies on finding similar
parts (called blocks) within images [2]. These blocks
are grouped via matching, which takes one block as a
reference and compares it to other blocks, computing a
dissimilarity metric. K-means clustering is discussed as
being a slightly suboptimal choice for selecting similar
blocks, but because of its ubiquity the reader may find
it helpful to understand what the algorithm is doing.
All blocks that score within a particular threshold are
matched with the reference, thus turning the reference
into the relative centroid of its set of blocks. These
2D blocks are then stacked on eachother creating a 3D
array. Taken simplistically, the average of these blocks
becomes a denoised block (see Fig. 2). In the full algo-
rithm, this process is done twice, the first time applies
a hard-threshold of the transform coefficients, and the
second using Weiner filtering where the output of the
first round is used as the true energy spectrum (see
Appendix for flowchart).

2

Figure 2: Grouping Blocks in an example (theoretical)
image [2]

The next great leap in denoising (and image pro-
cessing in general) was the neural network boom of the
early 2010s. The creation of the ImageNet Database
helped researchers have a consistent and extensive
source of training data [3]. When training on pho-
tographs as opposed to renders, most neural networks
focused on removing gaussian noise. The training pro-
cess typically involves adding random noise to the im-
age and then using the original image as the ground-
truth for training. A training routine that uses im-
ages that are already clean cuts down on the signifi-
cant cost of rendering noisy and clean image pairs for
monte carlo denoising. However, there are now net-
works looking to learn how to clean images by looking
only at noisy images, an idea especially important to
denoising medical imagery, where generating a clean
picture as a ground truth is often impossible [8].

“Beyond Gaussian Denoising” describes a convo-
lutional neural network called DnCNN, that not only
showcases a strong advancement in denoising, but also
a certain amount of extra utility previous systems could
not produce [7]. The convolution neural networks in-
volve convolving a filter, which is essentially a patch
of pixels, across an image to learn more about it. Ini-
tially these networks were used for image classification,
and the layers of the network would allow them to de-
velop filters that represented objects ranging from the
concept of an edge, to something more domain specific
like a human face. DnCNN is a relatively deep network
with seventeen hidden layers, the slower training time
for such a deep network is combated by utilizing batch
normalization and residual learning. The paper also
highlights how GPU acceleration plays an important
role in the usability of this system, both for improving
the time to denoise an image, but more importantly to
dramatically cut down how long it takes to train (1-3
days). Because of the nature of the network to not be
connected to a specific task, the network is also excel-
lent at super-resolution and jpeg correction, provided
the user has the right training set.

0.3 Technical Background

The denoiser to integrate into the BU pipeline is KPCN
from the paper mentioned in the introduction. The
network begins by splitting up the image into two
parts, the specular and the diffuse. This is impor-
tant not only because it is a significant departure from
the denoisers that have been previously discussed, but
also because it admits that the noise profile for spec-
ular and diffuse components are fundamentally differ-
ent and deserve to be accounted for separately. The
diffuse component is not simply the diffuse pass, but
rather the diffuse pass divided (Hadamard division) by
the albedo. This creates a sort of normalization to the
image, as parts that reflect little light will be raised
by dividing by a small albedo, and parts that reflect
a large amount of light will be crushed by the large
albedo. The authors do admit this step is not entirely
necessary, as diffuse noise is not that challenging to
correct, however it does allow for larger filtering ker-
nels in practice, more on that later. The second half
of the picture is the specular component, which is sim-
ply the specular component with a log transformation
such that, specular = log(1+c specular). This helps
deal with artifacts in areas with high dynamic range.

Like the DnCNN this is a convolution neural net-
work, however since in the previous step we have two
parts to our image, two CNNs are trained, one for
each part. Each of the CNNs have no fully con-
nected layers, and utilize the ReLU activation func-
tion, both of which are standard practices for similar
networks. Each layer, l, of the network can be un-
derstood as zl = f l(W l ∗ zl−1 + bl), where W l and
bl are the weights and biases, zl−1 is the output of
the previous layer, and f l() is the ReLu activation
function(f l(x) = max(0, x)).

The output of these two CNNs can either be a de-
noised pixel, as is traditionally the case, or, as is the
namesake of the paper, a kernel for denoising said pixel.
The authors found that if the network trained to out-
put a 21 x 21 kernel to be applied to a pixel, it con-
verged much faster than if the goal was to output the
denoised pixel. However, if infinite time is given to
train both types of CNN, they do give nearly identical
denoised images. This idea is pulling from the older
practice of attempting to create localized blurring, ex-
cept now it is done at a much finer level and the blur
is taylor-made for the noisy pixel by the network.

At the end, the kernel is applied to the pixel to de-
noise it, and the preprocessing functions for the diffuse
and specular parts are inverted and combined to give
a denoised image. See the appendix for a visual guide
to the entire process from the authors.

One of the primary authors of “Kernel-Predicting
Convolutional Networks for Denoising Monte Carlo
Renderings” also released an implementation of KPCN
using TensorFlow, an open source framework for ma-
chine learning. It is written in python and requires
a few common extra libraries such as Numpy and
OpenEXR. The implementation relies on the Tungsten

3

renderer, which was also created by the author, how-
ever, as the paper, notes, retraining allows the network
to be utilized by Renderman as well (and theoretically
other renderers). Thus, to utilize the implementation
effectively the network needed to be retrained so the
Tungsten compatible weights could be replaced by ones
trained for Renderman.

The current pipeline of Bournemouth University is
also extremely important to this project. The graduate
program is primarily composed of three courses which
use Red Hat Linux or Windows. The three most impor-
tant pieces of software are Maya, Houdini, and Nuke.
Students may use Vray, Arnold, Mantra, or Renderman
for their projects. The paper discussing KPCN was im-
plemented on Ubuntu and CentOS with the Tungsten
and Renderman renders, thus the primary use-case for
the denoiser would be a student on Red Hat using Maya
with Renderman.

Students at Bournemouth also do not have admin
privileges on their machines thus installing new pro-
grams is out of reach for most. A helpful tool to get
around this issue is VirtualEnv which is installed on
all Linux machines, this allows a user to install the
necessary python libraries including TensorFlow.

0.4 Implementation

0.4.1 Setup

There are two primary components for this denoiser
to work, a shell script to set up the virtual environ-
ment, and a python script to run from inside Maya
to render something. The original download for the
KPCN implementation was quite large (˜1.5Gb), and
that did not include the supporting files such as tensor-
flow. A simple shell script was implemented to allow
the artist to recieve something extremely lightweight
(˜2Kb), that could be sent in an email, and it would
then download all necessary components at the artist’s
convenience.

The script starts by creating a virtual environment
in the user’s home directory. In a production environ-
ment this might be a problem, but students will only
be using their machine for a year’s course of study, so
they can afford to clutter up the home directory a bit.
The use of a virtual environment also ensures isolation
for this aspect of the pipeline. If the artist finds they
do not want to use the denoiser after a few tests, they
can guarantee that the install hasn’t created any con-
flicts with other paths or directories. The script then
installs tensorflow and the necessary python libraries.
Pip is used for this step, as it is the standard at BU
for installing python libraries. Github was chosen as
the repository for program files because of its famil-
iarity those in the tech industry, and because it was
free to use. This download and unzip are the most
time consuming aspect of the setup, the folder to be
downloaded is about 1 GB, but a quick network could
make it fairly trivial. In order to enable batch render-
ing from the command line in maya, a few lines must

be added to the user’s bashrc. This is the most inva-
sive part of the installation, as it happens outside the
virtual environment, however, in all tests done dur-
ing the course of the project these added lines did not
affect Maya or any other program negatively in any
way. The key line in the bashrc additions is adding
to the MAYA RENDER DESC PATH, which lets the
Renderman .xml file become a valid renderer to Maya’s
command line rendering system.

0.4.2 Maya Script

The user can then open any scene in Maya and set it up
with the proper materials and lights that are compati-
ble with Renderman. Settings in the standard Render
Settings tab are honored by the script, so once that
is set up the user runs Run NN from the script edi-
tor. During testing the standard way to run the pro-
gram was the classic maya three line comb: “import
Run NN, reload(Run NN), Run NN.showUI().” This
script will start a batch render from the command line.
The user can keep track of the progress of this render
via the terminal they opened maya from. As an alter-
native, the user could choose to skip the batch render
if they already have noisy images ready to be denoised.
This use case is especially important for larger scenes
where the artist may want to take advantage of BU’s
renderfarm. Initially some efforts were made to wrap
this function up in automation, however, there were
problems because using the render farm requires the
user to enter their password at multiple points. It is
also safe to assume that the artists are already very ex-
perienced with the render farm and doing it for them
via a script would only have marginal benefits. Once
the render is done, the script starts a simple Nuke comp
from the command line. This is necessary because
there was not a way to have maya render all passes in
one EXR while having the variances passes. Near the
end of the project it was discovered that during testing
variance passes could be substituted with an all black
frame, and the difference in output was impercetable.
However, these passes were still necessary in training,
and the nuke comp also served to rename the passes
to something the network expected, so this step of the
process was kept. The multi-channel EXRs are then
moved to the appropriate directories for KPCN to run.
The progress for the denoising process can also be seen
in the terminal from which maya was opened. Once
the denoising is done the files are moved to an output
folder for ease of access by the user.

Figure 3: Simple GUI for the denoiser

4

The key functions of this process are as follows:
ShowUI: A simple GUI is created for the user to

interact with. The primary components of this will
drive the rest of the functionality of the script. The
user may select a specific directory to output their de-
noised images. The interface uses the standard Maya
file browser, fileDialog2. There is also a field for se-
lecting a directory that has noisy images ready to be
denoised. It is important to note that the dialog does
not allow them to directly select a folder on the render-
farm, this limitation is related to previously mentioned
issue with passwords, so if they have gone that route
they must move those files first. Finally, the artist can
choose to enter their information for an email account
to give them a notification when the render and de-
noising has been completed (see Fig. 3).

FindPathNames: Throughout the program find-
ing certain names and paths are important, thus a func-
tion is run at the beginning to collect and parse this
important information. The information collected in-
cludes: scene name with and without the file extension,
the path to the scene, the path to the rendered im-
ages, the user’s home directory/student number, and
the frame range. This information is added to a dic-
tionary for the rest of the script to utilize.

BrowseForOutput/Input: These functions
simply allow access to fileDialog2.

SendEmail: The user must specify their username
and password in the previous GUI, these are used to
then send a simple email to themselves that acts as a
notification for when the program is done. The email
and email.mime packages are used to compose the body
of the email and the subject line.

MoveFiles: File management and manipulation
is key to much of this program succeeding. Because
of the work put into this aspect of the program the
artist does not need to worry about where they are
outputting their images, as it will find them and move
them to the appropriate places. The function removes
any previous noisy images from NN Denoise directory,
but does not remove anything outside that directory.
Once the new images are in place, regular expressions
are generated to find the specific passes. These are
then sorted into the appropriate folders.

NukeComp: In order for the Nuke comp to run
correctly from the command line, two python files are
moved into the users .nuke folder. These allow Nuke
to automatically look for all exrs in a certain directory,
in this case each read node looks for a different pass
in a directory of EXRs. The .nk file is then ran, and
the two python files are moved out of the users .nuke
to avoid clutter.

Denoise: This function simply runs the actual
python script that is the denoiser, and then moves the
denoised files to the appropriate directory.

NN Render Denoise: This function represents
the primary use case of the project. The batch ren-
der is called via the subprocess module. It was found
in testing that this only worked with the “shell=True,”
which can be a security risk since it allows for injection
of potentially malicious shell code. Given that BU stu-

dent projects are fairly safe in terms of being attacked
by dangerous code, and the fact that the batch render
command only pulls in outside variables for the scene-
name; the decision was made that this was a safe piece
of code. The function then moves files, runs the nuke
comp, denoises, and finally sends an email if necessary.

NN Just Denoise: This function is nearly iden-
tical to previous function expect instead of running a
batch render, it pulls files from the user specified path.

0.4.3 Additional Files

BuildEXR.nk: While Maya does support outputting
multiple passes into one multi-channel EXR automat-
ically, at the time of this project’s completion no solu-
tion to add in the necessary variance passes was found.
The denoiser also looks for the variance channels to be
in a one dimesional channel rather than RGB, which is
not automatically supported by Renderman for Maya.
The solution to this problem was a simple Nuke comp
that combined the passes into one exr. This process
should be relatively seamless in the whole scope of the
project, as it only takes a few seconds per frame.

NN Helper.sh: The necessity of script is unfor-
tunately a function of unknown technical problems.
When adding a certain line to the user’s pythonpath
in their bashrc, it caused a complete crash for maya.
This shell script exists to do that export statement and
then call the denoiser using mayapy, as that remedied
the problem. Multiple forum posts and bug reports to
Autodesk were not able to reveal the cause of the issue.

Uninstall.sh: This denoiser may not be a perma-
nent addition to the user’s workflow, so a simple unin-
stall script allows them to quickly remove the main
NN Denoise directory and uninstall tensorflow. The
script also moves the Output directory to their desk-
top in case they forgot to grab their last set of images.

0.4.4 Training

The implementation of KPCN that is being run was
created for Tungsten rather than Renderman, thus it
needed to be retrained. Retraining denoising neural
networks is traditionally difficult and time-consuming
because of the need to create noisy and clean pairs
of images. Totally clean images are obviously difficult
to produce (or the denoiser wouldn’t be necessary), so
the training set was kept very simple. Scenes for train-
ing were provided by Bournemouth University’s Aleks
Czarnojan. These two scenes create a set of 400 frames,
with some variety of movement and light. While the
frame count is similar to the paper’s training set (they
used 600), the complexity of the set is what holds it
back. The 600 from the paper were pulled from the
extremely diverse pool of images in the film “Finding
Dory.” The authors suggest using frames that include
many kinds of textures, in-camera effects, and light-
ing for best results, however, that simply isn’t feasible
given the timeframe of the project.

All images, training and testing were rendered at
1280x720 so they could be HD, while still being as quick

5

as possible. The training scenes were then rendered
at 16 samples for the noisy images, and 1024 samples
for the clean images. Because of the simplicity of the
scenes the noisy side took seconds per frame and the
the clean ones only took a couple of minutes per frame.
The noise was not meant to be extreme, but rather to
represent a more realistic and subtle degradation of
image quality (see Fig. 4)

Figure 4: Clean and noisy image in a test scene

Another difficulty with denoising neural networks
is the time it takes to train. The use of TensorFlow’s
GPU support is thus essential to train the network,
as the speedup is several orders of magnitude. How-
ever, a limitation of BU’s pipeline is that artists do
not have admin access to their own machines, some-
thing which is necessary for the lengthy installation of
TensorFlow with GPU support. The first option ex-
plored was VirtualEnv, but it did not allow for the
changes that needed to be made in important directo-
ries outside of the viritual environment. Docker was
briefly considered, but issues with filling up the fairly
small local drive became prohibitive. Using a virtual
machine on a laptop not owned by the University was
investigated, but the extra steps to get a GPU work-
ing with this setup made it quite slow to get off the
ground. The laptop that was available also had a sig-
nifigantly slower GPU than the one used in the paper.
In the end, the project’s solution was to train the net-
work once on a specific computer used primarily for
test builds, which, with the help of Jon Macey, had
the correct components for TensorFlow GPU.

0.5 Results

The denoiser and its implementation proved qutie easy
to use, it could be downloaded and used for the first

time on a new system within five minutes, provided
the user already a renderman ready scene they wanted
to work with. These test iterations were conducted
on another collegue’s computer running RHEL. The
user was able to create a new project, output their im-
ages somewhere specific, and in general work in maya
as if they were not constrained by any specific post
process requirements. The main expection to this was
setting up the specific renderpasses and susequently
using them in comps. The denoiser only outputs a
denoised beauty, diffuse, and specular pass. However,
utilizing maya’s render layers could allow a student to
get more out of a denoised scene. Because of the in-
ability to use Tensorflow GPU on the artist’s machine,
it took ˜75 seconds per 720p frame to denoise, com-
pared to around ˜15 seconds on the training machine.
Student’s shown the denoiser also found the novelty of
the email functionality to be appealing. A small quirk
of using someone else’s implementation was that all de-
noised images come out with the red and blue channels
swapped. An investigation into the code didn’t reveal
any obvious problems, so the issue was ignored, and
the currect solution is simply to add a shuffle node in
nuke when using the denoised images.

The ability of the system to denoise is still quite
lacking and perhaps not even ready for simple use cases
at BU. While the paper shows very clearly that the de-
noiser is capable of producing production quality im-
ages that match a ground truth clean image at nearly a
per-pixel level, the model in use now needs more train-
ing. While the implementation downloaded from the
paper’s author’s had trained for 360,000 iterations over
a diverse training set, the current model only reached
50,000 iterations with its limited training set in the
time provided. However, in complicated images like
this, the network was showing no sign of improvement
after the 20,000 or so iteration mark. Thus future time
devoted to training would be best spent on either col-
lecting or creating a more diverse set of images, rather
than simply letting the network train longer. There
may be some evidence of overfitting as well, the shadow
details in the car’s bumper in figure 5 appearing to be
darkening. This could be from the dark training scene
that represented half of the training set (see Fig. 4).

6

Figure 5: Complex scene denoised after 42,000 itera-
tions. Noisy image rendered with 16 spp

When tested with much simpler scenes and smaller
levels of noise, the system did preform much better. It
can be said that the more of a scene that resides in its
diffuse component, the better this model will perform.
The smaller amount of reflections and indirect light in
the simpler scene also play a large role in how effective
the denoising is (see Fig 6). Some scenes did require a
bit more than previously stated list of passes to work
properly. For example, the car in figure 5 required the
transmissive pass to be combined with the diffuse pass
in order for the denoised image to have anything behind
the glass. This is because the standard diffuse pass in
renderman was not picking up the objects enclosed in
the car, presumably because they were surround by the
highly specular glass.

Figure 6: Simple test image

0.6 Future Work and Conclu-
sion

While this project did succeed in creating useful tools
and an easy workflow, the work produced leaves some-
thing to be desire; all this to say the denoiser doesn’t
denoise very well. Fortunately, the implementation and
it’s integration is sound, so all that is required to im-
prove the performance of the system is more training
data and more time to tune the training. The group
projects completed every year at BU present a good
opportunity to get a large variety of scenes for train-
ing.

The installation of TensorFlow and its GPU sup-
port on the next year’s lab build would also make train-
ing much easier as it could be done on any machine.
Going along with this, other students discussed a desire
to use the denoiser with other renderes, especially Vray.
Having a drop down menu in the GUI that let the user
select a different renderer would be trivial. The diffi-
cult part of this change would be the required training
for each individual renderer, and indeed this can be
cited as a weakness of denoisers that utilize AOVs in
general.

While almost all of the project is automated the
user must create the render pass setup. While train-
ing explicitly requires the variance passes, which are
difficult to add in, testing can be done with standard
passes only. The project isn’t made to allow individual
users to retrain the network, but it would be nice to
both allow for that possibility and to remove one thing

7

the artist needs to remember. The best that can be
done at the moment is a section in the README that
gives a step by step guide.

One of the key weaknesses of KPCN is that it does
not take advantage of the tendency of users to need
to denoise multiple frames in a sequence. Almost as
this paper was being written, Disney released the se-
quel to KPCN that utilizes data across a frame range
to help denoising [9]. This strategy is also used on the
training side of the system to actually remove the need
for a ground truth image for every single input of the
training. Integrating this into the current implementa-
tion of KPCN would certainly be time consuming, but
would also give a large boost to the usability of the net-
work. The end result is not completely useless though,
as early projects that involve a simple bouncing ball
animation in Maya could be aided by this. The UI
makes this denoiser simple enough to be used by even
the most novice of Maya users, especially artists who
may not be comfortable using the renderfarm yet, and
are looking for other ways to speed up iterations for
their project.

8

0.7 Appendix

Figure 7: Flow Chart for BM3D

Figure 8: Flow Chart for KPCN

9

Bibliography

[1] Bako, S., Vogels, T., Mcwilliams, B., Meyer, M., NováK, J., Harvill, A., Sen, P., Derose, T. and Rousselle, F.
(2017). Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Transactions
on Graphics, 36(4), pp.1-14.

[2] Dabov, K., Foi, A., Katkovnik, V. and Egiazarian, K. (2007). Image Denoising by Sparse 3-D Transform-
Domain Collaborative Filtering. IEEE Transactions on Image Processing, 16(8), pp.2080-2095.

[3] Hardy, Q. (2018). Reasons to Believe the A.I. Boom Is Real. [online] Nytimes.com. Available at:
https://www.nytimes.com/2016/07/19/technology/reasons-to-believe-the-ai-boom-is-real.html [Accessed 13
Aug. 2018].

[4] Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), pp.2278-2324.

[5] Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aitttala, M. and Aila, T. (2018).
Noise2Noise: Learning Image Restoration without Clean Data. International Conference on Machine Learn-
ing. [online] Available at: http://research.nvidia.com/publication/2018-07 Noise2Noise%3A-Learning-Image
[Accessed 13 Aug. 2018].

[6] Martin, X. (2015). Cleaning Noise on Video. [Blog] Xavier Martin VFX. Available at:
http://www.xaviermartinvfx.com/x denoise/ [Accessed 13 Aug. 2018].

[7] Infomatics Homepages Server. (2018). Bilateral Filtering for Gray and Color Images. [online] Available
at: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/MANDUCHI1/Bilateral Filtering.html
[Accessed 13 Aug. 2018].

[8] Vogels, T., Rousselle, F., Mcwilliams, B., Röthlin, G., Harvill, A., Adler, D., Meyer, M. and Novák, J.
(2018). Denoising with kernel prediction and asymmetric loss functions. ACM Transactions on Graphics,
37(4), pp.1-15.

[9] Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. (2017). Beyond a Gaussian Denoiser: Residual
Learning of Deep CNN for Image Denoising. IEEE Transactions on Image Processing, 26(7), pp.3142-3155.

10

