

08 Fall

N C C A 2 0 1 2
B o u r n e m o u t h U n i v e r s i t y

Constantinos Glynos
MSc Computer Animation & Visual Effects

August 12

3D Skeleton extraction using one Kinect
camera.

 2

 Nowadays, it is well established that Computer Vision is used in many applications and

devices. One area of huge interest is the detection and reconstruction of the human skeletal

structure. In short words, the camera will identify the human parts and construct the joints

of the person standing in front of it. So far, scientists have managed to build various systems

that reconstruct the human skeleton representing it as lines and spheres in 2D using one

camera and 3D using two or more cameras. Although there are still a few areas requiring

improvements for such methods, such as computational cost and stability, the results are

generally accurate and efficient.

Currently, the reconstruction of the human skeleton in 3D using one camera is still under

research. In this master thesis a relatively novel approach is proposed, using image-

processing techniques, mesh extraction, line skeletonization, 2D Skeleton extraction and

depth detection methods, resulting into a 3D skeleton reconstruction of the left hand.

Abstract

 3

 I would like to specially thank Dr. Hammadi Nait-Charif who supervised this project’s

progress from the very beginning, for his expertise on computer vision and his advice and

guidance to my problem solving stages. Most of all I would like to thank him for his patience

and belief.

Acknowledgments

 4

Table of Contents

1 INTRODUCTION ... 10

2 RELATED WORK .. 12

3 THE KINECT DEVICE .. 15

3.1 RGB stream .. 16

3.2 IR and Depth ... 16

3.3 Hardware Limitations ... 17

4 HAND ANATOMY ... 18

5 PRE-PROCESSING .. 20

5.1 Image Matrix Conversion .. 20

5.2 Gaussian and Median Blur .. 21

5.3 Threshold ... 22

5.4 Flip Matrix.. 23

6 MESH EXTRACTION .. 25

6.1 Canny Edge Detection ... 25

6.2 Contours ... 26

6.3 Circular ROI (Region Of Interest) ... 28

6.4 Conclusion of Mesh Detection ... 29

7 SKELETONIZATION .. 30

7.1 Finding Contours .. 30

7.2 Mesh Erosion / Thinning ... 31

7.3 Euclidean Distance Transform .. 32

7.4 Laplace Operator / Laplacian .. 33

7.5 Normalize Min/Max ... 34

7.6 Mesh Dilation .. 35

7.7 The Probabilistic Hough Line Transform ... 36

7.8 Conclusion of Line Skeletonization ... 37

8 2D SKELETON TRACKING ... 38

8.1 Harris Corner Detection ... 38

8.2 Convex Hull ... 39

 5

8.3 Filtering the Hull Areas .. 40

8.4 First Object Detection ... 41

8.5 The Elbow .. 42

8.5.1 Joint Orientation .. 43

8.6 The Palm ... 44

8.7 The Wrist .. 44

8.8 The Finger Tips .. 45

8.9 Visualization of the 2D skeleton ... 45

8.10 Conclusion and Limitations .. 46

9 3D SKELETON TRACKING ... 48

9.1 Pre-processing the depth .. 48

9.2 Matrix Separation ... 49

9.3 Depth Values Conversion .. 50

9.4 White Noise Elimination ... 51

9.5 ROI Formation and Masking .. 52

9.6 Joint’s Depth Retrieval .. 53

9.6.1 Elbow Joint .. 53

9.6.2 Palm Joint... 53

9.6.3 Wrist Joint .. 54

9.6.4 Temporary finger storage .. 55

9.7 The Point4f .. 55

9.8 Constructing the 2D skeleton in a 3D environment ... 56

9.8.1 Elbow to Palm vector and magnitude .. 56

9.8.2 The points from 2D skeletonization .. 56

9.8.3 Fingers to Palm vector ... 57

9.8.4 Finger Angles.. 57

9.8.5 Identification and Sorting .. 57

9.8.6 Final fingers in 3D environment ... 58

9.9 Self-Occlusion ... 58

9.10 Optimization of Search ... 59

9.10.1 Grid Projection .. 59

9.10.2 Cube ROI ... 60

9.10.3 Points inside ROI ... 61

 6

9.11 Self-Occluded Fingers ... 61

9.11.1 Points on new matrix .. 62

9.11.2 Blob formation .. 63

9.11.3 Elbow to Wrist vector ... 63

9.11.4 Points Angles and Lengths ... 64

9.11.5 Identification and Sorting .. 64

9.11.6 Final self-occluded fingers ... 64

9.12 Merging the techniques .. 65

9.12.1 Filter objects ... 66

9.12.2 Identification and Sorting .. 66

9.12.3 Final finger assignment ... 66

9.13 Position Rules ... 67

9.14 Visualization and Final Gathering of joints .. 67

10 FAILED METHODS ... 69

10.1 Skeletonization Constraints ... 69

10.2 Drawing Limitations of 3D points .. 70

10.3 Method 1: Tracking the grid points ... 70

10.4 Method 2: 3D Skeletonization ... 71

10.5 Method 3: 3D Blobs .. 71

11 THE MAIN APPLICATION .. 73

12 MORE APPLICATIONS .. 74

13 CONCLUSION .. 75

BIBLIOGRAPHY ... 77

 7

Table of Figures

Figure 1: TEASAR algorithm skeleton extraction. ... 11

Figure 2: 2D skeleton extraction using FCC. .. 12

Figure 3: Curve skeleton extraction using iterative least squares optimization. 12

Figure 4: Euclidean distance-ordered thinning for skeleton extraction. 13

Figure 5: Scanning 3D Full Human Bodies Using Kinects. ... 13

Figure 6: The Microsoft Kinect camera. .. 14

Figure 7: The RGB stream of the Kinect device. ... 15

Figure 8: The Infra Red grid projection. .. 15

Figure 9: The raw depth stream from the Kinect. ... 16

Figure 10: Kinect limitations. .. 16

Figure 11: Left Hand. .. 17

Figure 12: Left Arm Skeleton... 17

Figure 13: Left Hand showing the points to be detected. ... 18

Figure 14: 11-bit depth stream - Original .. 20

Figure 15: 8-bit depth stream – Reduced ... 20

Figure 16: A simple Gaussian filter. .. 20

Figure 17: Blur filtered depth. .. 21

Figure 18: Original depth stream. ... 21

Figure 19: Threshold graph of Binary and its Inverse... 22

Figure 20: Binary threshold on the image matrix. .. 22

Figure 21: The mirrored matrix with the thresholded values. .. 23

Figure 22: Canny Edge Detection... 25

Figure 23: The hand contours. .. 26

Figure 24: The contours drawn without the noise. .. 26

Figure 25: Circular ROI. ... 27

Figure 26: Simple ROI. Rotated ROI. .. 27

Figure 27: Circular ROI on the new matrix. ... 28

Figure 28: Waiting 1 min for the user to place his/her hand back in range. 28

Figure 29: New set of contours based on the threshold values of the matrix. 29

Figure 30: Different structuring elements of various sizes. .. 30

Figure 31: hit-and-miss transform grid. ... 30

Figure 32: The hand mesh after thinning. .. 31

Figure 33: The Euclidean distance transform... 32

Figure 34: The Laplace Operator. .. 33

Figure 35: Normalized and Thresholded matrix. .. 34

Figure 36: Dilated skeleton. ... 34

Figure 37: The connected skeleton with the PHLT. .. 35

Figure 38: Full body line skeletonization. .. 36

Figure 39: Hand skeletonization. ... 36

Figure 40: Corner Harris detection. .. 38

Figure 41: Convex hull on points. .. 39

Figure 42: Filtered hulls. ... 40

file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202320
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202321
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202322
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202323
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202324
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202325
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202326
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202327
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202328
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202329
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202330
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202331
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202332
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202333
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202334
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202335
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202336
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202337
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202338
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202339
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202340
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202341
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202342
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202343
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202344
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202345
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202346
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202347
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202348
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202349
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202350
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202351
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202352
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202353
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202354
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202355
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202356
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202357
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202358
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202359
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202360
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202361

 8

Figure 43: Detection in computer vision. ... 40

Figure 44: The circle indicates the first contour in the point array. 41

Figure 45: angle of hand to determine the elbow. .. 42

Figure 46: Gray elbow locator at different hand rotations. ... 42

Figure 47: The palm controller. .. 43

Figure 48: The wrist controller. (Estimated position) .. 44

Figure 49: Final 2D virtual skeleton. .. 45

Figure 50: Final Results of the 2D skeleton extraction method. .. 46

Figure 51: The pre-processing of the new depth. ... 48

Figure 52: The 16-bit depth Values is on the left and the 8-bit depth Visuals are on
the right. .. 48

Figure 53: Raw depth data for point (200,200). .. 49

Figure 54: Depth value in meters. ... 49

Figure 55: Depth returned from white noise. The dot is the point (200,200). 50

Figure 56: The new depth stream. .. 50

Figure 57: Right hand and Leg are NOT detected. .. 51

Figure 58: The right hand is NOT affecting the detections. Only left hand is seen. 51

Figure 59: The elbow with x, y, z co-ordinates. .. 52

Figure 60: The palm with x, y, z co-ordinates. .. 53

Figure 61: The wrist in the 3D environment. .. 53

Figure 62: The 2D fingers in the 3D environment with x, y, z co-ordinates. 57

Figure 63: The size 4 grid projected on the image. ... 59

Figure 64: Left is a simple ROI checking all depth. On the Right is the cube ROI
checking from 0.2 – 1.4 meters. .. 59

Figure 65: Points on hand. .. 60

Figure 66: Self-Occluded grid points. ... 61

Figure 67: Grid points on new matrix. ... 61

Figure 68: Points as 5 contours. ... 62

Figure 69: The Index is lost on the original skeleton but detected by the depth. 64

Figure 70: The thumb is lost in the original skeleton but detected in the depth. 64

Figure 71: 3D skeleton merging the two methods. ... 66

Figure 72: 3D skeleton extraction. .. 67

Figure 73: EDT on palm closed. .. 68

Figure 74: Contour merging. ... 69

Figure 75: Main Window virtual skeleton. ... 72

file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202362
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202363
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202364
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202365
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202366
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202367
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202368
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202369
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202370
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202371
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202371
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202372
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202373
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202374
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202375
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202376
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202377
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202378
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202379
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202380
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202381
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202382
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202383
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202383
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202384
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202385
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202386
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202387
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202388
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202389
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202390
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202391
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202392
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202393
file:///C:/Users/than/Desktop/MasterThesis_CG.docx%23_Toc333202394

 9

INTRODUCTION

Computer vision is a field in computer science yet to be fully discovered. It can be

defined as the science of processing, analyzing and understanding images. Over decades

many researchers have been working on developing new ideas or improving existing

applications in order to “take it” to the next level. Initially computer vision would work on a

two dimensional environment using one camera and should the programmer wished to add

the third dimension he or she would have to use two or more cameras depending on the

nature of the application and the amount of detail needed to be accessed. Generally, the use

of computer vision has great prospects and could be used in almost any application, from

army surveillance to games and films to medical research and training to only educational

purposes.

One area of great interest is the detection and reconstruction of the human skeletal

structure. In short, the computer will identify the human parts and construct the joints of

the person standing in front of it in a three dimensional environment. This method would

give so much freedom to the user to perform tasks that require great detail and accuracy. So

far scientists have managed to build various systems that reconstruct the human skeleton

representing it as lines and spheres in 2D using one camera and 3D using two or more

cameras. They have been using simple RGB cameras and advanced depth sensors, which are

very expensive and hard to access.

In 2009, Microsoft released the Kinect, a motion sensing camera device which captures

the movement of objects in a 3D environment. This three dimensional scanner was cheap

enough to allow more researchers to test their theories in order to accomplish their goal.

Chapter 1

 10

 As far as skeletonization is concerned, there are still a few areas requiring

improvements, such as computational cost and stability, but the results are generally

accurate and efficient. Some of the techniques will be discussed in the next chapter.

Currently, the reconstruction of the human skeletal structure in 3D using one camera is

still under research because the problem of self-occluded objects is yet to be solved. In this

research thesis the basic idea is to construct a fully functioning 2D skeleton, which would

also solve some of the issues of stability, accuracy and computational cost, and then using

the Kinect’s depth sensor and detect the self-occluded points. Furthermore, various

techniques to combine the two methods will be introduced, discussing each ones

advantages and disadvantages.

 11

RELATED WORK

 Skeleton extraction techniques in a 2D or 3D co-ordinate system are researched for

various applications either using a set of cameras, or other scans such as CT and MRI, or

straight from software using voxels to avoid having self occluded objects.

 TEASAR (tree‐structure extraction algorithm for accurate and robust skeletons) was

introduced by Sato M. et al. in 2000. In their method they used CT and MRI scans as input

data to retrieve a full view of the object. They gather data as voxels and define the skeleton

as a tree composed of paths. Using the Dijkstra algorithm to determine the global minimal

weight path and the Euclidean distance transform they extracted the minimum cost path

from voxel to root and finally labeled the voxels near that path. The algorithm seems to be

very accurate (Figure 1) and according to their analysis, very efficient.

 In 2002, a method to retrieve a 2D skeleton out of (Yi Sun et al. 2000) “Freeman Chain

Code (FCC)” was introduced, suggesting that the best way to determine a skeleton is to find

Chapter 2

Figure 1: TEASAR algorithm skeleton extraction.

 12

the boundary contours of the silhouette after having removed the background. They divide

the body parts into several sub parts and they label them in order to retrieve the co-

ordinates of the joints. They tried to solve the issues caused by self occlusion by estimating

the position (Figure 2) of the joints using motion analysis.

A technique to retrieve the 1D line skeleton was presented in 2008 by Yu-Shuen and

Tong-Yee. Essentially they shrink the mesh by contracting the edges between the adjacent

voxels and they add forces to preserve the original positions of the boundary voxels.

Although the resulting skeleton is accurate and straight because of the method shrinking

the mesh to make the model thinner, it causes (Yu-Shuen et al. 2008) “the skeleton to

diverge from the center of the model” (Figure 3).

In 2010, Le Zhang et. al presented a hybrid method of the Euclidean Distance Transform

(EDT) and the thinning technique for topology presentation. It is a very basic technique,

which was used to obtain the 2D skeleton for any object but the results (Figure 4) are

accurate and efficient.

Figure 2: 2D skeleton extraction using FCC.

Figure 3: Curve skeleton extraction using iterative least squares optimization.

 13

In 2012, three Kinects were used to scan the entire human body outlining the camera’s

advantages and disadvantages (Figure 5). It explains the disadvantages and the weaknesses

of the Kinect device, such as low resolution and some inaccuracy in depth information (Jing

T. et al. 2012) “The quality of the reconstructed models in our system is still poor for some

specific applications due to low quality for depth data captured by the Kinects.”

According to the historical background, self-occlusion still remains the greatest issue of

skeleton extraction, which is the focus of this thesis. Additionally, a 2D skeleton will be

constructed and a relatively novel approach to the formation of a 3D skeleton will be

presented. Three methods for combining the two skeletons will be presented explaining

each ones limitations and facilitations.

Figure 4: Euclidean distance-ordered thinning for skeleton extraction.

Figure 5: Scanning 3D Full Human Bodies Using Kinects.

 14

THE KINECT DEVICE

 Microsoft currently being the largest software corporation was founded in 1975

providing the well-known “windows” operating system, producing video games, mobile

phones, digital services and the Kinect camera (Figure 6).

 The Kinect was first announced in 2009 having the ability to detect motion in a three

dimensional environment using the IR (Infra Red) projector, RGB camera and depth sensor.

Chapter 3

Figure 6: The Microsoft Kinect camera.

 15

 3.1 RGB stream

 The Kinect’s RGB stream (Figure 7) has a frame rate of 30 Hz and a resolution of 640 x

480 pixels. It is used mostly for colour isolation and skin extraction. In object tracking, the

RGB is commonly used to track coloured locators positioned on a dark monochromic

background. On the other hand the RGB stream is used only under certain lighting

conditions, it is very unstable when it comes to template matching and it is very sensitive to

noise.

 3.2 IR and Depth

 The Kinect is equipped with an Infra Red (IR)

(Figure 8) projector working along with a

monochrome CMOS sensor that captures all the data

in a 3D environment.

(Wikipedia 2012) “The sensing range of the depth

sensor is adjustable, and the Kinect software is

capable of automatically calibrating the sensor based

on game play and the player's physical environment”.

Figure 7: The RGB stream of the Kinect device.

Figure 8: The Infra Red grid projection.

 16

 The next most important feature of the Kinect

is the depth stream (Figure 9). The depth can also be

visualized with colour gradients expressing blue as

the furthest point and white the nearest to the

camera.

Although the resolution of the depth is the same

as in the RGB stream, it outputs an 11-bit depth

resulting to (Wikipedia 2012) “2,048 levels of

sensitivity”.

3.3 Hardware limitations

Initially, the working distance begins from 0.2 m and ends at 1.5 m from the camera. Any

higher than that, the camera loses track of the object. Lighting is very important too as the

camera produces a lot of miss-detections when it is facing directly at a light source.

Additionally, the resolution and small disparity of the IR projector and Depth sensor are

responsible for the white noise seen in Figure 12, returning nan (not a number) values

which can be very threatening.

Although the frame rate of the camera is fairly acceptable (30 Hz), it does not work well

for fast movements (Figure 10) in the depth stream unless the object is big enough, like an

arm. It is very problematic for the fingers as it merges the meshes and the skeletonization

algorithm gets confused.

Figure 9: The raw depth stream from
the Kinect.

Figure 10: Kinect limitations.

 17

HAND ANATOMY

Extracting the hands skeletal structure is essentially the

detection of certain points that when connected with simple

lines, would resemble the shape of the actual hand.

The hand (Figure 11) has a very distinctive shape. It

consists of 32 bones including the ones located in the elbow

and wrist region. Even if the Kinect was able to detect all 32

joints without any errors it would still be very difficult to keep

track of each joint separately. For that reason it was suggested

to select the most crucial joints that would determine the

hand’s position, orientation and movement.

It was decided that only 8 of all the joints were necessary to

detect and track the hand (Figure 12). The elbow would be the

starting joint followed by the wrist and the palm.

As far as the fingers are concerned, only the fingertips were

needed since detecting the fingers starting point would

complicate the identification process.

Chapter 4

Figure 11: Left Hand.

Figure 12: Left Arm Skeleton.

 18

Figure 13 displays the hand with the desired skeleton. It is accurate enough and would

allow the main focus to be on solving self-occlusion, which is, detecting the thumb in front of

the palm region.

Overall the skeleton will be constructed with 8 points determining the position of each

joint of the hand.

Figure 13: Left Hand showing the points to be detected.

 19

PRE-PROCESSING

At this stage the Kinect device needs to be initialized streaming the data from the depth

and RGB cameras. Depending on the source that will be used, some image processing is

required in order to set the camera up correctly and to dismiss any small amounts of noise.

It is also necessary to store the video stream into a matrix, which then needs to be

converted, thresholded and flipped in order to get a visual of the depth with no noise that

mirrors the motion detected.

5.1 Image Matrix Conversion

The Kinect outputs an 11-bit depth for each pixel on the 640 x 480 resolution size also

being the matrix size, resulting to 2048 sensitivity levels. These attributes are not very

efficient to work with, as it is not possible to get a visual output (Figure 14). It is necessary

to be converted to an 8-bit depth (Figure 15).

Additionally to converting the original pixels to the ones wanted, (OpenCV API

documentation 2010) “a saturate cast is applied at the end to avoid any possible overflows”.

Chapter 5

 20

The reduced matrix that stores the depth stream has 640x480 (rows x columns) and

now has an 8-bit depth with 255.0/2048 levels of sensitivity.

5.2 Gaussian and Median Blur

Blurring is used mainly to smooth the image and eliminate some detail and most of the

noise detected in edges. OpenCV facilitates two of the most important types of blurs, the

Gaussian using the Gaussian filter and the Median, which uses the median filter.

The Gaussian filter (Figure 16) can be described as a bell

shaped function that uses the Gaussian function to compute

its impulse response.

The main Gaussian function is:

Where a, b and c are real numbers greater than 0 and “e” is the Euler’s number.

Since the image matrix from the depth is a 2D array, the function for computing the

Gaussian filter is:

Figure 14: 11-bit depth stream - Original Figure 15: 8-bit depth stream – Reduced

Figure 16: A simple Gaussian
filter.

 21

Where x and y are the co-ordinates (width and height), σ is the standard deviation

parameter and e is Euler’s number.

One the other hand the Median filter is mostly used to remove noise from the image

instead of smoothing it. Essentially it calculates the median value of each pixel by taking the

two neighboring pixels.

Where a and b are the neighboring pixels inside the matrix.

Applying these two blurs in the original depth matrix (Figure 18) the result is much

smoother with less noise and seems more accurate (Figure 17). Yet the white noise still

remains as the Kinect still cannot see all the areas.

5.3 Threshold

Threshold converts the original image into a binary one. It is the best way to segment an

image leaving only the major shape in the screen. Each pixel in the depth stream has a

colour value that varies from 0 to 255. The threshold iterates through each pixel and

converts it into binary (0, 1) according to whether that pixels value is smaller or greater

than the threshold value given by the user (Figure 19).

median
a b

2

Figure 17: Blur filtered depth. Figure 18: Original depth stream.

 22

The threshold method is:

The inverse threshold method is:

In this case the threshold would serve well as it would automatically ignore the

background and only focus on what is inside the depth range (Figure 20).

5.4 Flip Matrix

 It is observed that the image mirrors the environment opposite to the actual one. This is

a matter of flipping the image matrix so that when the object moves on the left side, it would

appear on the left side of the image too.

Figure 19: Threshold graph of Binary and its Inverse.

Figure 20: Binary threshold on the image matrix.

 23

 In mathematics, in order to accomplish the reflection of a matrix about the x-axis, the

following should be calculated:

 In the case of the Kinect’s depth stream it would flip the image matrix (Figure 21) so that

when the person lifts his/her left hand it would appear the same in the image, just like a

normal mirror.

x'

y'

1

1 0 0

0 1 0

0 0 1

x

y

1

Figure 21: The mirrored matrix with the thresholded values.

 24

MESH EXTRACTION

 Computer vision deals with pixel values translated in points, vectors, matrices but all

have to do with the geometry of the object. The word “mesh” is more suitable to define a

polygonal model but it was used here because what the Kinect detects is just a line shape

that resembles a hand.

 At this point the mesh of the hand will be retrieved, as it would help with the formation

of the Region of Interest (ROI) and with the elimination of noise as it will be able to remove

the shapes with really small area when it comes to skeletonization.

 6.1 Canny Edge Detection

 In 1986, John F. Canny created an algorithm to detect all the edges inside an image. His

algorithm is meant to recognize all the real edges, to have good localization and should only

detect the same edge once as well as not confusing noise for an edge.

 The algorithm follows certain steps to acquire the accurate edges:

 Noise reduction

 Intensity gradient

 Non-maximum suppression

 Edge trace through image and hysteresis threshold

Chapter 6

 25

 The canny edge detection considers edges to be vectors in any directions and it uses

four filters to recognize any edges diagonally, vertically and horizontally. (Wikipedia 2012)

“The edge detection operator (Roberts, Prewitt, Sobel for example) returns a value for the

first derivative in the horizontal direction (Gx) and the vertical direction (Gy)”. The intensity

gradient therefore can be computed by the following:

 Using the Canny edge detection function provided by OpenCV, the edges of the

thresholded image can be detected (Figure 22).

 6.2 Contours

 The edge detection function does not allow for any control over that shape nor does it

provide any particular information. All it returns are the pixels that define the edges in a

binary manner. Contours are very important in computer vision since they allow for the

manipulation of a shape. A contour is a set of points in a sequence, thus being declared as a

vector list of points. According to Bradskli and Kaehler (2008) “Contours are represented in

OpenCV by sequences in which every entry in the sequence encodes information about the

Figure 22: Canny Edge Detection.

 26

location of the next point on the curve”. Since the canny function returned pixel points for

the edges of the hand as a binary image, the contours would be efficiently retrieved (Figure

23).

 It was noticed that there was a lot of noise in the image and the edge detection algorithm

was picking up small areas that were not there. In order to remove it from the image, the

area of the hand contour was found and a filter was added that would only draw the

contours with big enough area (Figure 24).

Figure 23: The hand contours.

Figure 24: The contours drawn without the noise.

 27

 6.3 Circular ROI (Region of Interest)

 Some noise that flickers every other n frames can cause big problems in the

skeletonization process. Thus a region of interest was formed to capture most of these

scattered noises and remove them.

 An ROI is essentially a rectangle that surrounds the object’s mesh. OpenCV facilitates two

types of rectangles that can be used as ROIs. The first is a simple rectangle (Figure 26),

which has its origin on the top left corner and can only be drawn with straight lines. The

second ROI is a rotated rectangle (Figure 26), much more functional than the simple one but

it takes more computational time.

 A rotated ROI will be used in order to construct a circle (Figure 25) around the hand.

This method will be useful to eliminate any noise that got through the previous filter. The

circular ROI will only surround the contours with six or more points while only the ones

with big enough area are drawn.

Figure 26: Simple ROI. Rotated ROI.

Figure 25: Circular ROI.

 28

 Currently the circle surrounds the outer points of the hand mesh and when the skeleton

is extracted the ROI will cover the index finger causing the skeleton to lose track of the

fingers.

 For this purpose the ROI was scaled down (Figure 27) to cover only the inside of the

mesh. Also in order to remove the unwanted detections, only the ROIs that passed the

filtering would be drawn.

 6.4 Conclusion of Mesh Detection

Both hand mesh and circular ROI can be accessed any time during the program. They will

be useful when constructing the mask area for the 3D skeleton and when eliminating most

of the palm noise in the 2D skeleton. Additionally, the detection of the ROI is used to

determine whether the user has gone out of range. Instead of crashing when no objects are

detected, the program waits for the user to place

his/her hand back in range for 1 minute before

closing.

Overall, the hand mesh and its circular ROI are

both efficient, accurate and all the noise from that

image has been removed securing the accuracy of

the joints.

Figure 27: Circular ROI on the new matrix.

Figure 28: Waiting 1 min for the user to
place his/her hand back in range.

 29

SKELETONIZATION

 Skeletonization is the process of representing the actual mesh using a set of lines. In

many cases it can be retrieved using topological thinning which essentially uniform scales

the mesh until it becomes thin as a line.

 The most important attributes of skeletonization are its connectivity, accuracy, stability,

topology, length and direction.

 In this thesis, topological thinning will be used to bring the hands mesh at a point where

the contours will not merge, the Euclidean distance transform will be used to calculate the

distance of the points in the contour, the Laplace operator will construct the line and finally

the probabilistic Hough line transform will be used to improve the skeleton’s connectivity.

 7.1 Finding Contours

 At this point it is essential to begin with a new set of

contours in order to avoid any conflictions with the

previous detections. For the detection of the contours

(Figure 29), only the thresholded matrix is needed and a

few median and Gaussian blurs to smooth the mesh.

Chapter 7

Figure 29: New set of contours based on
the threshold values of the matrix.

 30

 7.2 Mesh Erosion / Thinning

 Thinning is defined as the transformation of the original mesh to one more simplified yet

retaining the original topology. The goal is to reduce the hand a really slim mesh while

trying to keep the original proportions and shape.

 Like any other morphological operation the most important factor besides the binary

image that determines its accuracy and detail is the structuring element. According to

Fisher R et al. (2003), “The structuring element consists of a pattern specified as the

coordinates of a number of discrete points relative to some origin. Normally Cartesian

coordinates are used and so a convenient way of representing the element is as a small

image on a rectangular grid” (Figure 30).

 The thinning method works by taking the original binary image and uses the hit-and-

miss transform to determine its structuring element. In contrast to a simple structuring

element, which only uses the foreground pixels (1), the hit-and-miss transform contains

both 0 and 1 values (Figure 31) indicating the background and foreground pixels

respectively.

 Following it subtracts the structuring element from the image:

Where I is the binary image, J is the structuring element and the subtraction is logical.

Figure 30: Different structuring elements of various sizes.

Figure 31: hit-and-miss transform grid.

thin(I ,J) I hit_and_miss(I ,J)

 31

 Once more OpenCV facilitates both functions to get the structuring element from the

image matrix and to erode the mesh according to the structuring element resulting to a

thinner mesh of the hand (Figure 32).

 It can be noticed that the fingers have become a lot thinner closing to a line, yet the palm

and elbow has little difference than before.

 7.3 Euclidean Distance Transform

 In short, a distance transform calculates the distance between two points as if they were

connected with a straight line.

 Where x and y are co-ordinates of the two points in a 2D space.

 Using the distance transform will allow for the conversion of the Euclidean space to a

metric space. For any two points A(x,y,z) and B(x,y,z), the Euclidean distance between them

can be described as the length of the imaginary line that connects them.

Similarly:

Figure 32: The hand mesh after thinning.

d dx2 dy2 (x2 x1)
2 (y2 y1)

2

d(A,B) (Bx Ax)2 (By Ay)2 (Bz Az)2

(Bi Ai
i1

n

)2

 32

 In computer vision, points are defined as vectors with origin the top left corner of the

screen being (0, 0) thus allowing for the calculation of the magnitude between the two

points ||AB||.

 The distance transform is generally applied on binary images returning a gradient gray-

scale image where the white regions are the points closest to the boundary. There are a

couple more distance transforms available to be used in order to extract the skeleton of an

object such the chessboard and the city-block metrics.

 OpenCV facilitates a function to compute the distance transform from every pixel to the

closest 0 pixel in the binary image matrix, including the Euclidean Distance Transform

(CV_DIST_L2). Figure 33 displays the human body using the EDT on the previous binary

image.

 The thinning process decreased the amount of misdetections and false calculations of the

distances.

 7.4 Laplace Operator / Laplacian

 The Laplace operator was named after Pierre-Simon de Laplace, a French mathematician

who focused on celestial mechanics.

Figure 33: The Euclidean distance transform.

 33

 The original Laplacian formula is:

 And for a 2D environment in Cartesian co-ordinates is:

 In the previous part, the Euclidean distance transform of the image returned a gray-scale

gradient image indicating the skeleton of the mesh. In order to access that skeleton and

extract it from the rest of the image, the Laplace operator was used (Figure 34).

7.5 Normalize Min/Max

 Since the operations are performed on a binary matrix, the EDT and Laplacian cannot be

visualized in the image because both convert the original image to a gradient going from

white to black while the image matrix can only accept binary pixels (0, 1). In order to be

able to see what is happening to the mesh of the hand and keep track of the skeleton, the

image matrix had to be normalized.

f
2 f

xi
2

i1

n

f
2 f

x2

2 f

y2

Figure 34: The Laplace Operator.

 34

Although the normalization of the image matrix takes place after the EDT and Laplacian

where performed, Figures 33 and 34, have been normalized before hand for demonstration

purposes.

 Following the matrix was thresholded leaving only the line skeleton (Figure 35).

 It can be observed that the current line skeleton lacks in connectivity and that small

noises are detected on the side of the body.

 7.6 Mesh Dilation

 The dilation works at the exact opposite of erosion, which is used for the thinning. In

order to increase the line skeleton’s connectivity it was suggested that the line defined in

the matrix needed to become stronger and bigger. With the use of a structuring element,

similar to erosion, mesh dilation enlarges the size of the skeleton (Figure 36).

Figure 35: Normalized and Thresholded matrix.

Figure 36: Dilated skeleton.

 35

 Although the dilation manages to fill in most of the spaces while preserving the shape of

the original skeleton, it is still noticeable that there are a few gaps around the finger area.

 7.7 The Probabilistic Hough Line Transform

 The Probabilistic Hough line transform is derived from the simple Hough Transform,

which detects all possible lines that can pass through a point and if a set of points in the

binary image are positioned collinearly, then the line is created.

According to Stephens (1991) “The Probabilistic Hough Transform H(y) is defined as the

log of the probability density function of the output parameters, given all available input

features”.

The Hough line transform formula is the following:

Where p(y) is a uniform probability distribution and C is a constant.

 The PHLT will work better with a binary image, as there is limited noise and confusion. It

will detect the points of the skeleton that form a line, for instance the fingers, including the

first point of the other line, that being the palm joint, filling the gap between them (Figure

37).

n

i

i CypyxpyH
1

)](ln[)]|(ln[)(

Figure 37: The connected skeleton with the PHLT.

 36

7.8 Conclusion of Line Skeletonization

 Overall the line skeleton was extracted using thinning methods, the Euclidean distance

transform, the Laplace operator and the probabilistic Hough lines transform. It is accurate,

efficient, noise free, stable and the computational cost is low (Figure 38, 39).

Figure 38: Full body line skeletonization.

Figure 39: Hand skeletonization.

 37

2D SKELETON TRACKING

 The line skeleton obtained is a representation of the hand mesh, but its current state

does not support accessibility or control. Skeleton tracking is the method of detecting

certain points on the line skeleton and use them as separate controllers.

 In this chapter, the points will be detected using a corner detection algorithm, the convex

hull of the points will be constructed along with a filtering method to remove the noise and

then using geometrical equations the elbow, wrist, palm and finger tips will be tracked

while a simple representation of the joints using lines will be demonstrated. Finally a short

conclusion identifying the limitations and advantages of this technique will be discussed.

8.1 Harris Corner Detection

 Generally a corner is defined as a point in the image which variation gradient is very

high. The corner is detected by projecting on a u, v area a patch with x, y co-ordinates which

will identify the variation using the formula bellow:

 Where w(x, y) is the patch and I is the intensity.

Chapter 8

 38

Using the binary image of the line skeleton and OpenCV’s function cornerHarris, the corners

of the hand can be detected accurately (Figure 40).

After the detection of the corners, the points were dilated using a structuring element in

order to become more noticeable. It can be observed that there is a lot of noise in the palm

region due to the many corners of the hand. This effect could jeopardize the stability of the

skeleton and since only one point is needed to manipulate the palm, this noise needed to be

cleared out.

8.2 Convex Hull

An object’s convex hull is defined as the smallest possible area that contains that object.

Convex hulls are constructed by straight lines that go through the maximum co-ordinates of

the object edges. A similar approach occurs for any set of points in an image. According to

Wikipedia (2012) “For a point set S, its convex hull is the convex combination of its points:

A convex combination (in contrast to an affine combination) requires all coefficients, αi,

to be non-negative”.

Figure 40: Corner Harris detection.

 39

In this case the convex hull will be used to surround each point corner separately

allowing for better area check. It will not make much difference to the fingers or the elbow

but as far as the palm area is concerned, the convex hull will encompass all the points that

collide and the ones with really small distance (Figure 41) in order to be removed

accurately.

8.3 Filtering the Hull Areas

In order to dismiss any big chunks of hulls detected in the palm region, the area must be

computed for each hull and if it is bigger than a certain size that defines a finger, then that

chunk must be removed. For that to succeed, a double layered filter method took place right

after the detection of the hulls.

The first layer was given the size of the fingers hulls and anything that was bigger than

that got erased. The remaining hulls where detected as contours and were assigned to a

temporary rectangle ROI array so that each point could be accessed separately.

Figure 41: Convex hull on points.

 40

The second layer compared the size of each ROI to the maximum ROI of the fingers so

that if any points that would pass through the first layer, would get stopped in the second

(Figure 42).

It is observed that most of the noise in the palm area has been erased apart from a

couple of small bits that will be used as references to the palm joint later.

8.4 First Object Detection

At this point the contours remaining in the image matrix are used as reference to the

skeleton controller positions.

In computer vision, the points tend to be detected from bottom up, meaning in an array

Figure 42: Filtered hulls.

Figure 43: Detection in computer vision.

 41

of points, 0 will be the most bottom point aka the elbow (Figure 43).

In order to isolate the first object from the rest of the points, initially the first contour of

the point array was marked with a circle as shown in Figure 44. Then the minimum and

maximum points on the x-axis of the entire array were determined using the first contour as

the initialization value of the min/max.

It was also noticed that some noise existed near the elbow region which affected its

stability. This was handled by a virtual locator positioned in that area while the rest of the

points were removed.

8.5 The Elbow

The elbow according to the discussion in Chapter 4 will be the starting point of the

virtual skeleton, thus it should be isolated from all other points. So far, the elbow is

represented with a locator assigned to the first contour in the point array but as soon as the

hand rotates more than 90 degrees the locator jumps to the “thumb” or the new first

contour of the array. For that the min/max values were found to distinguish the elbow point

according to both position and angle.

Figure 44: The circle indicates the first contour in the point array.

 42

8.5.1 Joint Orientation

Since in this application there is no shoulder detection, the elbow’s rotation had to be

estimated according to simple movements. The minimum and maximum points were used

to assign the elbow controller to the correct point according to the hand’s angle (Figure 45).

There were three conditions indicating the position of the elbow. Should these condition

were exceeded, the hand would appear as broken. Let R be the hand’s angle of rotation:

1) If R < 60O , then the elbow is the first point.

2) If 60O < R < 130O, then the elbow is the MIN point on the x-axis.

3) If R > 130O, then the elbow is the MAX or first point on the x-axis.

Finally the elbow joint was indicated in the image as a new circle ROI (Figure 46) and its

position will be used to detect the palm joint.

Figure 45: angle of hand to determine the elbow.

Figure 46: Gray elbow locator at different hand rotations.

 43

8.6 The Palm

The circular ROI from the mesh extraction method helps to determine the position of the

palm. Initially the ROI was used to cover any noise left in the palm region clearing out the

area for misdetections and confusion. Next the center of the hand’s ROI along with the

elbow controller where used to position the controller of the palm (Figure 47).

Let P be the center of the palm:

Where is the center of the mesh and is the center of the elbow.

8.7 The Wrist

In this thesis the wrist is used later in the 3D skeleton extraction to calculate each

finger’s angle when they come in front of the palm. It has no other use since the corners to

detect the wrist were not accurate enough and were very sensitive to noise. Thus an

estimated position for the wrist (Figure 48) was added.

Let W be the center of the wrist:

Figure 47: The palm controller.

 44

Where is the center of the palm and is the center of the elbow.

For demonstration purposes the controllers of the palm and elbow have been hidden to

focus on the wrist.

8.8 The Finger Tips

At this point the finger tips have not been identified and are only used as a five particle

system stored in a vector container whose size is determined by the number of objects in

the image matrix. The elbow, wrist and palm points have been hidden and only their

locators are shown.

8.9 Visualization of the 2D skeleton

The gathering of the elbow, wrist, palm and fingers was added in a new image matrix

with colours and lines indicating the connected joints. It is a simple visualization of the

skeleton formed in order to be later on used by the 3D detection.

Figure 49 demonstrates the joints of the 2D skeleton, with the Elbow being the green

locator, the wrist is the purple one, the palm is the red locator and the fingers are

distinguished with all given a yellow colour.

Figure 48: The wrist controller. (Estimated position)

 45

8.10 Conclusion and Limitations

In previous cases the 2D skeleton was formed using connectivity defects and the convex

hull of the hand (see OpenCV 2.4 documentation). This was cheap towards the

computational cost and efficient for some applications. Yet it is unstable when motion is

applied and very inaccurate as the fingers are detected only when they collide with the

convex hull.

The proposed method for developing a 2D skeleton solves a lot of the issues as it is based

on the detection points of the line skeletonization. At this point the skeleton is accurate,

efficient, and cheap and does not lose track of the fingers unless they enter the palm region,

due to self-occlusion.

The limitations with this technique are:

 Some misdetections occur when the hand is in motion due to Kinect’s small

frame rate as explained in chapter 3.3, resulting to a sensitive skeleton.

 The Euclidean distance transform will create a finger (branch on the line

skeleton) as soon as the mesh of the palm forms a big blob (Figure 49.1).

 Self-occlusion remains (Figures 49.5 – 49.8).

Figure 49: Final 2D virtual skeleton.

 46

The 3D skeleton extraction will use this method as a reference to locate the joints while

additionally it will detect the self-occluded fingers.

Figure 50: Final Results of the 2D skeleton extraction method.

 47

3D SKELETON TRACKING

The idea behind 3D skeleton extraction is its ability to detect the fingers that have been

self-occluded by the palm region. Most applications have tried to overcome this problem

using motion analysis estimation. The Kinect has the ability to detect the hand’s depth with

some limitations such as white noise, frame rate, low resolution and limited range of

detection.

In this chapter, a new approach to solve self-occlusion will be presented along with

several techniques to improve the Kinect’s detection limitations. Once the fingers are

detected the two skeletons will be merged to one using only each best attributes to

construct the final 3D skeleton of the hand.

9.1 Pre-Processing the depth

In order to process the Kinect’s depth stream and retrieve the distance of the hand from

the camera, an entirely new set of matrices is needed. The pre-processing stage is very

similar to the previous technique with the only difference being that in this method, the raw

data from the depth stream is accessed. To accomplish that, the original image matrix needs

to be converted to a 16-bit depth. Additionally, the image had to go though median blurs

smoothing the output and finally the matrix was flipped similar to chapter 5.4 (Figure 51).

Chapter 9

 48

 It was mentioned previously that it was not possible to get a visual of the depth stream

unless it was an 8-bit depth and in order to access it’s the raw data, the Kinect needs to be

set at a 16-bit depth. To solve this conflict, two different matrices were constructed, one

that holds the depth values and one used for visualization purposes.

9.2 Matrix Separation

 The two matrices used in this method are the “DepthZval” which stores the raw data

from the Kinect’s depth sensor and the “DepthZvis” used for drawing, which is essentially a

clone of the DepthZval converted to an 8-bit depth.

The division of the image to values and visuals (Figure 52) would benefit by preventing

any conflicts that could have been presented when manipulating the controllers.

Figure 51: The pre-processing of the new depth.

Figure 52: The 16-bit depth Values is on the left and the 8-bit depth Visuals are on the right.

 49

9.3 Depth Values Conversion

 Using the 16-bit depth, a 2D array was declared which took the column and row number

as its parameters and returned the depth value of the pixel. To return all the values of the

image, a nested for-loop which went through each pixel was performed and the depth value

of each pixel was returned by:

 Figure 53 prints the depth value for the point

(200,200). These values are called raw depth data

and represent the Kinect’s sensitivity levels.

To convert them into something meaningful

such as meters or centimeters, Burrus (2012)

presented a conversion formula where if

RD 2047:

Where RD is the raw depth value.

Figure 54 displays the same depth value of

the point (200,200) in meters.

This use of the depth will allow for the

accurate detection of any point in the matrix

such as a finger point or even the point right

next to it.

Additionally, with the declaration of the

2D array there was no need to convert the

values again, saving a lot of time and

computations.

Figure 53: Raw depth data for point
(200,200).

Figure 54: Depth value in meters.

 50

9.4 White Noise Elimination

White noise represents the areas the Kinect cannot see returning negative or nan values

(Figure 55). This was very threatening to the project as the skeleton could not be stabilized.

The proper way of solving this problem is to identify the pixel with white noise and fill it

with the median value of the eight surrounding pixels but it is very time consuming.

In this case all it was needed was to tell the Kinect that these values have a very high

depth. Therefore iterating through each pixel, the white noise was isolated and given a

value of 3 meters. Also these pixels were thresholded to roughly fit the assigned distance

(Figure 56).

Overall there was no noise in the depth stream and the skeleton was now working

without any false detections. This was a great improvement for the project that prevented

numerous errors.

Figure 55: Depth returned from white noise. The dot is the point (200,200).

Figure 56: The new depth stream.

 51

9.5 ROI Formation and Masking

The ROI’s formation is very crucial to this project. Instead of searching for points in the

entire matrix, it limits the code to the ones located inside that region. It optimizes the

algorithm and lowers the computational cost, increasing accuracy and preventing false

detections.

Masking the ROI was done by creating another matrix used as the original’s inverse and

subtracting the ROI from the inverse. It sets everything to 0 values (black colour) and only

the objects inside the ROI are viewed.

Figures 57 and 58 demonstrate the ROI and its mask.

With the above optimizations such as the white noise removal and ROI formation, the

depth stream is clean from most threats to false detections and is ready to build the

skeleton.

Figure 58: The right hand is NOT affecting the detections. Only left hand is seen.

Figure 57: Right hand and Leg are NOT detected.

 52

9.6 Joints Depth Retrieval

At this point the 2D skeleton extraction has x and y co-ordinates but using the pixel array

declared previously, their depth position (z axis) was computed.

9.6.1 Elbow Joint

The elbow’s z position will be computed by its x and y co-ordinates:

Where E is the elbow controller and pixelValue is a float. Figure 59 demonstrates the

elbow joint with X, Y and Z co-ordinates.

9.6.2 Palm Joint

The palm joint was retrieved in a similar way to the elbow with the only difference that

its depth was slightly changed. Anatomically, the palm has a lot of muscles forming small

bumps on the hand, and because the depth values are very accurate, these small bumps

were detected as objects in front of the palm.

Figure 59: The elbow with x, y, z co-ordinates.

 53

As soon as the z-axis of the palm was formed, it was subtracted by a small value of 0.02

which represents the height of those muscles (Figure 60).

The goal was to use the palm as a flat surface so that only the fingers would be detected

as self-occluded objects.

The palm and elbow are very accurate and very stable due to the size of the arm.

9.6.3 Wrist Joint

The wrist was retrieves similarly to the elbow joint using the array to return its depth

value (Figure 61).

Figure 60: The palm with x, y, z co-ordinates.

Figure 61: The wrist in the 3D environment.

 54

The locators were created for demonstration purposes. They are not the final controllers

of the 3D skeleton.

9.6.4 Temporary finger storage

The fingers have not been assigned to any locators yet, as the next step involves sorting

them out according to a counter-clockwise identification. Five variables were created inside

the function’s scope to process the computations of the fingers. These variables are deleted

when the final positions of the fingers are assigned to their according locators.

9.7 The Point4f

OpenCV facilitates several data types that use points as vectors. The most common are

cv::Point for 2D points and cv::Point3f for 3D points including all functions that can be

performed with those vectors.

A finger in this application is defined by its length, angle and position on the image.

Unfortunately the data types in the library do not support these extra attributes, thus a new

structure called “Point4f” was created that holds these elements:

Struct Point4f

{

 cv::Point3f pos;

 float angle;

 float length;

 bool operator<(const Point4f& _p) const { return angle<_p.angle; }

};

This new data structure allows for an easier management of the points and will be used

to store the final controllers of the skeleton.

 55

9.8 Constructing the 2D skeleton in a 3D environment

At this point the elbow, wrist and palm have been positioned in the 3D environment but

the fingers have not yet been located or identified. In order to compute the angle of the

fingers according to the palm, the dot product and magnitude need to be calculated along

with the vector of the elbow to the palm.

9.8.1 Elbow to Palm vector and magnitude

To find the vector from the elbow to the palm () the elbow vector should be

subtracted from the palm by:

The magnitude of this vector can be calculated by:

Where EP is the vector from Elbow to Palm, P is the palm and E is the elbow.

This vector and its magnitude will be used as reference to determine the finger angles.

9.8.2 The Points from 2D skeletonization

A Point4f dynamic array was declared to hold the values of the fingers. With the use of a

simple ROI as explained in chapter 6.3, the fingers were located in the three dimensional

environment and assigned to the advanced finger controller.

Point4f *fingerController = new Point4f[contoursSkeleton.size()];

 The fingers now have x, y and z co-ordinates using the pixelValue depth.

 56

9.8.3 Fingers to Palm vector

The vector from every finger to the palm is calculated by:

Where the vector from fingers to palm, P is the palm and F is the Point4f finger

controller. Also each length was computed by:

The variable “i” is the number of fingers in the container.

9.8.4 Finger Angles

In order to compute the angles, the dot product of the and each finger must be

calculated:

The angle of each finger is computed by the cosine function:

Where θ is the angle, A is the vector, B is the vector.

Finding the angle and length of each finger to the palm is essential for the counter-

clockwise identification.

9.8.5 Identification and Sorting

At this point all the information about the fingers is stored in the Point4f finger

controller.

 57

The data structure contains a Boolean operation which is used to sort the fingers from

the smallest angle being the thumb, to the biggest being the pinky.

std::sort(&fingerController[0].&fingerController[contoursSkeleton.size()]);

Each finger was assigned then to the temporary variable.

9.8.6 Final fingers in 3D environment

The 2D skeleton is now fully brought to the 3D environment with each joint having three

co-ordinates and the fingers having an angle and a length from the palm (Figure 62).

The fingers were drawn in a new image matrix called “nonOccludedObj” so that they

could later on be distinguished from the self-occluded fingers.

9.9 Self-Occlusion

Even though the current skeleton is operating in the 3D environment, it still depends on

the 2D skeletonization method to detect the fingers, which means that as soon as the fingers

are not detected due to self-occlusion by the palm, they will not be detected in the 3D either.

The proposed method involves an optimized search inside the ROI detecting all the

points that have a greater depth value than the palm since that region is the only place that

self-occlusion will occur with the fingers.

Figure 62: The 2D fingers in the 3D environment with x, y, z co-ordinates.

 58

9.10 Optimization of Search

Since the Kinect’s resolution is 640x480 pixels it means that in each frame the program

will have to go through 307,200 pixels to detect any objects. This is very expensive and

inefficient. Although the ROI constructed earlier lowers the amount of search into only

inside its boundaries, the calculations that have to be computed are still enough to slow

down the program’s efficiency.

9.10.1 Grid Projection

The target was to lower the search even more without dismissing any detail. To

accomplish that a set of grids were projected each of a different size to test which one would

best fit the criteria.

The table below lists different grids projected along with the calculations they performed

in each frame.

Grid Size Pixels on matrix Calculations/f Results

1 640 x 480 307,200 SC / HA

2 320 x 240 76,800 SC / HA

4 160 x 120 19,200 FC / HA

5 128 x 96 12,288 FC / HA

8 80 x 60 4,800 FC / LA

10 64 x 48 3,072 FC / LA

FC=fast computations, SC=slow computations, HA=high accuracy, LA=low accuracy.

According to the table above, the best solution would be to use a grid of a size 4 or 5, but

since there was not much difference in the computational cost, it was decided to go with 4

as it gave more detail (Figure 63).

 59

 9.10.2 Cube ROI

Using the grid and the hand ROI, it was now possible to construct a cubic ROI which

would also consider the depth values. That way the search will focus even more than before.

In this stage the cube ROI takes the hand ROI x and y co-ordinates and is set to detect all the

points only from 0.2 m to 1.4 m depth (Figure 64).

This method will also discard the white noise since it was given a value of 3 meters

earlier.

Figure 63: The size 4 grid projected on the image.

Figure 64: Left is a simple ROI checking all depth. On the
Right is the cube ROI checking from 0.2 – 1.4 meters.

 60

9.10.3 Points inside ROI

 These optimization methods have really improved the computational time and the

algorithm only has to check for a small portion of the image. At this point, all the grid points

on the hand are drawn (Figure 65) indicating that the hand is in the correct position.

It can also be observed that although the head is in the frame the points are not drawn

on it as it is outside the cube, suggesting less miss-detection.

9.11 Self-Occluded Fingers

Initially all the points on the hand that have a smaller (closer to the camera) depth value

than the palm, are indicated with a white circle whereas the rest are black (Figure 66).

Figure 65: Points on hand.

 61

This proves that the points can be detected accurately in the image, but the real task lies

with tracking. So far, the algorithm just points out which points on the grid have a smaller

depth value from the palm, them being the fingers. Tracking those points with the skeleton

is something very difficult to achieve and it is in this part of the project that three attempts

were made.

9.11.1 Points on new matrix

The working method involves creating a new matrix called “selfOccludedObj” which will

be used to perform all the calculations that would track these points. The first step was to

draw the detected points in the new matrix thus isolating them from the rest of the points

(Figure 67).

Figure 66: Self-Occluded grid points.

Figure 67: Grid points on new matrix.

 62

9.11.2 Blob Formation

This technique involves using the points as blobs to track their position. It is not the best

way to track those points and it has a lot of limitations. Yet it was the only method of the

three that gave positive results and due to time constraints it was not possible to develop

other methods. Figure 68 demonstrates the points as contours.

Following, the blobs were assigned to a Point4f array similarly to the previous methods

in order for them to be identified.

9.11.3 Elbow to Wrist vector

At this point, when the fingers enter the palm region, the locator of the palm would not

be detected, thus the wrist will be used to identify the fingers. To find the vector from the

elbow to the wrist () the elbow vector should be subtracted from the wrist by:

The magnitude of this vector can be calculated by:

Where EW is the vector from elbow to wrist, W is the wrist and E is the elbow.

This vector and its magnitude will be used as reference to determine the self-occluded

finger angles.

Figure 68: Points as 5 contours.

 63

9.11.4 Points Angles and Lengths

Similarly to the previous method, each finger’s to wrist vector was determined along

with their magnitude. The information will be used to compute the angles using the dot

product of the by:

The angle of each finger is computed by the cosine function:

Where θ is the angle, A is the vector and B is the vector.

Now that each of the blobs holds similar information to the skeleton, the self-occluded

fingers can be sorted and identified.

9.11.5 Identification and Sorting

Since the fingers are stored in a Point4f data type variable, the use of the Boolean

operator will sort them from smallest angle to biggest similarly to the other method

explained earlier.

std::sort(&newFingerController[0].&newFingerController[contoursDepth.size()]);

9.11.6 Final self-occluded fingers

The sorted fingers are assigned to the temporary finger storage similarly to the skeleton

so that if one method loses track of a finger, the other will detect it. At the moment the two

methods work individually and accurately (Figure 69, 70).

 64

 The next step is to merge the two methods forming one new skeleton that would detect

all the fingers without them being self-occluded.

9.12 Merging the techniques

In mathematics to merge two matrices, a simple addition is performed:

Where C is the final gathering of methods, A is the nonOccludedObj and B is the

selfOccludedObj. In this case C includes the detected points from both techniques, which

suggests no loss of finger detection.

Figure 70: The thumb is lost in the original skeleton but detected in the depth.

Figure 69: The Index is lost on the original skeleton but detected by the depth.

 65

9.12.1 Filter Objects

This technique requires filtering since it was observed that when the palm was closed,

one point was detected at its centre, which confused the rest of the skeleton. This detection

is a result from the Euclidean distance transform used in the line skeletonization method. In

order to prevent the program from recognizing two fingers whereas only one is used, the

size of the hand’s blob was taken into consideration, resulting into points being drawn only

if the area of the object fits the size of a finger tip.

9.12.2 Identification and Sorting

In a similar procedure as was demonstrated previously, the identification and sorting of

the 3D skeleton was done using the Point4f structure to store the points and the cosine

formula to detect their angle.

Where θ is the angle, A is the vector and B is the new vector.

Additionally, each finger’s length from the palm was found and assigned to the

temporary finger variables.

9.12.3 Final finger assignment

At this point the 3D skeleton has been formed combining the two methods preventing

from any data loss or miss-detections (Figure 71).

 66

The points detected are assigned to the temporary finger variables so that they can be

used by the virtual locators of the skeleton.

9.14 Position Rules

Due to the z position of the palm, which was set to be 0.02 more than what it is in reality

to dismiss the small muscles of the hand, as soon as the palm was closed, the fingers would

be positioned at (0, 0).

The rules applied to the fingers only consider their length so that they would never

exceed 1.5 meters or that when they move to (0, 0) they should be re-positioned at the

centre of the palm. These constraints are very simple and only prevent the skeleton’s finger

from being miss-positioned when the palm is closed.

9.15 Visualization and Final Gathering of Joints

The 3D skeleton is complete, noise free, there are no miss-detections and the fingers are

detected even though they are in front of the palm, suggesting that self-occlusion is solved.

Yet there are a few limitations with this technique that will be discussed later in this thesis,

such as sensitivity, blob accuracy, finger identification and line skeletonization constraints.

Figure 71: 3D skeleton merging the two methods.

 67

A simple visualization of lines and circles has been created to demonstrate the usage of

the skeleton.

Figure 72 demonstrates the result of the currently working 3D skeleton extraction.

Figure 72: 3D skeleton extraction.

 68

FAILED METHODS

Although the method used for constructing the 3D skeleton works relatively well, it is

worth mentioning the previous methods that did not succeed and the major techniques that

caused issues.

10.1 Skeletonization Constraints

As soon as the palm closes, the Euclidean

distance transform splits the skeleton in two

branches, due to its area becoming big enough to

consider each corner as a separate joint. This

resulted to an extra finger every time one was

raised or a finger being detected and formed when

the palm was closed. This problem was sorted by

the thinning technique performed right before the

EDT and adding rules to prevent such operations,

but is still present in some cases.

Additionally, even though the line skeletonization deals with the mesh as a single line, it

is created in a 2D environment, thus exposed to self-occlusion threats. This was the case

when trying to connect the self-occluded points to the fingers of the skeleton.

Chapter 10

Figure 73: EDT on palm closed.

 69

10.2 Drawing Limitations of 3D Points

Using the Kinect to detect the points in depth was the key element to the construction of

the skeleton. One difficulty that was faced during its development was that even though the

points were located in x, y, z co-ordinates, they had to be drawn using only x and y as

computer vision deals only with 2D images. This became a problem when using blobs to

track the fingers. When the contours of the blobs were formed, the program could not

determine if one of the points is closer to the camera than the other, thus merging the point

as it would do normally. This is why when the fingers get really close to each other they

merge recognizing only one shape, also being one of the main reasons that the method used

is very sensitive. This problem was partially solved because the number of grid points

tracked, were accurately positioned in the centre of the blob. This issue is visible only when

the fingers touch each other.

10.3 Method 1: Tracking the grid points

The original method proposed to track the self-occluded fingers, used the 2D skeleton

and converted its locators in 3D using the pixelValue. Furthermore it would track the points

on the grid according to their angle, meaning that the hand would be divided into segments

and the points would be assigned to the according segment. This was very unstable,

inaccurate and the fingers were not being identified correctly.

Figure 74: Contour merging.

 70

Additionally the skeletonization method caused issues when the line got self-occluded

and the locators where no longer accessible. The problem with this attempt was that there

was no way to track the grid points using the skeleton extracted from the other methods.

The best result coming from this method was one finger being tracked at a time. If many

fingers were bending, the locators would get confused and lose track.

10.4 Method 2: 3D Skeletonization

As soon as the above problems were identified, the next attempt involved forming the

line skeletonization in the 3D environment from scratch. It was considered that if the lines

had x, y, z co-ordinates from initialization, only the lines in front of the palm would be

drawn thus solving self-occlusion and also to discriminate whether a line was covering the

other. This method was much more efficient than the previous one and the fingers were

tracked with more accuracy.

Unfortunately, due to drawing constraints the lines had to be drawn in a 2D matrix and

the Harris corner-detection assigned x and y co-ordinates to the points resulting to the

locators being self-occluded. Similar dead-end as before but with more accuracy. Should it

been possible to draw 3D points on a three dimensional image matrix, this method would

have been very successful.

10.5 Method 3: 3D Blobs

The final attempt to track those grid points involved drawing them in a new image and

converting them to blobs as has been examined previously. This is the current working

technique used for this thesis. Although this works, it consists of a few limitations such as:

 Contours merging when colliding

 EDT splitting the joints

 Sensitive due to Kinect’s frame rate on the depth

 Counter-clockwise finger identification

 71

Most of the issues listed above were solved with thinning methods, and by adding

rules/constraints to the skeleton so that it would not break. Yet once the fingers get really

close to one another the mesh gets merged producing only one locator. Overall the grid

points were accurately detected but the problems occurred when trying to track them with

the other skeleton. The issue lies with the positioning of the locators. At this point, the blob

locators have x, y, z co-ordinates but they are positioned on a 2D matrix cancelling out the

depth which is given by the Kinect. This is why they merge when their distance becomes

really small.

A possible solution to this problem would be to analyze the depth values and create a

database which would allocate each depth point to the according position on the hand. That

way, when the finger collide the depth values that would determine the collision can be

cancelled out thus discriminating one finger from the other. This requires a lot of time and

testing and it is going to be one of the future developments.

 72

THE MAIN APPLICATION

To demonstrate the 3D skeleton, eight locators were created in the main window linked

to each of the joints co-ordinates. The virtual skeleton is composed of different coloured

spheres and simple lines. Three cameras were set up, showing the hand from front, side and

perspective view. There is no particular GUI involved as the application is only

demonstrating the hand skeleton and nothing else. The shader used is a simple colour-

phong shader just to represent the different locators.

It was observed that because the depth of the fingers was in centimeters and the

difference in the values was very small, it was not possible to see much difference on the

main window. The elbow, wrist and palm are very noticeable as the movement of the entire

hand is very big compared to the fingers.

Chapter 11

Figure 75: Main Window virtual skeleton.

 73

Additionally, to demonstrate the use of the technique a simple particle based

cloth simulation was used from previous personal projects that allow the user to

control and manipulate the objects. A grab gesture was included to “grab” the

particles. Find more in the demonstration videos.

3D SKELETON EXTRACTION APPLICATION

 Furthermore, a few useful bits were added that measure the noise and

misdetections of the skeleton.

 74

MORE APPLICATIONS

In general, a 3D skeleton with one camera has great prospects. It can be used in games to

increase the playing experience and make the gamer feel more part of the game world, it

can be used in training/educational simulations such as in medicine were surgeons can

practice their techniques or pilots to learn the basics of how to fly a plane.

Most importantly it can be used in motion capture for movies to decrease the cost of

equipment in use and the general limitations currently faced. Other applications of the

skeleton would be for smart homes were it would check for the health of the person or for

any intruders in the house.

This method could also be supplied with many additional systems such as facial

recognition or speech recognition that could improve the final use of the skeleton.

Chapter 12

 75

CONCLUSION

The method used to extract the 3D skeleton with one Kinect camera works and gives

positive results, but it is not the most efficient way to tackle this research question.

The skeleton is sensitive due to Kinect’s frame rate of the depth sensor as explained in

chapter 3.3, thus losing track of the fingers when the hand is in motion.

Also the use of blobs to track the fingers from 2D in 3D has many disadvantages such as

merging meshes when getting really close, but it was the only method out of the three that

worked.

The skeletonization technique resulted into many miss-detections that confused the final

skeleton and although it works very well for the 2D, it caused issues to the 3D method such

as self-occluded lines. The major problem with the skeletonization method is that it is

formed in a two dimensional image whereas the Kinect can develop a three dimensional

environment. So when a point was detected in 3D, it had to be drawn in a 2D matrix even

though it contained the 3D information, therefore being exposed to merging with other

points. It is suggested that should it was possible to draw points on a 3D environment the

second method attempted would have worked very efficiently because only the points with

the wanted depth value would have been identified.

Overall the 3D skeleton constructed in this application works as a proof of concept,

suggesting that in the end it can be done, but it should be approached differently.

It suggests that with the current state of computer vision, line skeletonization should not

be used to develop the three dimensional skeleton. Blob extraction method to track the

Chapter 13

 76

fingers is also not a recommended solution neither is the use of angles as they are both very

limited.

As a further development, this research question should be approached with a thorough

study in computer vision analyzing all the possible routes and techniques before

implementing in code. Detecting the joints and tracking the joints are two totally different

areas in skeleton extraction and really hard to combine, but with the proper amount of tests

and improvements it can be done.

PARTICLE APPLICATION (grab function)

 77

BIBLIOGRAPHY

Bradski, G. and Kaehler A., 2008. Learning OpenCV: Computer Vision with the OpenCV Library, First
edition, US: O’REILLY.

Safaee-Rad R. and Benhabib B. and Smith K.C. and Zhou Z., 1989. Pre-Marking Methods For 3D Object
Recognition. In: IEEE International Conference on 14-17 Nov. 1989, 10.1109/ICSMC.1989.71366,
Page(s): 592 - 595 vol.2, Cambridge, MA.

Giannitrapani R. and Vittorio M., 1989. Three-dimentional skeleton extraction by point set contraction.
In: Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on 24-28 Oct. 1999,
Digital Object Identifier: 10.1109/ICSMC.1989.71366, Page(s): 565 - 569 vol.1, Kobe, JA.

Sato, M. and Bitter, I. and Bender, M.A. and Kaufman, A.E. and Nakajima, M., 2000. TEASAR: tree-
structure extraction algorithm for accurate and robust skeletons. In: Computer Graphics and
Applications, 2000. Proceedings. The Eighth Pacific Conference on 3-5 Oct. 2000,
10.1109/PCCGA.2000.883951, Page(s): 281 - 449, Hong Kong, HK.

Weik, S., 2000. A passive full body scanner using shape from silhouettes. In: Pattern Recognition, 2000.
Proceedings. 15th International Conference on 3-7 Sept. 2000, 10.1109/ICPR.2000.905495 , Page(s):
750 - 753 vol.1, Barcelona, ES.

Jeong-Sun Park and Il-Seok Oh, 2002. Shape decomposition and skeleton extraction of character
patterns. In: Pattern Recognition, 2002. Proceedings. 16th International Conference on 11-15 Aug.
2002, 10.1109/ICPR.2002.1047934 , Page(s): 411 - 414 vol.3.

Yi Sun and Mei-Hua Li and Jia-Sheng Hu and En-Liang Wang, 2002. 2D recovery of human posture. In:
Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on 4-5 Nov.
2002, 10.1109/ICMLC.2002.1167490 , Page(s): 1638 - 1640 vol.3, Beijing, CN.

Chaichana, T. and Sangworasil, M. and Pintavirooj, C. and Aootaphao, S., 2006. Accelerate a Dlt Motion
Capture System With Quad-Tree Searching Scheme. In: Communications and Information
Technologies, 2006. ISCIT '06. International Symposium on Oct. 18 2006-Sept. 20 2006,
10.1109/ISCIT.2006.339935 , Page(s): 1035 – 1038, Bangkok, TH.

Chih-Chang Yu and Jenq-Neng Hwang and Gang-Feng Ho and Chaur-Heh Hsieh, 2007. Automatic
Human Body Tracking and Modeling from Monocular Video Sequences. In: Acoustics, Speech and Signal
Processing, 2007. ICASSP 2007. IEEE International Conference on 15-20 April 2007,
10.1109/ICASSP.2007.366058, Page(s): I-917 - I-920, Honolulu, HI.

Yu-Shuen Wang and Tong-Yee Lee, 2008. Curve-Skeleton Extraction Using Iterative Least Squares
Optimization. In: Visualization and Computer Graphics, IEEE Transactions on July-Aug. 2008,
10.1109/TVCG.2008.38, Page(s): 926 – 936 vol.14.

Takahashi, K. and Nagasawa, Y. and Hashimoto, M., 2007. Remarks on 3D human body’s feature
extraction from voxel reconstruction of human body posture. In: Robotics and Biomimetics, 2007.
ROBIO 2007. IEEE International Conference on 15-18 Dec. 2007, 10.1109/ROBIO.2007.4522146 ,
Page(s): 121 - 126, Sanya, CN.

http://dx.doi.org/10.1109/PCCGA.2000.883951

 78

Faming Gong and Cui Kang, 2009. 3D Mesh Skeleton Extraction Based on Feature Points. In: Computer
Engineering and Technology, 2009. ICCET '09. International Conference on 22-24 Jan. 2009,
10.1109/ICCET.2009.71, Page(s): 326 - 329, Singapore, SG.

En Peng and Ling Li, 2008. Acquiring human skeleton proportions from monocular images without
posture estimation. In: Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th
International Conference on 17-20 Dec. 2008, 10.1109/ICARCV.2008.4795882, Page(s): 2250 - 2255,
Hanoi, VN.

Xin Yuan and Xubo Yang, 2009. A Robust Human Action Recognition System Using Single Camera. In:
Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on
11-13 Dec. 2009, 10.1109/CISE.2009.5366107, Page(s): 1 - 4, Wuhan, CN.

Sang Min Yoon and Graf, H., 2009. Automatic skeleton extraction and splitting of target objects. In:
Image Processing (ICIP), 2009 16th IEEE International Conference on 7-10 Nov. 2009,
10.1109/ICIP.2009.5414139, Page(s): 2421 - 2424, Cairo, EG.

Jianhao Ding and Yigang Wang and Lingyun Yu, 2010. Extraction of Human Body Skeleton Based on
Silhouette Images. In: Education Technology and Computer Science (ETCS), 2010 Second
International Workshop on 6-7 March 2010, 10.1109/ETCS.2010.241, Page(s): 71 - 74, Wuhan, CN.

Le Zhang and Qing He and Ito, S.-I. and Kita, K., 2010. Euclidean distance-ordered thinning for skeleton
extraction. In: Education Technology and Computer (ICETC), 2010 2nd International Conference on
22-24 June 2010, 10.1109/ICETC.2010.5529241, Page(s): V1-311 - V1-315, Shanghai, CN.

Xujia Qin and Xiansheng Sang and Sida Zhu and Shiwei Cheng, 2010. Line-Skeleton Extraction of 3D
Meshes Based on Geometry Segmentation. In: Cryptography and Network Security, Data Mining and
Knowledge Discovery, E-Commerce & Its Applications and Embedded Systems (CDEE), 2010 First
ACIS International Symposium on 23-24 Oct. 2010, 10.1109/CDEE.2010.73, Page(s): 354 - 357,
Qinhuangdao, CN.

Jing Tong and Jin Zhou and Ligang Liu and Zhigeng Pan and Hao Yan, 2012. Scanning 3D Full Human
Bodies Using Kinects. In: Visualization and Computer Graphics, IEEE Transactions on April 2012,
10.1109/TVCG.2012.56, Page(s): 643 – 650, vol.18.

Wright M. and Cipolla R. and Giblin P., 1994. Skeletonisation using an extended Euclidean distance
transform. In: Proceeding BMVC 94 Proceedings of the conference on British machine vision (vol. 2),
ISBN:952-1898-1-X, Page(s) 559 - 568, Surrey, UK.

Cao J. and Tagliasacchi A. and Olson M. and Hao Zhang Zhinxun Su, 2010. Point Cloud Skeletons via
Laplacian Based Contraction. In: Proceeding SMI '10 Proceedings of the 2010 Shape Modeling
International Conference IEEE Computer Society Washington, DC, USA ©2010,
10.1109/SMI.2010.25, Page(s) 187-197, Washington, US.

Oscar Kin-Chung Au and Chiew-Lan Tai and Hung-Kuo Chu and Daniel Cohen-Or and Tong-Yee Lee,
2008. Skeleton extraction by mesh contraction. In: ACM Transactions on Graphics (TOG), Volume 27
Issue 3, August 2008, 10.1145/1360612.1360643, Page(s): 1 – 10, New York, US.

Panagiotakis C., and Tziritas G., 2004. Recognition and Tracking of the Members of a Moving Human

Body⋆. In: F.J. Perales and B.A. Draper (Eds.): AMDO 2004, LNCS 3179, Page(s): 86–98, Berlin, DE.

Aitpayev K., and Gaber J., 2010. Creation of 3D Human Avatar using Kinect. In: Asian Transactions on
Fundamentals of Electronics, Communication & Multimedia (ATFECM) (ATFECM ISSN: 2221-4305)
Volume 01 Issue 05, Jan 2012, Page(s): 1 - 2, Beijing, CN.

 79

Li Ming and Wang Jun and Zhu Meiqiang, 2010. On skeleton extraction algorithm for path planning of
mobile robots in complex planar maps. In: Control Conference (CCC), 2010 29th Chinese 29-31 July
2010, 11611752, Page(s): 3704 - 3708, Beijing, CN.

Aipeng Qi and Jing Xu, 2010. Skeleton extraction of cerebral vascular image based on topology node.
In: Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on 16-18 Oct.
2010, 10.1109/BMEI.2010.5640001, Page(s): 569 - 573, Yantai, CN.

Chayanurak, R. and Cooharojananone, N. and Satoh, S. and Lipikorn, R., 2010. Carried object detection
using star skeleton with adaptive centroid and time series graph. In: Signal Processing (ICSP), 2010
IEEE 10th International Conference on 24-28 Oct. 2010, 10.1109/ICOSP.2010.5655765, Page(s): 736
- 739, Beijing, CN.

She, F.H. and Chen, R.H. and Gao, W.M. and Hodgson, P.H. and Kong, L.X. and Hong, H.Y., 2009.
Improved 3D Thinning Algorithms for Skeleton Extraction. In: Digital Image Computing: Techniques
and Applications, 2009. DICTA '09. 1-3 Dec. 2009, 10.1109/DICTA.2009.13, Page(s): 14 - 18,
Melbourne, VIC.

Hongbo Jiang and Wenping Liu and Dan Wang and Chen Tian and Xiang Bai and Xue Liu and Ying Wu
and Wenyu Liu, 2010. Connectivity-Based Skeleton Extraction in Wireless Sensor Networks. In: Parallel
and Distributed Systems, IEEE Transactions on May 2010, 10.1109/TPDS.2009.109, Page(s): 710 -
721.

Tierny, J. and Vandeborre, J.-P. and Daoudi, M., 2008. Fast and precise kinematic skeleton extraction of
3D dynamic meshes. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on 8-11
Dec. 2008, 10.1109/ICPR.2008.4761011, Page(s): 1 - 4, Tampa, FL.

