
Fluid Simulation using Smooth Particle
Hydrodynamics

Jennifer Moorehead

August 22, 2016

MSc Computer Animation and Visual Effects

1

Contents
1 Introduction 5

2 Previous Work 5

3 Navier Stokes and Fluid Theory 6
3.1 Lagrangian Approach . 6
3.2 Eularian Approach . 6
3.3 Navier Stokes . 6

3.3.1 The Incompressibility Equation 6
3.3.2 The momentum Equation 6

3.4 SPH Theory . 8

4 Design 9
4.1 Class Diagram . 9

4.1.1 Fluid Class . 9
4.1.2 Particle Class . 9
4.1.3 Emitter Class . 10
4.1.4 Boundary and RBD Classes 10

5 Implementation 10
5.1 Fast Neighbour Searching . 10

5.1.1 Spacial Hashing . 10
5.2 Double Density Relaxation Smoothing Kernels 12

5.2.1 Calculating Density . 12
5.2.2 Calculating Pressure . 13
5.2.3 Calculating Near Density 13
5.2.4 Calculating Near Pressure 14
5.2.5 Calculating Viscosity . 15

5.3 Integration . 16
5.4 Collision Detection . 17

5.4.1 Tank Boundary Objects 17
5.4.2 Updating the Boundary 17
5.4.3 Spherical Collisions . 17
5.4.4 Simulation Step . 18

6 Results 20
6.1 Example Simulations . 20

7 Conclusion 22

8 Known Issues 22
8.1 Gridlines . 22
8.2 Sticky Particles . 22
8.3 Flickering . 22

2

9 Future Work 22
9.1 Houdini Digital Asset . 22
9.2 Shaped Initial Positions . 23
9.3 Improvecd Collision Handling . 23

3

Abstract

This paper discusses the implementation of a fluid solver which imple-
ments a version of Smooth Particle Hydrodynamics aproximations using
the prediction relaxation scheme proposed by Clavet et al. In addition
optimisations such as spacial hashing have been made and the point ge-
ometry has been exported to Houdini for meshing, lighing and rendering
purposes. Examples of the project can be found in the Results section.

4

1 Introduction
The outline of this paper follows the process of design and implementation of
a 3D Lagrangian approach to fluid simulation. This solver utilises a particle
system and SPH smoothing kernels to solve the incompressible navier stokes
equations for fluid dynamics. Each particle holds its own fluid attributes such
as density and pressure. These terms can be evaluated over time and a prediction
relaxation scheme is used to produce new positions for each particle. In addition
a fast nearest neighbour searching technique known as spacial hashing has been
implemented to provide optimisations to one of the slowest components of a
Lagrangian solver. Boundary conditions have been put in place and can be
updated to produce a rolling wave effect.

The following sections discuss the previous work in particle fluid simulation, and
explanation of navier stokes for particle fluid solvers. Following that the design
and implementation of the solver is outlined in detail and the results are shown.
Please refer to the accompanying videos for better visualisation of the results.

2 Previous Work
Smoothed Particle Hydrodynamics is a relatively young approach to fluid sim-
ulation. It was initially proposed as a method for simulating nonaxisymmetric
phenomena in astrophysics by Monaghan and discovered to give sensible so-
lutions to difficult situations [8]. He introduced the core of SPH through the
approximation formula, which can be used to solve the incompressible navier
stokes equations for fluid motion. This ground work was then expanded on by
Desbrun and Gascuel [2] specifically to animate highly deformable bodies. This
paper shows that the SPH paradigm can animate inelastic bodies with proper-
ties such as stiffness and viscosity. It also introduces a variation of the ideal gas
state equation which is still a popular approach to solving the pressure term for
fluid within Smooth Particle Hydrodynamics. Numerous papers followed from
these foundations, and allowed researchers to study the use of SPH to simulate
highly viscous fluids. For example Clavet et al [12]achieved realistic behaviour
of viscoelastic substances on a small scale, through elastic and plastic springs
with varying rest length. Concurrent with these areas, Muller proposed a real
time approach to SPH for interactive application [6] and Solenthaler developed
an approach which forces fluid incompressibility through a prediction correc-
tion scheme to determine particle pressure [13]. Areas of interest within SPH
have also been advanced through research into new smoothing kernel functions,
and improvements to particularly slow components of the system. For example
Teschner et al developed a fast nearest neighbour searching algorithm which
utilises spacial hashing functions [14], continuing to improve the SPH approxi-
mation paradigm for a relatively simlpe approach to fluid simulation.

5

3 Navier Stokes and Fluid Theory

3.1 Lagrangian Approach
Named after the French mathematician Lagrange, this is a more commonly
understood method of tracking motion and the approach taken for this project.
It treats the fluid as a particle system. This means that the fluid is made up of
particles, each with its own fluid properties such as a position −→x and a velocity
−→u . Each particle could be thought of as a single molecule of fluid reacting to
the fluid quantities (pressure, density) around it[1]. This method is not spacially
limited, however a large number of particles is necessary for realistic simulation,
which decreases performance.

3.2 Eularian Approach
Named after the Swiss mathematician Euler, this is the classical technique used
for fluid simulation. It tracks fluid quanties such as density at fixed points in
space. The motion is described by the change in a velocity field, a density
field and a pressure field over time [6]. The fluid flows past these points and
contributes some sort of change. For example if a cold fluid moves past a fixed
point, followed by a warm fluid, the temperature at this point will begin to
increase. Unlike the Lagrangian approach, the Eularian method is not hindered
by the number of particles used, making it a fast alternative. However it is
limited by the resolution of the grid used to represent the fields.

3.3 Navier Stokes
The motion of Fluid flow is governed by a set of partial differential equations
known as the Incompressible Navier Stokes equations.

∂ρ

∂t
+∇· (ρv) (3.1)

ρ

(
∂υ

∂t
+ v·∇v

)
= −∇p+ ρg + µ∇2v (3.2)

3.3.1 The Incompressibility Equation

The first equation 3.1 is known as the Incompressibility equation. In Eular-
ian based methods this insures that mass is conserved throughout the fluid.
However, using a particle based approach allows this equation to be omitted
entirely. Since this approach uses a constant number of particles, each having
a fixed mass, conservation of mass is guaranteed [6].

3.3.2 The momentum Equation

The second equation 3.2 is known as the Momentum Equation. It informs how
the the fluid moves due to the forces that act upon it. More simlpy put, this

6

is Newtons Second Law of Motion F = ma, which states that momentum is
always conserved [7]. If Newtons Second Law is rearranged it gives a = F

m .
Finding the acceleration of the fluid is necessary in order to integrate and find a
new position for each particle. In the Eularian approach, advection is given by
the term ∂u

∂t + υ·∇υ. However, since the Lagrangian particles contain the fluid
quantities, this can be replaced by substancial derivitive Dυ

Dt of the velocity of
the particles [3]. So the momentum equation can be simplified to:

ρ
Dv

Dt
= −∇p+ ρg + µ∇2v (3.3)

The simplest force acting upon the fluid is the external force due to gravity,
represented in equation 3.3 by the letter g. This is generally taken to be
(0,−9.8, 0)m/s2.

−∇p (3.4)

The first of the fluid forces is pressure. Differences in pressure on one side of
the fluid particle result in fluid flow towards the side of lower pressure along the
negative gradient for pressure −∇p. Pressure attempts to balance the density
differences thoughout the fluid. (Density is mass per unit volume).

µ∇2v (3.5)

The other internal force contributing to the fluid motion is viscosity. A viscous
fluid tries to resist deformation, Fluids like molasses have high viscosity, while
fluids like mercury have low viscosity. It measures how difficult the fluid is to
stir [1]. Details on how to derive pressure and viscosity are outlined in section
5. The sum of these forces determine the change of momentum. Therefore the
momentum equation 3.2 for particle i can be simplifed to the following:

ai =
Fi

mi
(3.6)

F = Fpressure+ Fviscosity + g (3.7)

ai =
Dvi
Dt

=
Fi

ρi
(3.8)

7

3.4 SPH Theory
Smoothed Particle Hydrodynamics is a method for obtaining approximate nu-
merical solutions for the equations of fluid dynamics by replacing the fluid with
a set of particles [9]. Equation 3.2 becomes an ordinary differential equation,
and SPH can be used to solve for each fluid quantity [8]. It uses the discre-
tised particle locations to evaluate the fluid quantity using the weighted sum of
neighbouring particles [10].

A(x) =
∑
j

Aj
mj

ρj
W (x− xj , h) (3.9)

∇A(x) =
∑
j

Aj
mj

ρj
∇W (x− xj , h) (3.10)

∇2A(x) =
∑
j

Aj
mj

ρj
∇2W (x− xj , h) (3.11)

Where A(x) is a fluid quantity at position x that needs to be solved. j iterates
through all the particles, mj is the mass of particle j, ρj the density, and Aj is
the fluid quantity at position j. W (x−xj , h) is a radially symmetric smoothing
kernel with a radius h. This weights the contribution of the quantity at position
j according to its distance from position x. Particles which lie beyond the radius
h have no contribution to the interpolation of the quantity A(x). Pressure and
Viscosity can be calculated relatively easily using SPH techniques , however the
resultant forces can be asymmetric. It is important to remember that SPH has
inherent problems. These equations are not guaranteed to satisfy symmetric
forces and conservation of momentum, and can therefore introduce instabilities
into the system. The smoothing kernels used are discussed in section 5

8

4 Design

4.1 Class Diagram

Figure 4.1: Fluid Solver UML Diagram

Figure 4.1 dipicts how the classes of the fluid solver interact with each other.

4.1.1 Fluid Class

This class provides the set up for the solver. This is where the particle system
is created and gets updated. Each of the SPH smoothing methods is called on
each particle from the update of this class. It also houses the methods which
facilitate nearest neighbour searching for each particle.

4.1.2 Particle Class

This class represents a single particle of the fluid body. It houses the smoothing
kernel functions to solve the SPH terms, and methods to advance the particle’s
position.

9

4.1.3 Emitter Class

This class represents the particle system of the fluid body. It initializes a user
defined number of particles that the fluid should consist of. The particles have
a flag which if initially set to false, will allow the Emit() function to emit a
certain user defined amount of particles at a user defined emission rate. If this
rate is set to 0 then there will be a constant emission, and the fluid will appear
as if from a faucet.

4.1.4 Boundary and RBD Classes

These classes represent the tank and the sphere collision objects respectively.
They house each objects collision detection and response functions and the
boundary object contains an update method which will allow the user to simu-
late a rolling wave of fluid.

5 Implementation

5.1 Fast Neighbour Searching
A Lagrangian approach to fluid simulation requires iterating through each par-
ticle in turn to solve each component of the navier stokes equation (pressure,
viscosity). This means that the time complexity for a Lagrangian fluid with n
particles checking against every other particle is O(n2).According to SPH inter-
polation methods, to find the fluid terms each particle i must iterate through a
list of neighbour particles j within a search radius h. As the number of particles
increases, a naive time complexity becomes less and less useable, and since tens
of thousands of particles are necessary for realistic simulation, optimisations
have to be made.

5.1.1 Spacial Hashing

This optimisation technique falls under the NNS(Nearest Neighbour Search)
umbrella. This is a method of splitting the world space into a grid of keys
or “cells”. Each particle is hashed by its 3D position to a 1D hash table [14].
The idea behind this is that the hash function should assign particle positions
which are close to each other to the same hash key. In theory this means that
each particle need only know its own hash key to find its list of neighbours.
This should provide a performance increase to O(1). However this method is
dependant upon a hash function which provides unique keys and how fast they
can be generated [4]. Therefore Teschner et al propose the following function:

hash(x̂) = (x̂xp1 xor x̂yp2 xor x̂zp3)mod nH (5.1)

Where x̂is a function which discretizes a 3D point or particle position.

x̂(x) = ([xx/l], [xy/l], [xz/l]) (5.2)

10

This function takes in a floating point vector representing a 3D particle position,
and creates a new integer vector based on a defined cell size l. This cell size is
equal to the radius h used in the SPH smoothing kernels discussed in section
5.2. p1,p2and p3are large prime numbers, this implementation uses the same
found in Teschner et al [15].

p1 = 73, 856, 093 (5.3)

p2 = 19, 349, 663 (5.4)

p3 = 83, 492, 791 (5.5)

The final unknown in equation 5.1 is nH . This is the size of the hash table, which
significantly influences the performance of the algorithm. If the hash table is
sufficiently larger than the number of particles, this reduces the possibility of
hash key collisions. The hash function works most efficiently if the hash table
size is a prime number [14]. The size of the hash table can be computed with
the following:

nH = prime(2n) (5.6)

Where n is the number of particles, and prime(x)is a function which returns
the next prime number after x [11]. Before the neighbours for any particular
particle can be found the hash table needs to be filled.

hashtable[hashkey(x̂(xi))] = Particlei (5.7)

This implementation uses the C++ Standard Template Library’s multimap data
structure to represent the hash table. This is due to its ability to assign multiple
values to the same key, which is ideal for our circumstances. Once the hash table
has been appropriately filled, then neighbours can be found using a particle’s
hash key. However, there is no guarantee that all of the particles with the same
hash key as the particle in question will actually be neighbours of that particle.
To account for this, two corners of a bounding box are used to filter out potential
neighbours.

BBmin = x̂(xq − (h, h, h)2), BBmax = x̂(xq + (h, h, h)2) (5.8)

Equation 5.8 represents the two corner points of this bounding box. xq is the
particle that is being queried and if it lies somewhere within the bounding box
then this particle is added to the neighbour list. See algorithm 1.

11

Algorithm 1 Nearest Neighbour Searching using Spacial Hashing
foreach particle i
//create a key and fill the hash table

hash_key←createHashKey(x̂(xi))
hash_table.insert(hash_key, &i)
smooth_length← (h, h, h)2

//find neighbours
foreach particle i

i.neighbours.clear()
bmin← xi−smooth_length
bmin← xi+smooth_length
for x = bminx;x < bmaxx;x+ = h

for y = bminy; y < bmaxy; y+ = h
for z = bminz; z < bmaxz; z+ = h

xq ← (x, y, z)
//create a key to test based on the bounding box
test_key = createHashKey(x̂(xq))
//query the hash table
hash_table.equal_range(test_key)
foreach particle j in test_key

inlist = false
for k = 0k < i.neighbours.size()k ++

if j = i.neighbours[k]
inlist = true
break;

if inlist = false
d = i(x, y, z)− j(x, y, z)
if | d |<smooth_length

x.neighbours.push_back(j)

5.2 Double Density Relaxation Smoothing Kernels
Initially the kernels used where those proposed by Muller et al [6]. The poly6
kernel for calculating density, and Debrun’s spiky kernel for calculating pressure.
However, satisfactory results were not achieved with this method, therefore an
approach proposed by Clavet et al was utilised [12]

5.2.1 Calculating Density

The Density for particle i is approximated by summing the weighted contribu-
tions of each neighbouring particle j using the following quadratic spike kernel:

ρi =
∑

jϵN(i)

(1− rij/h)
2 (5.9)

Where rij =| rij |,rij = xj−xi. xi is the position of the particle currently being

12

evaluated, and xj is the position of one of its neighbouring particles. N(i)
denotes the list of neighbours for particle i. It should be noted that this is not a
true physical property for density, but provides a number which quantifies how
the particles which make up the fluid relate to their neighouring particles [12].

5.2.2 Calculating Pressure

This force corresponds to the difference between the current density ρi and a
defined rest density ρ0. Rest density is the ideal density that the fluid will try to
maintain. The pseudo-pressure is calculated for each particle using Desbrun’s
variation of the ideal gas state equation [2].

P = kρ (5.10)

Pi = k(ρi − ρ0) (5.11)

Where k is a constant parameter controlling stiffness. If the current density ρi
is greater than the rest density, pressure is a repulsive force, if ρi is less than
the rest density, then pressure is an attractive force. The density relaxation
displacement between two particles is proportional to the pseudo pressure force,
which is weighted by the following linear kernel function:

Dij = △t2Pi(1− rij/h)r̂ (5.12)

Where r̂ij is the unit vector from particle i to particle j. The displacement
is applied directly to particle j and an equal and opposite displacement is ap-
plied directly to particle i. The time step is squared to account for the double
integration of the force to get both displacement values.

5.2.3 Calculating Near Density

Near density and pressure are calculated in order to prevent particle clusters.
Sometimes particles reach the rest density by attracting its neighbours. This
results the fluid separating into multiple clusters, rather than one continuum
. To solve this issue an additional pressure term is added. To find this new
pressure term, near density is calculated with a cubic spike kernal function.

ρneari =
∑

jϵN(i)

(1− rij/h)
3 (5.13)

This results in a sharper spike than the standard density kernel 5.9

13

Figure 5.1: Density and Near Density Kernel Comparison [12]

5.2.4 Calculating Near Pressure

To account for particle clustering, the near pressure force must only give repul-
sive values. Therefore rest density is removed from equation 5.11.

Pnear
i = knearρnear (5.14)

Like pressure, near pressure gives equal and opposite displacement forces for
two particles, this is the second step of the double density relaxation. Therefore
equation 5.12 is adjusted.

Dij = ∆t2
(
Pi(1− rij/h) + Pnear

i (1− rij/h)
2
)
r̂ij (5.15)

The quadratic spike kernel defines how near repulsion force is applied to the
neighbouring particles [12]. See Algorithm 2

14

Algorithm 2 Double Density Relaxation
foreach particle i
ρ← 0
ρnear ← 0
//compute density and near density
foreach particle j ϵ neighbours(i)

q ← rij/h
if q < 1

ρ← ρ+ (1− q)2

ρnear ← ρnear + (1− q)3

//compute pressure and near pressure
P ← k(ρ− ρ0)
pnear ← knearρnear

dx← 0
foreach particle j neighbours(i)

q ← rij/h
if q < 1

//apply displacements
D ← ∆t2(P (1− q) + Pnear(1− q)2)r̂ij
xj ← xj +D/2
dx← dx−D/2

xi ← xi + dx

5.2.5 Calculating Viscosity

The paper this implementation is based on [12] uses viscoelastic behavior, which
is introduced through elastic and plastic spring displacements as well as viscosity.
However our implementation omits the springs and uses instead only the linear
and quadratic formula. Viscosity is another smoothing kernel function which
smooths the velocity between neighbouring particles. The viscosity function
adjusts the particle velocity at the beginning of each timestep. See Algorithm 3

Algorithm 3 Viscosity
foreach neighbour pairij, (i < j)

q ← rij/h
if q < 1

//inward radial velocity
u← (vi − vj)· r̂ij
if u > 0

linear and quadratic forces
I← ∆t(1− q)(σu+ βu2)r̂ij
vi ← vi − I/2
vj ← vj + I/2

The difference between particle j’s velocity and particle i’s velocity (vi−vj)· r̂ij

15

measures the speed at which particle j is travelling towards particle i. The ap-
plication of the force is dependant upon the distance between the particles. This
is achieved through the use of the linear kernel function (1−q) where q = rij/h.
(σu+ βu2) controls the linear viscosity and quadratic viscosity respectively. To
achieve a very viscous fluid the linear viscosity σ should be increased. Quadratic
viscosity prevents particle to particle penetration by removing very high inward
velocities [12]. It should be noted that for low/non viscous fluid such as water,
the purpose of viscosity is to handle particle to particle collision. Therefore
viscosity should only be applied if the particle tragectories are on target for a
collision.

5.3 Integration
The integration approach taken is similar to an involved implicit scheme, but is
much faster and simplier than such methods. Rather than computing the forces
and updating the velocities for each particle to find a new position, particles
are moved according to their velocities, and then relaxed by the double density
smoothing kernels.

Algorithm 4 Integration
foreach particle i
x−1
i ← xi

xi ← xi + vi∆t

By using forces that exist further ahead in time, instabilities are predicted before
they are introduced into the system and can be accounted for.

Figure 5.2: Integration

16

5.4 Collision Detection
In order to have an interesting simulation, the fluid object should collide with
other objects in the scene. Without collision with other objects, the fluid motion
would be rather difficult to see in action. Therefore collision within a tank and
collision with spherical rigid bodies have been included in this implementation.

5.4.1 Tank Boundary Objects

Being unbound by a fixed grid is a significant advantage of a Lagrangian ap-
proach to fluid simulation. However it is necessary to give the fluid restrictions to
reside inside to display the fluid motion. This meant the inclusion of a boundary
object for the particles to collide and interact with. Detection is implemented
very simply. The boundary is given a minimum and maximum position in the
x, y and z directions. Algorithm 5 shows collision detection and response with
the right most x position of the bounding box.

Algorithm 5 Collision Detection with the Boundary
foreach particle i
if ix > bboxx

ix ← bboxx

vx ← vx ∗ d

Where vx is the velocity in the x direction of particle i and d is a negative
damping constant between 0 and 1. Damping gives the impression that the
particle loses energy upon impact with the boundary. As can be seen, if the
particle’s x position is greater than the maximum x position, then the particle’s
x position is set to the boundary with which it collided, and its velocity is
reversed and dampened.

5.4.2 Updating the Boundary

In order to achieve a rolling wave demonstration, an update was implemented
for the boundary object. Within this method if the time is greater than a user
specified time, the right most x position of the bounding box will be decreased
at a constant rate using a user defined parameter. Once the right most x
position reaches the ideal user defined minimum position, this parameter is
inverted to increase the x position to its original length. A sine wave function
was considered for this implementation, but this method gives preferable control
over the movement.

5.4.3 Spherical Collisions

To add further visual interest and complexity collisions with spherical rigid
bodies where implemented, both as a collision object and a container. A sphere
is defined implicitly by a center point (x, y, z) and a radius r.

17

Algorithm 6 Collision with the Outside of a Sphere
foreach particle i
d← xi − xs

if | d |< r2

n← d
x1 = n̂· vi
v1x = n̂x1
v1y = vi − v1x
xi ← xi − n̂(r− | d |)
vi ← (−v1x+ v1y) ∗ k

Where n̂ is the normalised normal of d and k is a damping force. If the length
of the distance vector between the particle i and the centre point of the sphere
xs is greater than the radius squared then a collision has occurred. To correct
the dot product of normal n̂ and the velocity of the particle vi is used to create
two new vectors v1x and v1y. The position of the particle i is then adjusted
along the normal, and the velocity vi is updated using the two new vectors and
a damper to mimic the loss of energy upon impact. To allow for collisions this
formula is adjusted slightly.

Algorithm 7 Collision with the Inside of a Sphere
foreach particle i
d← xi − xs

if | d |< r2&& iy < (r − p)
n← d
x1 = n̂· vi
v1x = n̂x1
v1y = vi − v1x
xi ← xi − n̂(| d | −r)
vi ← (−v1x+ v1y) ∗ k

To determine collisions with the inside of the sphere, an additional check is made
so see if the y position of particle i is less than (r− p). Where r is the radius of
the sphere, and p is a value less than the radius of the sphere. This parameter
will allow the user to specify at which height within the sphere collisions should
begin being detected. The position correction for particle i is also inverted.

5.4.4 Simulation Step

The following Algorithm outlines a single step in the simulation.

18

Algorithm 8 Simulation Step
particle_emitter.update()
foreach particle i

if(i.active)
i.ApplyExternalForces()

foreach particle i
if(i.active)

i.CalculateViscosity()
foreach particle i

if(i.active)
i.AdvanceParticles()

emptyHashTable()
fillHashTable()
findNeighbours()
foreach particle i

if(i.active)
i.DoubleDensityRelaxation()

foreach particle i
if(i.active)

i.UpdateVelocity()
foreach particle i

if(i.active)
i.checkForCollisions()

It should be noted that in addition to filling the hash table during the simulation
update, it should be filled when the fluid is initialized.

19

6 Results
This section deals with the results of the SPH implementation and covers how
the final looks where achieved.

6.1 Example Simulations
Below are some of the varying results which can be achieved by this fluid solver.
Each demonstration’s particle position information was exported from the C++
solver into Houdini using the Alembic framework [5]. Lighting and Shading
where achieved in Houdini and each demo was rendered using Mantra.

Figure 6.1: Wine Fluid Results

Figure 6.1 displays a non viscous wine fluid interacting with the inside of the
sphere acting as the container. Once the point geometry was imported into
Houdini it needed to be converted and represented as a particle fluid surface
mesh rather than simple point geometry. A simple studio background was cho-
sen and the object is lit with three point lighting and an envirnoment map was
utilised to facilitate reflections in the glass and liquid.

20

Figure 6.2: Water in a Glass Tank

Figure 6.2 shows a non viscous water fluid interacting with a cuboid boundary
object acting as a container. When the point geometry was imported into
Houdini it was necessary to convert the alembic object to apply a particle fluid
surface. The parameters of the particle fluid surface contributed to the realism of
the fluid. But in addition to this, it should be noted that to achieve satisfactory
results, this demo required the solver to simulate 100,000 particles. As such
the speed of the simulation decreased, as well as the export. The alembic file
size also increased with the addition of particles. However additional particles
yeilded better looking results from the particle fluid surface, as parameters like
voxel scale could be decreased. This improved jittering artifacts that where
observed on exported simulations with fewer particles. By exporting 100,000
particles this enabled stress testing the solver. Although the simulation times
did increase, it is worth noting that increasing the particle count did not cause
the system to become unstable. Instabilities appeared in the system when the
rest density and pressure constants were set too high. These parameters require
balancing. However it is possible to achieve pleasing results.

21

7 Conclusion
The purpose of this project was to implement a functional 3D Lagrangian fluid
solver for the simulation of water. Ideally the solver would be stable and robust
with an appropriate performance dependant upon the particle count. It was
also an aim of the project to produce a clean and aesthetically pleasing demo.
This project has been a success in most of these regards. The solver can run in
real time with up to 5,000 particles, and remains stable with up to 100,000.

8 Known Issues

8.1 Gridlines
When the fluid is observed as particles, equally spaced gridlines can be seen
around the fluid edges. This is minimised by finding a more balanced smoothing
length for the particle count in question. However this cannot be considered a
permenant fix.

8.2 Sticky Particles
In some cases, when the particles collide with their container, particularly the
spherical container, the particles tend to stick to the surface of the collision
object. This occurance is not due to the viscosity of the fluid but rather a non
physical collision detection scheme.

8.3 Flickering
When the particle positions are imported into Houdini and a particle fluid sur-
face is applied, sometimes flickering can be observed at the base of the fluid
surface. It is suspected that this issue is linked to the spaced line grids at the
fluid edge.

9 Future Work
If this project were to continue, the following would be desirable features that
would be included.

9.1 Houdini Digital Asset
At present, importing the particle position information to Houdini is a manual
process. Ideally this would be automated, and Houdini would act as a front end
interface to the C++ solver. The asset would allow the user to specify particle
counts, placement of the particle emitter and the inital positions of the fluid.
The user would also be able to tweak the parameters of the particle fluid surface
from within one houdini parameter interface.

22

9.2 Shaped Initial Positions
At present the particle fluid can be initialised to start in the shape of a cuboid,
or be emitted as if from a faucet. A desirable feature would be to allow the user
to specify some arbitary geometry which would act as a guide to the starting
positions.

9.3 Improvecd Collision Handling
At present the collision handling in the fluid system is not phsyically based. This
could be improved by using a more physically accurate collision detection and
response model. An attempt was made to implement Bridson’s ghost particle
method to collision detection. This method initialises a set of ghost particles
at the surface of the collision object, the density and pressure terms for the
fluid calculations mean that the particles cannot intersect with the surface of
the object. However artifacts where observed in the process of implementing
this improvement and it was thought best to adhear to another more pressing
issue. This method could be implemented to full functionality as an alternative
collision detection and response method.

23

References
[1] Robert Bridson. Fluid Simulation for Computer Graphics. A K Peters,

Ltd., may 2008.

[2] Mathieu Desbrun and Marie-Paule Gascuel. Smoothed particles: A new
paradigm for animating highly deformable bodies. In Computer Anima-
tion and Simulation 96 (Proceedings of EG Workshop on Animation and
Simulation), pages 61–76, 1996.

[3] Peter Horvath and David Illes. Sph-based fluid simulation for special effects.
2007.

[4] Micky Kelager. Lagrangian fluid dynamics using smoothed particle hydro-
dynamics. Master’s thesis, University of Copenhagen, jan 2006.

[5] Jon Macey. Simulation exports. may 2016.

[6] David Charypar Matthias Muller and Markus Gross. Particle-based fluid
simulation for interactive applications. Eurographics/SIGGRAPH, 2003.

[7] Nick Foster Dimitri Metaxas. Realistic animation of liquids. 1996.

[8] J J Monaghan. Smooth particle hydrodynamics. Annual Review of Astron-
omy and Astrophysics, pages 543–574, 1992.

[9] J J Monaghan. Smooth particle hydrodynamics. 2005.

[10] Rajiv Perseedoss. Lagrangian liquid simulation using sph. Master’s thesis,
Bournemouth University, aug 2011.

[11] Christopher Priscott. 3d langrangian fluid solver using sph approximations.
Master’s thesis, Bournemouth University, aug 2010.

[12] Philippe Beaudoin Simon Clavet and Pierre Poulin. Particle-based vis-
coelastic fluid simulation. Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, 2005.

[13] Barbara Solenthaler and Renato Pajarola. Predictive-corrective incom-
pressible sph. In ACM transactions on graphics (TOG), volume 28, page 40.
ACM, 2009.

[14] Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomer-
antes, and Markus H Gross. Optimized spatial hashing for collision detec-
tion of deformable objects. In VMV, volume 3, pages 47–54, 2003.

[15] Matthias Teschner, Stefan Kimmerle, Bruno Heidelberger, Gabriel Zach-
mann, Laks Raghupathi, Arnulph Fuhrmann, M-P Cani, François Faure,
Nadia Magnenat-Thalmann, Wolfgang Strasser, et al. Collision detection
for deformable objects. In Computer graphics forum, volume 24, pages
61–81. Wiley Online Library, 2005.

24

