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 Nowadays, it is well established that Computer Vision is used in many applications and 

devices. One area of huge interest is the detection and reconstruction of the human skeletal 

structure. In short words, the camera will identify the human parts and construct the joints 

of the person standing in front of it. So far, scientists have managed to build various systems 

that reconstruct the human skeleton representing it as lines and spheres in 2D using one 

camera and 3D using two or more cameras. Although there are still a few areas requiring 

improvements for such methods, such as computational cost and stability, the results are 

generally accurate and efficient.  

Currently, the reconstruction of the human skeleton in 3D using one camera is still under 

research. In this master thesis a relatively novel approach is proposed, using image-

processing techniques, mesh extraction, line skeletonization, 2D Skeleton extraction and 

depth detection methods, resulting into a 3D skeleton reconstruction of the left hand. 
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INTRODUCTION 

 

  

Computer vision is a field in computer science yet to be fully discovered. It can be 

defined as the science of processing, analyzing and understanding images. Over decades 

many researchers have been working on developing new ideas or improving existing 

applications in order to “take it” to the next level. Initially computer vision would work on a 

two dimensional environment using one camera and should the programmer wished to add 

the third dimension he or she would have to use two or more cameras depending on the 

nature of the application and the amount of detail needed to be accessed. Generally, the use 

of computer vision has great prospects and could be used in almost any application, from 

army surveillance to games and films to medical research and training to only educational 

purposes. 

One area of great interest is the detection and reconstruction of the human skeletal 

structure. In short, the computer will identify the human parts and construct the joints of 

the person standing in front of it in a three dimensional environment. This method would 

give so much freedom to the user to perform tasks that require great detail and accuracy. So 

far scientists have managed to build various systems that reconstruct the human skeleton 

representing it as lines and spheres in 2D using one camera and 3D using two or more 

cameras. They have been using simple RGB cameras and advanced depth sensors, which are 

very expensive and hard to access. 

In 2009, Microsoft released the Kinect, a motion sensing camera device which captures 

the movement of objects in a 3D environment. This three dimensional scanner was cheap 

enough to allow more researchers to test their theories in order to accomplish their goal. 

Chapter 1 
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 As far as skeletonization is concerned, there are still a few areas requiring 

improvements, such as computational cost and stability, but the results are generally 

accurate and efficient. Some of the techniques will be discussed in the next chapter. 

Currently, the reconstruction of the human skeletal structure in 3D using one camera is 

still under research because the problem of self-occluded objects is yet to be solved. In this 

research thesis the basic idea is to construct a fully functioning 2D skeleton, which would 

also solve some of the issues of stability, accuracy and computational cost, and then using 

the Kinect’s depth sensor and detect the self-occluded points. Furthermore, various 

techniques to combine the two methods will be introduced, discussing each ones 

advantages and disadvantages. 
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RELATED WORK 

 

 

 Skeleton extraction techniques in a 2D or 3D co-ordinate system are researched for 

various applications either using a set of cameras, or other scans such as CT and MRI, or 

straight from software using voxels to avoid having self occluded objects. 

 TEASAR (tree‐structure extraction algorithm for accurate and robust skeletons) was 

introduced by Sato M. et al. in 2000. In their method they used CT and MRI scans as input 

data to retrieve a full view of the object. They gather data as voxels and define the skeleton 

as a tree composed of paths. Using the Dijkstra algorithm to determine the global minimal 

weight path and the Euclidean distance transform they extracted the minimum cost path 

from voxel to root and finally labeled the voxels near that path. The algorithm seems to be 

very accurate (Figure 1) and according to their analysis, very efficient. 

 In 2002, a method to retrieve a 2D skeleton out of (Yi Sun et al. 2000) “Freeman Chain 

Code (FCC)” was introduced, suggesting that the best way to determine a skeleton is to find 

Chapter 2 

Figure 1: TEASAR algorithm skeleton extraction. 
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the boundary contours of the silhouette after having removed the background. They divide 

the body parts into several sub parts and they label them in order to retrieve the co-

ordinates of the joints. They tried to solve the issues caused by self occlusion by estimating 

the position (Figure 2) of the joints using motion analysis.  

A technique to retrieve the 1D line skeleton was presented in 2008 by Yu-Shuen and 

Tong-Yee. Essentially they shrink the mesh by contracting the edges between the adjacent 

voxels and they add forces to preserve the original positions of the boundary voxels. 

Although the resulting skeleton is accurate and straight because of the method shrinking 

the mesh to make the model thinner, it causes (Yu-Shuen et al. 2008) “the skeleton to 

diverge from the center of the model” (Figure 3). 

In 2010, Le Zhang et. al presented a hybrid method of the Euclidean Distance Transform 

(EDT) and the thinning technique for topology presentation. It is a very basic technique, 

which was used to obtain the 2D skeleton for any object but the results (Figure 4) are 

accurate and efficient.  

Figure 2: 2D skeleton extraction using FCC. 

 

Figure 3: Curve skeleton extraction using iterative least squares optimization. 
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In 2012, three Kinects were used to scan the entire human body outlining the camera’s 

advantages and disadvantages (Figure 5). It explains the disadvantages and the weaknesses 

of the Kinect device, such as low resolution and some inaccuracy in depth information (Jing 

T. et al. 2012) “The quality of the reconstructed models in our system is still poor for some 

specific applications due to low quality for depth data captured by the Kinects.”   

According to the historical background, self-occlusion still remains the greatest issue of 

skeleton extraction, which is the focus of this thesis. Additionally, a 2D skeleton will be 

constructed and a relatively novel approach to the formation of a 3D skeleton will be 

presented. Three methods for combining the two skeletons will be presented explaining 

each ones limitations and facilitations. 

 

 

 

 

 

 

Figure 4: Euclidean distance-ordered thinning for skeleton extraction. 

Figure 5: Scanning 3D Full Human Bodies Using Kinects. 
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THE KINECT DEVICE 

 

 

 Microsoft currently being the largest software corporation was founded in 1975 

providing the well-known “windows” operating system, producing video games, mobile 

phones, digital services and the Kinect camera (Figure 6).  

 The Kinect was first announced in 2009 having the ability to detect motion in a three 

dimensional environment using the IR (Infra Red) projector, RGB camera and depth sensor.  

 

 

 

 

 

 

Chapter 3 

Figure 6: The Microsoft Kinect camera. 
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 3.1 RGB stream 

 

 The Kinect’s RGB stream (Figure 7) has a frame rate of 30 Hz and a resolution of 640 x 

480 pixels. It is used mostly for colour isolation and skin extraction. In object tracking, the 

RGB is commonly used to track coloured locators positioned on a dark monochromic 

background. On the other hand the RGB stream is used only under certain lighting 

conditions, it is very unstable when it comes to template matching and it is very sensitive to 

noise. 

 

 

 3.2 IR and Depth 

 

 The Kinect is equipped with an Infra Red (IR) 

(Figure 8) projector working along with a 

monochrome CMOS sensor that captures all the data 

in a 3D environment.  

(Wikipedia 2012) “The sensing range of the depth 

sensor is adjustable, and the Kinect software is 

capable of automatically calibrating the sensor based 

on game play and the player's physical environment”. 

Figure 7: The RGB stream of the Kinect device. 

Figure 8: The Infra Red grid projection. 
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 The next most important feature of the Kinect 

is the depth stream (Figure 9). The depth can also be 

visualized with colour gradients expressing blue as 

the furthest point and white the nearest to the 

camera.  

Although the resolution of the depth is the same 

as in the RGB stream, it outputs an 11-bit depth 

resulting to (Wikipedia 2012) “2,048 levels of 

sensitivity”.  

 

 

3.3 Hardware limitations 

 

Initially, the working distance begins from 0.2 m and ends at 1.5 m from the camera. Any 

higher than that, the camera loses track of the object. Lighting is very important too as the 

camera produces a lot of miss-detections when it is facing directly at a light source. 

Additionally, the resolution and small disparity of the IR projector and Depth sensor are 

responsible for the white noise seen in Figure 12, returning nan (not a number) values 

which can be very threatening.  

Although the frame rate of the camera is fairly acceptable (30 Hz), it does not work well 

for fast movements (Figure 10) in the depth stream unless the object is big enough, like an 

arm. It is very problematic for the fingers as it merges the meshes and the skeletonization 

algorithm gets confused.  

 

Figure 9: The raw depth stream from 
the Kinect. 

Figure 10: Kinect limitations. 
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HAND ANATOMY 

 

 

Extracting the hands skeletal structure is essentially the 

detection of certain points that when connected with simple 

lines, would resemble the shape of the actual hand.  

The hand (Figure 11) has a very distinctive shape. It 

consists of 32 bones including the ones located in the elbow 

and wrist region. Even if the Kinect was able to detect all 32 

joints without any errors it would still be very difficult to keep 

track of each joint separately. For that reason it was suggested 

to select the most crucial joints that would determine the 

hand’s position, orientation and movement.  

It was decided that only 8 of all the joints were necessary to 

detect and track the hand (Figure 12). The elbow would be the 

starting joint followed by the wrist and the palm.  

As far as the fingers are concerned, only the fingertips were 

needed since detecting the fingers starting point would 

complicate the identification process.  

 

Chapter 4 

Figure 11: Left Hand. 

Figure 12: Left Arm Skeleton. 
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Figure 13 displays the hand with the desired skeleton. It is accurate enough and would 

allow the main focus to be on solving self-occlusion, which is, detecting the thumb in front of 

the palm region. 

 

Overall the skeleton will be constructed with 8 points determining the position of each 

joint of the hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Left Hand showing the points to be detected. 
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PRE-PROCESSING 

 

 

At this stage the Kinect device needs to be initialized streaming the data from the depth 

and RGB cameras. Depending on the source that will be used, some image processing is 

required in order to set the camera up correctly and to dismiss any small amounts of noise. 

It is also necessary to store the video stream into a matrix, which then needs to be 

converted, thresholded and flipped in order to get a visual of the depth with no noise that 

mirrors the motion detected. 

 

 

5.1 Image Matrix Conversion 

 

The Kinect outputs an 11-bit depth for each pixel on the 640 x 480 resolution size also 

being the matrix size, resulting to 2048 sensitivity levels. These attributes are not very 

efficient to work with, as it is not possible to get a visual output (Figure 14). It is necessary 

to be converted to an 8-bit depth (Figure 15).  

Additionally to converting the original pixels to the ones wanted, (OpenCV API 

documentation 2010) “a saturate cast is applied at the end to avoid any possible overflows”.  

Chapter 5 
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The reduced matrix that stores the depth stream has 640x480 (rows x columns) and 

now has an 8-bit depth with 255.0/2048 levels of sensitivity.  

 

 

5.2 Gaussian and Median Blur 

 

Blurring is used mainly to smooth the image and eliminate some detail and most of the 

noise detected in edges. OpenCV facilitates two of the most important types of blurs, the 

Gaussian using the Gaussian filter and the Median, which uses the median filter. 

The Gaussian filter (Figure 16) can be described as a bell 

shaped function that uses the Gaussian function to compute 

its impulse response.  

The main Gaussian function is: 

 

Where a, b and c are real numbers greater than 0 and “e” is the Euler’s number. 

Since the image matrix from the depth is a 2D array, the function for computing the 

Gaussian filter is: 

Figure 14: 11-bit depth stream - Original Figure 15: 8-bit depth stream – Reduced 

Figure 16: A simple Gaussian 
filter. 
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Where x and y are the co-ordinates (width and height), σ is the standard deviation 

parameter and e is Euler’s number. 

One the other hand the Median filter is mostly used to remove noise from the image 

instead of smoothing it. Essentially it calculates the median value of each pixel by taking the 

two neighboring pixels. 

 

Where a and b are the neighboring pixels inside the matrix. 

Applying these two blurs in the original depth matrix (Figure 18) the result is much 

smoother with less noise and seems more accurate (Figure 17). Yet the white noise still 

remains as the Kinect still cannot see all the areas.  

 

 

5.3 Threshold 

 

Threshold converts the original image into a binary one. It is the best way to segment an 

image leaving only the major shape in the screen. Each pixel in the depth stream has a 

colour value that varies from 0 to 255. The threshold iterates through each pixel and 

converts it into binary (0, 1) according to whether that pixels value is smaller or greater 

than the threshold value given by the user (Figure 19). 



median 
a  b

2

Figure 17: Blur filtered depth. Figure 18: Original depth stream. 
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The threshold method is: 

The inverse threshold method is: 

In this case the threshold would serve well as it would automatically ignore the 

background and only focus on what is inside the depth range (Figure 20). 

  

 

5.4 Flip Matrix 

 

 It is observed that the image mirrors the environment opposite to the actual one. This is 

a matter of flipping the image matrix so that when the object moves on the left side, it would 

appear on the left side of the image too. 

Figure 19: Threshold graph of Binary and its Inverse. 

Figure 20: Binary threshold on the image matrix. 
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 In mathematics, in order to accomplish the reflection of a matrix about the x-axis, the 

following should be calculated: 

 

 

 In the case of the Kinect’s depth stream it would flip the image matrix (Figure 21) so that 

when the person lifts his/her left hand it would appear the same in the image, just like a 

normal mirror. 
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Figure 21: The mirrored matrix with the thresholded values. 
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MESH EXTRACTION 

 

 

 Computer vision deals with pixel values translated in points, vectors, matrices but all 

have to do with the geometry of the object. The word “mesh” is more suitable to define a 

polygonal model but it was used here because what the Kinect detects is just a line shape 

that resembles a hand. 

 At this point the mesh of the hand will be retrieved, as it would help with the formation 

of the Region of Interest (ROI) and with the elimination of noise as it will be able to remove 

the shapes with really small area when it comes to skeletonization. 

 

 

 6.1 Canny Edge Detection 

 

 In 1986, John F. Canny created an algorithm to detect all the edges inside an image. His 

algorithm is meant to recognize all the real edges, to have good localization and should only 

detect the same edge once as well as not confusing noise for an edge.  

 The algorithm follows certain steps to acquire the accurate edges: 

 Noise reduction 

 Intensity gradient 

 Non-maximum suppression 

 Edge trace through image and hysteresis threshold 

Chapter 6 
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  The canny edge detection considers edges to be vectors in any directions and it uses 

four filters to recognize any edges diagonally, vertically and horizontally. (Wikipedia 2012) 

“The edge detection operator (Roberts, Prewitt, Sobel for example) returns a value for the 

first derivative in the horizontal direction (Gx) and the vertical direction (Gy)”. The intensity 

gradient therefore can be computed by the following: 

 

 Using the Canny edge detection function provided by OpenCV, the edges of the 

thresholded image can be detected (Figure 22). 

  

 

 6.2 Contours 

 

 The edge detection function does not allow for any control over that shape nor does it 

provide any particular information. All it returns are the pixels that define the edges in a 

binary manner. Contours are very important in computer vision since they allow for the 

manipulation of a shape. A contour is a set of points in a sequence, thus being declared as a 

vector list of points. According to Bradskli and Kaehler (2008) “Contours are represented in 

OpenCV by sequences in which every entry in the sequence encodes information about the 

Figure 22: Canny Edge Detection. 
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location of the next point on the curve”. Since the canny function returned pixel points for 

the edges of the hand as a binary image, the contours would be efficiently retrieved (Figure 

23). 

 It was noticed that there was a lot of noise in the image and the edge detection algorithm 

was picking up small areas that were not there. In order to remove it from the image, the 

area of the hand contour was found and a filter was added that would only draw the 

contours with big enough area (Figure 24). 

  

 

 

 

 

Figure 23: The hand contours. 

Figure 24: The contours drawn without the noise. 
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 6.3 Circular ROI (Region of Interest) 

 

 Some noise that flickers every other n frames can cause big problems in the 

skeletonization process. Thus a region of interest was formed to capture most of these 

scattered noises and remove them. 

 An ROI is essentially a rectangle that surrounds the object’s mesh. OpenCV facilitates two 

types of rectangles that can be used as ROIs. The first is a simple rectangle (Figure 26), 

which has its origin on the top left corner and can only be drawn with straight lines. The 

second ROI is a rotated rectangle (Figure 26), much more functional than the simple one but 

it takes more computational time. 

 A rotated ROI will be used in order to construct a circle (Figure 25) around the hand. 

This method will be useful to eliminate any noise that got through the previous filter. The 

circular ROI will only surround the contours with six or more points while only the ones 

with big enough area are drawn. 

Figure 26: Simple ROI.                                Rotated ROI. 

Figure 25: Circular ROI. 
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 Currently the circle surrounds the outer points of the hand mesh and when the skeleton 

is extracted the ROI will cover the index finger causing the skeleton to lose track of the 

fingers.  

 For this purpose the ROI was scaled down (Figure 27) to cover only the inside of the 

mesh. Also in order to remove the unwanted detections, only the ROIs that passed the 

filtering would be drawn. 

  

 

 6.4 Conclusion of Mesh Detection 

 

Both hand mesh and circular ROI can be accessed any time during the program. They will 

be useful when constructing the mask area for the 3D skeleton and when eliminating most 

of the palm noise in the 2D skeleton. Additionally, the detection of the ROI is used to 

determine whether the user has gone out of range. Instead of crashing when no objects are 

detected, the program waits for the user to place 

his/her hand back in range for 1 minute before 

closing. 

Overall, the hand mesh and its circular ROI are 

both efficient, accurate and all the noise from that 

image has been removed securing the accuracy of 

the joints. 

 

Figure 27: Circular ROI on the new matrix. 

Figure 28: Waiting 1 min for the user to 
place his/her hand back in range.  
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SKELETONIZATION 

 

 

 Skeletonization is the process of representing the actual mesh using a set of lines. In 

many cases it can be retrieved using topological thinning which essentially uniform scales 

the mesh until it becomes thin as a line.  

 The most important attributes of skeletonization are its connectivity, accuracy, stability, 

topology, length and direction. 

 In this thesis, topological thinning will be used to bring the hands mesh at a point where 

the contours will not merge, the Euclidean distance transform will be used to calculate the 

distance of the points in the contour, the Laplace operator will construct the line and finally 

the probabilistic Hough line transform will be used to improve the skeleton’s connectivity. 

 

 

 7.1 Finding Contours 

 

 At this point it is essential to begin with a new set of 

contours in order to avoid any conflictions with the 

previous detections. For the detection of the contours 

(Figure 29), only the thresholded matrix is needed and a 

few median and Gaussian blurs to smooth the mesh.  
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Figure 29: New set of contours based on 
the threshold values of the matrix. 
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 7.2 Mesh Erosion / Thinning  

 

 Thinning is defined as the transformation of the original mesh to one more simplified yet 

retaining the original topology. The goal is to reduce the hand a really slim mesh while 

trying to keep the original proportions and shape. 

 Like any other morphological operation the most important factor besides the binary 

image that determines its accuracy and detail is the structuring element. According to 

Fisher R et al. (2003), “The structuring element consists of a pattern specified as the 

coordinates of a number of discrete points relative to some origin. Normally Cartesian 

coordinates are used and so a convenient way of representing the element is as a small 

image on a rectangular grid” (Figure 30). 

 The thinning method works by taking the original binary image and uses the hit-and-

miss transform to determine its structuring element. In contrast to a simple structuring 

element, which only uses the foreground pixels (1), the hit-and-miss transform contains 

both 0 and 1 values (Figure 31) indicating the background and foreground pixels 

respectively.  

 Following it subtracts the structuring element from the image: 

  

Where I is the binary image, J is the structuring element and the subtraction is logical. 

Figure 30: Different structuring elements of various sizes. 

Figure 31: hit-and-miss transform grid. 



thin(I ,J)  I hit_and_miss(I ,J)
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 Once more OpenCV facilitates both functions to get the structuring element from the 

image matrix and to erode the mesh according to the structuring element resulting to a 

thinner mesh of the hand (Figure 32). 

 It can be noticed that the fingers have become a lot thinner closing to a line, yet the palm 

and elbow has little difference than before. 

 

 

 7.3 Euclidean Distance Transform 

 

 In short, a distance transform calculates the distance between two points as if they were 

connected with a straight line. 

 Where x and y are co-ordinates of the two points in a 2D space. 

 Using the distance transform will allow for the conversion of the Euclidean space to a 

metric space. For any two points A(x,y,z) and B(x,y,z), the Euclidean distance between them 

can be described as the length of the imaginary line that connects them.  

Similarly: 

Figure 32: The hand mesh after thinning. 
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 In computer vision, points are defined as vectors with origin the top left corner of the 

screen being (0, 0) thus allowing for the calculation of the magnitude between the two 

points ||AB||. 

 The distance transform is generally applied on binary images returning a gradient gray-

scale image where the white regions are the points closest to the boundary. There are a 

couple more distance transforms available to be used in order to extract the skeleton of an 

object such the chessboard and the city-block metrics.  

 OpenCV facilitates a function to compute the distance transform from every pixel to the 

closest 0 pixel in the binary image matrix, including the Euclidean Distance Transform 

(CV_DIST_L2). Figure 33 displays the human body using the EDT on the previous binary 

image.  

 The thinning process decreased the amount of misdetections and false calculations of the 

distances. 

 

 

 7.4 Laplace Operator / Laplacian 

 

 The Laplace operator was named after Pierre-Simon de Laplace, a French mathematician 

who focused on celestial mechanics. 

Figure 33: The Euclidean distance transform. 
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 The original Laplacian formula is: 

 And for a 2D environment in Cartesian co-ordinates is: 

 In the previous part, the Euclidean distance transform of the image returned a gray-scale 

gradient image indicating the skeleton of the mesh. In order to access that skeleton and 

extract it from the rest of the image, the Laplace operator was used (Figure 34). 

 

 

7.5 Normalize Min/Max 

 

 Since the operations are performed on a binary matrix, the EDT and Laplacian cannot be 

visualized in the image because both convert the original image to a gradient going from 

white to black while the image matrix can only accept binary pixels (0, 1). In order to be 

able to see what is happening to the mesh of the hand and keep track of the skeleton, the 

image matrix had to be normalized.  
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Figure 34: The Laplace Operator. 



 34 

Although the normalization of the image matrix takes place after the EDT and Laplacian 

where performed, Figures 33 and 34, have been normalized before hand for demonstration 

purposes.  

 Following the matrix was thresholded leaving only the line skeleton (Figure 35). 

 It can be observed that the current line skeleton lacks in connectivity and that small 

noises are detected on the side of the body.  

 
 
 

 7.6 Mesh Dilation 

 
 The dilation works at the exact opposite of erosion, which is used for the thinning. In 

order to increase the line skeleton’s connectivity it was suggested that the line defined in 

the matrix needed to become stronger and bigger. With the use of a structuring element, 

similar to erosion, mesh dilation enlarges the size of the skeleton (Figure 36). 

Figure 35: Normalized and Thresholded matrix. 

Figure 36: Dilated skeleton. 
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 Although the dilation manages to fill in most of the spaces while preserving the shape of 

the original skeleton, it is still noticeable that there are a few gaps around the finger area.  

 

 

 7.7 The Probabilistic Hough Line Transform 

 

 The Probabilistic Hough line transform is derived from the simple Hough Transform, 

which detects all possible lines that can pass through a point and if a set of points in the 

binary image are positioned collinearly, then the line is created.  

According to Stephens (1991) “The Probabilistic Hough Transform H(y) is defined as the 

log of the probability density function of the output parameters, given all available input 

features”.  

The Hough line transform formula is the following: 

Where p(y) is a uniform probability distribution and C is a constant.  

 The PHLT will work better with a binary image, as there is limited noise and confusion. It 

will detect the points of the skeleton that form a line, for instance the fingers, including the 

first point of the other line, that being the palm joint, filling the gap between them (Figure 

37).  
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Figure 37: The connected skeleton with the PHLT. 
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7.8 Conclusion of Line Skeletonization 

 

 Overall the line skeleton was extracted using thinning methods, the Euclidean distance 

transform, the Laplace operator and the probabilistic Hough lines transform. It is accurate, 

efficient, noise free, stable and the computational cost is low (Figure 38, 39). 

 

 

 

 

 

Figure 38: Full body line skeletonization. 

Figure 39: Hand skeletonization. 
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2D SKELETON TRACKING 

 

 

 The line skeleton obtained is a representation of the hand mesh, but its current state 

does not support accessibility or control. Skeleton tracking is the method of detecting 

certain points on the line skeleton and use them as separate controllers.  

 In this chapter, the points will be detected using a corner detection algorithm, the convex 

hull of the points will be constructed along with a filtering method to remove the noise and 

then using geometrical equations the elbow, wrist, palm and finger tips will be tracked 

while a simple representation of the joints using lines will be demonstrated. Finally a short 

conclusion identifying the limitations and advantages of this technique will be discussed. 

 

 

8.1 Harris Corner Detection 

 

 Generally a corner is defined as a point in the image which variation gradient is very 

high. The corner is detected by projecting on a u, v area a patch with x, y co-ordinates which 

will identify the variation using the formula bellow: 

                                  

   

 

 Where w(x, y) is the patch and I is the intensity. 
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Using the binary image of the line skeleton and OpenCV’s function cornerHarris, the corners 

of the hand can be detected accurately (Figure 40).  

After the detection of the corners, the points were dilated using a structuring element in 

order to become more noticeable. It can be observed that there is a lot of noise in the palm 

region due to the many corners of the hand. This effect could jeopardize the stability of the 

skeleton and since only one point is needed to manipulate the palm, this noise needed to be 

cleared out. 

 

 

8.2 Convex Hull 

 

An object’s convex hull is defined as the smallest possible area that contains that object.  

Convex hulls are constructed by straight lines that go through the maximum co-ordinates of 

the object edges. A similar approach occurs for any set of points in an image. According to 

Wikipedia (2012) “For a point set S, its convex hull is the convex combination of its points: 

 
A convex combination (in contrast to an affine combination) requires all coefficients, αi, 

to be non-negative”. 

Figure 40: Corner Harris detection. 
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In this case the convex hull will be used to surround each point corner separately 

allowing for better area check. It will not make much difference to the fingers or the elbow 

but as far as the palm area is concerned, the convex hull will encompass all the points that 

collide and the ones with really small distance (Figure 41) in order to be removed 

accurately. 

 

 

8.3 Filtering the Hull Areas 

 

In order to dismiss any big chunks of hulls detected in the palm region, the area must be 

computed for each hull and if it is bigger than a certain size that defines a finger, then that 

chunk must be removed. For that to succeed, a double layered filter method took place right 

after the detection of the hulls.  

The first layer was given the size of the fingers hulls and anything that was bigger than 

that got erased. The remaining hulls where detected as contours and were assigned to a 

temporary rectangle ROI array so that each point could be accessed separately.  

Figure 41: Convex hull on points. 
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The second layer compared the size of each ROI to the maximum ROI of the fingers so 

that if any points that would pass through the first layer, would get stopped in the second 

(Figure 42). 

It is observed that most of the noise in the palm area has been erased apart from a 

couple of small bits that will be used as references to the palm joint later. 

 

 

8.4 First Object Detection 

 

At this point the contours remaining in the image matrix are used as reference to the 

skeleton controller positions. 

In computer vision, the points tend to be detected from bottom up, meaning in an array 

Figure 42: Filtered hulls. 

Figure 43: Detection in computer vision. 
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of points, 0 will be the most bottom point aka the elbow (Figure 43).  

In order to isolate the first object from the rest of the points, initially the first contour of 

the point array was marked with a circle as shown in Figure 44. Then the minimum and 

maximum points on the x-axis of the entire array were determined using the first contour as 

the initialization value of the min/max.  

                

It was also noticed that some noise existed near the elbow region which affected its 

stability. This was handled by a virtual locator positioned in that area while the rest of the 

points were removed. 

 

 

8.5 The Elbow 

 

The elbow according to the discussion in Chapter 4 will be the starting point of the 

virtual skeleton, thus it should be isolated from all other points. So far, the elbow is 

represented with a locator assigned to the first contour in the point array but as soon as the 

hand rotates more than 90 degrees the locator jumps to the “thumb” or the new first 

contour of the array. For that the min/max values were found to distinguish the elbow point 

according to both position and angle. 

 

 

Figure 44: The circle indicates the first contour in the point array. 
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8.5.1 Joint Orientation 

 

Since in this application there is no shoulder detection, the elbow’s rotation had to be 

estimated according to simple movements. The minimum and maximum points were used 

to assign the elbow controller to the correct point according to the hand’s angle (Figure 45). 

There were three conditions indicating the position of the elbow. Should these condition 

were exceeded, the hand would appear as broken. Let R be the hand’s angle of rotation: 

1) If R < 60O , then the elbow is the first point. 

2) If 60O < R < 130O, then the elbow is the MIN point on the x-axis. 

3) If R > 130O, then the elbow is the MAX or first point on the x-axis. 

Finally the elbow joint was indicated in the image as a new circle ROI (Figure 46) and its 

position will be used to detect the palm joint. 

 

 

 

 

Figure 45: angle of hand to determine the elbow. 

Figure 46: Gray elbow locator at different hand rotations. 
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8.6 The Palm 

 

The circular ROI from the mesh extraction method helps to determine the position of the 

palm. Initially the ROI was used to cover any noise left in the palm region clearing out the 

area for misdetections and confusion. Next the center of the hand’s ROI along with the 

elbow controller where used to position the controller of the palm (Figure 47). 

 

Let P be the center of the palm: 

           
       

 
 

Where      is the center of the mesh and    is the center of the elbow. 

 

 

8.7 The Wrist 

 

In this thesis the wrist is used later in the 3D skeleton extraction to calculate each 

finger’s angle when they come in front of the palm. It has no other use since the corners to 

detect the wrist were not accurate enough and were very sensitive to noise. Thus an 

estimated position for the wrist (Figure 48) was added. 

Let W be the center of the wrist: 

  

     
    

 
 

Figure 47: The palm controller. 
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Where    is the center of the palm and    is the center of the elbow. 

For demonstration purposes the controllers of the palm and elbow have been hidden to 

focus on the wrist. 

 

 

8.8 The Finger Tips 

 

At this point the finger tips have not been identified and are only used as a five particle 

system stored in a vector container whose size is determined by the number of objects in 

the image matrix. The elbow, wrist and palm points have been hidden and only their 

locators are shown. 

 

 

8.9 Visualization of the 2D skeleton 

  

The gathering of the elbow, wrist, palm and fingers was added in a new image matrix 

with colours and lines indicating the connected joints. It is a simple visualization of the 

skeleton formed in order to be later on used by the 3D detection.  

Figure 49 demonstrates the joints of the 2D skeleton, with the Elbow being the green 

locator, the wrist is the purple one, the palm is the red locator and the fingers are 

distinguished with all given a yellow colour. 

Figure 48: The wrist controller. (Estimated position) 
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8.10 Conclusion and Limitations 

 

In previous cases the 2D skeleton was formed using connectivity defects and the convex 

hull of the hand (see OpenCV 2.4 documentation). This was cheap towards the 

computational cost and efficient for some applications. Yet it is unstable when motion is 

applied and very inaccurate as the fingers are detected only when they collide with the 

convex hull. 

The proposed method for developing a 2D skeleton solves a lot of the issues as it is based 

on the detection points of the line skeletonization. At this point the skeleton is accurate, 

efficient, and cheap and does not lose track of the fingers unless they enter the palm region, 

due to self-occlusion.  

The limitations with this technique are: 

 Some misdetections occur when the hand is in motion due to Kinect’s small 

frame rate as explained in chapter 3.3, resulting to a sensitive skeleton. 

 The Euclidean distance transform will create a finger (branch on the line 

skeleton) as soon as the mesh of the palm forms a big blob (Figure 49.1). 

 Self-occlusion remains (Figures 49.5 – 49.8). 

Figure 49: Final 2D virtual skeleton. 
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The 3D skeleton extraction will use this method as a reference to locate the joints while 

additionally it will detect the self-occluded fingers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Final Results of the 2D skeleton extraction method. 



 47 

 

 

 

 

 

 

3D SKELETON TRACKING 

 

 

The idea behind 3D skeleton extraction is its ability to detect the fingers that have been 

self-occluded by the palm region. Most applications have tried to overcome this problem 

using motion analysis estimation. The Kinect has the ability to detect the hand’s depth with 

some limitations such as white noise, frame rate, low resolution and limited range of 

detection. 

In this chapter, a new approach to solve self-occlusion will be presented along with 

several techniques to improve the Kinect’s detection limitations. Once the fingers are 

detected the two skeletons will be merged to one using only each best attributes to 

construct the final 3D skeleton of the hand. 

 

 

9.1 Pre-Processing the depth 

 

In order to process the Kinect’s depth stream and retrieve the distance of the hand from 

the camera, an entirely new set of matrices is needed. The pre-processing stage is very 

similar to the previous technique with the only difference being that in this method, the raw 

data from the depth stream is accessed. To accomplish that, the original image matrix needs 

to be converted to a 16-bit depth. Additionally, the image had to go though median blurs 

smoothing the output and finally the matrix was flipped similar to chapter 5.4 (Figure 51). 
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  It was mentioned previously that it was not possible to get a visual of the depth stream 

unless it was an 8-bit depth and in order to access it’s the raw data, the Kinect needs to be 

set at a 16-bit depth. To solve this conflict, two different matrices were constructed, one 

that holds the depth values and one used for visualization purposes. 

 

 

9.2 Matrix Separation 

 

 The two matrices used in this method are the “DepthZval” which stores the raw data 

from the Kinect’s depth sensor and the “DepthZvis” used for drawing, which is essentially a 

clone of the DepthZval converted to an 8-bit depth.  

The division of the image to values and visuals (Figure 52) would benefit by preventing 

any conflicts that could have been presented when manipulating the controllers.  

 

Figure 51: The pre-processing of the new depth. 

Figure 52: The 16-bit depth Values is on the left and the 8-bit depth Visuals are on the right. 
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9.3 Depth Values Conversion 

 

 Using the 16-bit depth, a 2D array was declared which took the column and row number 

as its parameters and returned the depth value of the pixel. To return all the values of the 

image, a nested for-loop which went through each pixel was performed and the depth value 

of each pixel was returned by: 

                                                    

 Figure 53 prints the depth value for the point 

(200,200). These values are called raw depth data 

and represent the Kinect’s sensitivity levels.  

To convert them into something meaningful 

such as meters or centimeters, Burrus (2012) 

presented a conversion formula where if 

RD 2047: 

 

      
 

                                 
 

Where RD is the raw depth value. 

Figure 54 displays the same depth value of 

the point (200,200) in meters. 

This use of the depth will allow for the 

accurate detection of any point in the matrix 

such as a finger point or even the point right 

next to it.  

Additionally, with the declaration of the 

2D array there was no need to convert the 

values again, saving a lot of time and 

computations. 

 

 

 

 

Figure 53: Raw depth data for point 
(200,200). 

Figure 54: Depth value in meters. 
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9.4 White Noise Elimination 

 

White noise represents the areas the Kinect cannot see returning negative or nan values 

(Figure 55). This was very threatening to the project as the skeleton could not be stabilized.  

The proper way of solving this problem is to identify the pixel with white noise and fill it 

with the median value of the eight surrounding pixels but it is very time consuming. 

In this case all it was needed was to tell the Kinect that these values have a very high 

depth. Therefore iterating through each pixel, the white noise was isolated and given a 

value of 3 meters. Also these pixels were thresholded to roughly fit the assigned distance 

(Figure 56). 

Overall there was no noise in the depth stream and the skeleton was now working 

without any false detections. This was a great improvement for the project that prevented 

numerous errors. 

 

Figure 55: Depth returned from white noise. The dot is the point (200,200). 

Figure 56: The new depth stream. 
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9.5 ROI Formation and Masking 

 

The ROI’s formation is very crucial to this project. Instead of searching for points in the 

entire matrix, it limits the code to the ones located inside that region. It optimizes the 

algorithm and lowers the computational cost, increasing accuracy and preventing false 

detections. 

Masking the ROI was done by creating another matrix used as the original’s inverse and 

subtracting the ROI from the inverse. It sets everything to 0 values (black colour) and only 

the objects inside the ROI are viewed.  

Figures 57 and 58 demonstrate the ROI and its mask. 

With the above optimizations such as the white noise removal and ROI formation, the 

depth stream is clean from most threats to false detections and is ready to build the 

skeleton. 

 

Figure 58: The right hand is NOT affecting the detections. Only left hand is seen. 

Figure 57: Right hand and Leg are NOT detected. 
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9.6 Joints Depth Retrieval 

 

At this point the 2D skeleton extraction has x and y co-ordinates but using the pixel array 

declared previously, their depth position (z axis) was computed. 

 

 

9.6.1 Elbow Joint 

 

The elbow’s z position will be computed by its x and y co-ordinates: 

                      

Where E is the elbow controller and pixelValue is a float. Figure 59 demonstrates the 

elbow joint with X, Y and Z co-ordinates. 

 

 

9.6.2 Palm Joint 

 

The palm joint was retrieved in a similar way to the elbow with the only difference that 

its depth was slightly changed. Anatomically, the palm has a lot of muscles forming small 

bumps on the hand, and because the depth values are very accurate, these small bumps 

were detected as objects in front of the palm.  

Figure 59: The elbow with x, y, z co-ordinates. 
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As soon as the z-axis of the palm was formed, it was subtracted by a small value of 0.02 

which represents the height of those muscles (Figure 60). 

                            

The goal was to use the palm as a flat surface so that only the fingers would be detected 

as self-occluded objects. 

The palm and elbow are very accurate and very stable due to the size of the arm. 

 

 

9.6.3 Wrist Joint 

 

The wrist was retrieves similarly to the elbow joint using the array to return its depth 

value (Figure 61). 

Figure 60: The palm with x, y, z co-ordinates. 

Figure 61: The wrist in the 3D environment. 
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The locators were created for demonstration purposes. They are not the final controllers 

of the 3D skeleton. 

 

 

9.6.4 Temporary finger storage 

 

The fingers have not been assigned to any locators yet, as the next step involves sorting 

them out according to a counter-clockwise identification. Five variables were created inside 

the function’s scope to process the computations of the fingers. These variables are deleted 

when the final positions of the fingers are assigned to their according locators.  

 

 

9.7 The Point4f 

 

OpenCV facilitates several data types that use points as vectors. The most common are 

cv::Point for 2D points and cv::Point3f for 3D points including all functions that can be 

performed with those vectors.  

A finger in this application is defined by its length, angle and position on the image. 

Unfortunately the data types in the library do not support these extra attributes, thus a new 

structure called “Point4f” was created that holds these elements: 

Struct Point4f 

{ 

          cv::Point3f pos; 

          float angle; 

          float length; 

          bool operator<(const Point4f& _p) const { return angle<_p.angle; } 

}; 

This new data structure allows for an easier management of the points and will be used 

to store the final controllers of the skeleton. 
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9.8 Constructing the 2D skeleton in a 3D environment 

 

At this point the elbow, wrist and palm have been positioned in the 3D environment but 

the fingers have not yet been located or identified. In order to compute the angle of the 

fingers according to the palm, the dot product and magnitude need to be calculated along 

with the vector of the elbow to the palm. 

 

 

9.8.1 Elbow to Palm vector and magnitude 

  

To find the vector from the elbow to the palm (        ) the elbow vector should be 

subtracted from the palm by: 

                  
  
  
  

   
  
  
  

  

The magnitude of this vector can be calculated by: 

           
     

     
   

Where EP is the vector from Elbow to Palm, P is the palm and E is the elbow. 

This vector and its magnitude will be used as reference to determine the finger angles. 

 

 

9.8.2 The Points from 2D skeletonization 

 

A Point4f dynamic array was declared to hold the values of the fingers. With the use of a 

simple ROI as explained in chapter 6.3, the fingers were located in the three dimensional 

environment and assigned to the advanced finger controller. 

Point4f *fingerController = new Point4f[contoursSkeleton.size()]; 

 The fingers now have x, y and z co-ordinates using the pixelValue depth. 
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9.8.3 Fingers to Palm vector 

 

The vector from every finger to the palm is calculated by: 

                     
  
  
  

   

   
   
   

  

Where          the vector from fingers to palm, P is the palm and F is the Point4f finger 

controller. Also each length was computed by: 

             
      

      
   

The variable “i” is the number of fingers in the container. 

 

 

9.8.4 Finger Angles 

 

In order to compute the angles, the dot product of the          and each finger must be 

calculated: 

                    
   
   
   

   

   
   
   

                                

The angle of each finger is computed by the cosine function: 

      
   

       
 

Where θ is the angle, A is the          vector, B is the           vector. 

Finding the angle and length of each finger to the palm is essential for the counter-

clockwise identification. 

 

 

9.8.5 Identification and Sorting 

 

At this point all the information about the fingers is stored in the Point4f finger 

controller.  
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The data structure contains a Boolean operation which is used to sort the fingers from 

the smallest angle being the thumb, to the biggest being the pinky.  

std::sort(&fingerController[0].&fingerController[contoursSkeleton.size()]); 

Each finger was assigned then to the temporary variable. 

 

 

9.8.6 Final fingers in 3D environment 

 

The 2D skeleton is now fully brought to the 3D environment with each joint having three 

co-ordinates and the fingers having an angle and a length from the palm (Figure 62). 

The fingers were drawn in a new image matrix called “nonOccludedObj” so that they 

could later on be distinguished from the self-occluded fingers. 

 

 

9.9 Self-Occlusion 

 

Even though the current skeleton is operating in the 3D environment, it still depends on 

the 2D skeletonization method to detect the fingers, which means that as soon as the fingers 

are not detected due to self-occlusion by the palm, they will not be detected in the 3D either. 

The proposed method involves an optimized search inside the ROI detecting all the 

points that have a greater depth value than the palm since that region is the only place that 

self-occlusion will occur with the fingers. 

Figure 62: The 2D fingers in the 3D environment with x, y, z co-ordinates. 
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9.10 Optimization of Search 

 

Since the Kinect’s resolution is 640x480 pixels it means that in each frame the program 

will have to go through 307,200 pixels to detect any objects. This is very expensive and 

inefficient. Although the ROI constructed earlier lowers the amount of search into only 

inside its boundaries, the calculations that have to be computed are still enough to slow 

down the program’s efficiency. 

 

 

9.10.1  Grid Projection 

 

The target was to lower the search even more without dismissing any detail. To 

accomplish that a set of grids were projected each of a different size to test which one would 

best fit the criteria. 

The table below lists different grids projected along with the calculations they performed 

in each frame. 

Grid Size Pixels on matrix Calculations/f Results 

1 640 x 480 307,200 SC / HA 

2 320 x 240 76,800 SC / HA 

4 160 x 120 19,200 FC / HA 

5 128 x 96 12,288 FC / HA 

8 80 x 60 4,800 FC / LA 

10 64 x 48 3,072 FC / LA 

FC=fast computations, SC=slow computations, HA=high accuracy, LA=low accuracy. 

According to the table above, the best solution would be to use a grid of a size 4 or 5, but 

since there was not much difference in the computational cost, it was decided to go with 4 

as it gave more detail (Figure 63). 
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 9.10.2  Cube ROI 

 

Using the grid and the hand ROI, it was now possible to construct a cubic ROI which 

would also consider the depth values. That way the search will focus even more than before. 

In this stage the cube ROI takes the hand ROI x and y co-ordinates and is set to detect all the 

points only from 0.2 m to 1.4 m depth (Figure 64). 

This method will also discard the white noise since it was given a value of 3 meters 

earlier. 

 

 

Figure 63: The size 4 grid projected on the image. 

Figure 64: Left is a simple ROI checking all depth. On the 
Right is the cube ROI checking from 0.2 – 1.4 meters. 
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9.10.3  Points inside ROI 

 

 These optimization methods have really improved the computational time and the 

algorithm only has to check for a small portion of the image. At this point, all the grid points 

on the hand are drawn (Figure 65) indicating that the hand is in the correct position. 

It can also be observed that although the head is in the frame the points are not drawn 

on it as it is outside the cube, suggesting less miss-detection. 

 

 

9.11 Self-Occluded Fingers 

 

Initially all the points on the hand that have a smaller (closer to the camera) depth value 

than the palm, are indicated with a white circle whereas the rest are black (Figure 66). 

Figure 65: Points on hand. 
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This proves that the points can be detected accurately in the image, but the real task lies 

with tracking. So far, the algorithm just points out which points on the grid have a smaller 

depth value from the palm, them being the fingers. Tracking those points with the skeleton 

is something very difficult to achieve and it is in this part of the project that three attempts 

were made. 

 

 

9.11.1  Points on new matrix 

 

The working method involves creating a new matrix called “selfOccludedObj” which will 

be used to perform all the calculations that would track these points. The first step was to 

draw the detected points in the new matrix thus isolating them from the rest of the points 

(Figure 67). 

Figure 66: Self-Occluded grid points. 

Figure 67: Grid points on new matrix. 
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9.11.2  Blob Formation 

 

This technique involves using the points as blobs to track their position. It is not the best 

way to track those points and it has a lot of limitations. Yet it was the only method of the 

three that gave positive results and due to time constraints it was not possible to develop 

other methods. Figure 68 demonstrates the points as contours. 

Following, the blobs were assigned to a Point4f array similarly to the previous methods 

in order for them to be identified.  

 

 

9.11.3  Elbow to Wrist vector 

 

At this point, when the fingers enter the palm region, the locator of the palm would not 

be detected, thus the wrist will be used to identify the fingers. To find the vector from the 

elbow to the wrist (          ) the elbow vector should be subtracted from the wrist by: 

                      
  
  
  

   
  
  
  

  

The magnitude of this vector can be calculated by: 

           
     

     
   

Where EW is the vector from elbow to wrist, W is the wrist and E is the elbow. 

This vector and its magnitude will be used as reference to determine the self-occluded 

finger angles. 

Figure 68: Points as 5 contours. 
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9.11.4  Points Angles and Lengths 

 

Similarly to the previous method, each finger’s to wrist vector was determined along 

with their magnitude. The information will be used to compute the angles using the dot 

product of the            by: 

              
          

   
   
   

   
   
   
   

                                

 

The angle of each finger is computed by the cosine function: 

      
   

       
 

Where θ is the angle, A is the            vector and B is the           vector. 

Now that each of the blobs holds similar information to the skeleton, the self-occluded 

fingers can be sorted and identified. 

 

 

9.11.5  Identification and Sorting 

 

Since the fingers are stored in a Point4f data type variable, the use of the Boolean 

operator will sort them from smallest angle to biggest similarly to the other method 

explained earlier. 

std::sort(&newFingerController[0].&newFingerController[contoursDepth.size()]); 

 

 

9.11.6  Final self-occluded fingers 

 

The sorted fingers are assigned to the temporary finger storage similarly to the skeleton 

so that if one method loses track of a finger, the other will detect it. At the moment the two 

methods work individually and accurately (Figure 69, 70). 
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 The next step is to merge the two methods forming one new skeleton that would detect 

all the fingers without them being self-occluded. 

 

 

9.12 Merging the techniques 

 

In mathematics to merge two matrices, a simple addition is performed: 

       

               

   
                   

   

               

   
                   

  

Where C is the final gathering of methods, A is the nonOccludedObj and B is the 

selfOccludedObj. In this case C includes the detected points from both techniques, which 

suggests no loss of finger detection. 

 

Figure 70: The thumb is lost in the original skeleton but detected in the depth. 

Figure 69: The Index is lost on the original skeleton but detected by the depth. 
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9.12.1  Filter Objects 

 

This technique requires filtering since it was observed that when the palm was closed, 

one point was detected at its centre, which confused the rest of the skeleton. This detection 

is a result from the Euclidean distance transform used in the line skeletonization method. In 

order to prevent the program from recognizing two fingers whereas only one is used, the 

size of the hand’s blob was taken into consideration, resulting into points being drawn only 

if the area of the object fits the size of a finger tip.  

 

 

9.12.2  Identification and Sorting 

 

In a similar procedure as was demonstrated previously, the identification and sorting of 

the 3D skeleton was done using the Point4f structure to store the points and the cosine 

formula to detect their angle.  

      
   

       
 

Where θ is the angle, A is the          vector and B is the new           vector. 

Additionally, each finger’s length from the palm was found and assigned to the 

temporary finger variables. 

 

 

9.12.3  Final finger assignment 

 

At this point the 3D skeleton has been formed combining the two methods preventing 

from any data loss or miss-detections (Figure 71). 
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The points detected are assigned to the temporary finger variables so that they can be 

used by the virtual locators of the skeleton.  

 

 

9.14 Position Rules 

 

Due to the z position of the palm, which was set to be 0.02 more than what it is in reality 

to dismiss the small muscles of the hand, as soon as the palm was closed, the fingers would 

be positioned at (0, 0).  

The rules applied to the fingers only consider their length so that they would never 

exceed 1.5 meters or that when they move to (0, 0) they should be re-positioned at the 

centre of the palm. These constraints are very simple and only prevent the skeleton’s finger 

from being miss-positioned when the palm is closed. 

 

 

9.15 Visualization and Final Gathering of Joints 

 

The 3D skeleton is complete, noise free, there are no miss-detections and the fingers are 

detected even though they are in front of the palm, suggesting that self-occlusion is solved. 

Yet there are a few limitations with this technique that will be discussed later in this thesis, 

such as sensitivity, blob accuracy, finger identification and line skeletonization constraints. 

Figure 71: 3D skeleton merging the two methods. 
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A simple visualization of lines and circles has been created to demonstrate the usage of 

the skeleton. 

Figure 72 demonstrates the result of the currently working 3D skeleton extraction. 

Figure 72: 3D skeleton extraction. 
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FAILED METHODS 

 

 

Although the method used for constructing the 3D skeleton works relatively well, it is 

worth mentioning the previous methods that did not succeed and the major techniques that 

caused issues.  

 

 

10.1 Skeletonization Constraints 

 

As soon as the palm closes, the Euclidean 

distance transform splits the skeleton in two 

branches, due to its area becoming big enough to 

consider each corner as a separate joint. This 

resulted to an extra finger every time one was 

raised or a finger being detected and formed when 

the palm was closed. This problem was sorted by 

the thinning technique performed right before the 

EDT and adding rules to prevent such operations, 

but is still present in some cases. 

Additionally, even though the line skeletonization deals with the mesh as a single line, it 

is created in a 2D environment, thus exposed to self-occlusion threats. This was the case 

when trying to connect the self-occluded points to the fingers of the skeleton. 

Chapter 10 

Figure 73: EDT on palm closed. 
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10.2 Drawing Limitations of 3D Points 

 

Using the Kinect to detect the points in depth was the key element to the construction of 

the skeleton. One difficulty that was faced during its development was that even though the 

points were located in x, y, z co-ordinates, they had to be drawn using only x and y as 

computer vision deals only with 2D images. This became a problem when using blobs to 

track the fingers. When the contours of the blobs were formed, the program could not 

determine if one of the points is closer to the camera than the other, thus merging the point 

as it would do normally. This is why when the fingers get really close to each other they 

merge recognizing only one shape, also being one of the main reasons that the method used 

is very sensitive. This problem was partially solved because the number of grid points 

tracked, were accurately positioned in the centre of the blob. This issue is visible only when 

the fingers touch each other.  

 

 

10.3 Method 1: Tracking the grid points 

 

The original method proposed to track the self-occluded fingers, used the 2D skeleton 

and converted its locators in 3D using the pixelValue. Furthermore it would track the points 

on the grid according to their angle, meaning that the hand would be divided into segments 

and the points would be assigned to the according segment.  This was very unstable, 

inaccurate and the fingers were not being identified correctly.  

Figure 74: Contour merging. 
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Additionally the skeletonization method caused issues when the line got self-occluded 

and the locators where no longer accessible. The problem with this attempt was that there 

was no way to track the grid points using the skeleton extracted from the other methods. 

The best result coming from this method was one finger being tracked at a time. If many 

fingers were bending, the locators would get confused and lose track. 

 

 

10.4 Method 2: 3D Skeletonization 

 

As soon as the above problems were identified, the next attempt involved forming the 

line skeletonization in the 3D environment from scratch. It was considered that if the lines 

had x, y, z co-ordinates from initialization, only the lines in front of the palm would be 

drawn thus solving self-occlusion and also to discriminate whether a line was covering the 

other. This method was much more efficient than the previous one and the fingers were 

tracked with more accuracy.  

Unfortunately, due to drawing constraints the lines had to be drawn in a 2D matrix and 

the Harris corner-detection assigned x and y co-ordinates to the points resulting to the 

locators being self-occluded. Similar dead-end as before but with more accuracy. Should it 

been possible to draw 3D points on a three dimensional image matrix, this method would 

have been very successful.  

 

 

10.5 Method 3: 3D Blobs 

 

The final attempt to track those grid points involved drawing them in a new image and 

converting them to blobs as has been examined previously. This is the current working 

technique used for this thesis. Although this works, it consists of a few limitations such as: 

 Contours merging when colliding 

 EDT splitting the joints 

 Sensitive due to Kinect’s frame rate on the depth 

 Counter-clockwise finger identification 
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Most of the issues listed above were solved with thinning methods, and by adding 

rules/constraints to the skeleton so that it would not break. Yet once the fingers get really 

close to one another the mesh gets merged producing only one locator. Overall the grid 

points were accurately detected but the problems occurred when trying to track them with 

the other skeleton. The issue lies with the positioning of the locators. At this point, the blob 

locators have x, y, z co-ordinates but they are positioned on a 2D matrix cancelling out the 

depth which is given by the Kinect. This is why they merge when their distance becomes 

really small. 

A possible solution to this problem would be to analyze the depth values and create a 

database which would allocate each depth point to the according position on the hand. That 

way, when the finger collide the depth values that would determine the collision can be 

cancelled out thus discriminating one finger from the other. This requires a lot of time and 

testing and it is going to be one of the future developments. 
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THE MAIN APPLICATION 

 

 

To demonstrate the 3D skeleton, eight locators were created in the main window linked 

to each of the joints co-ordinates. The virtual skeleton is composed of different coloured 

spheres and simple lines. Three cameras were set up, showing the hand from front, side and 

perspective view. There is no particular GUI involved as the application is only 

demonstrating the hand skeleton and nothing else. The shader used is a simple colour-

phong shader just to represent the different locators. 

It was observed that because the depth of the fingers was in centimeters and the 

difference in the values was very small, it was not possible to see much difference on the 

main window. The elbow, wrist and palm are very noticeable as the movement of the entire 

hand is very big compared to the fingers. 

Chapter 11 

Figure 75: Main Window virtual skeleton. 
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Additionally, to demonstrate the use of the technique a simple particle based 

cloth simulation was used from previous personal projects that allow the user to 

control and manipulate the objects. A grab gesture was included to “grab” the 

particles. Find more in the demonstration videos. 

3D SKELETON EXTRACTION APPLICATION 

 Furthermore, a few useful bits were added that measure the noise and 

misdetections of the skeleton. 
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MORE APPLICATIONS 

 

 

In general, a 3D skeleton with one camera has great prospects. It can be used in games to 

increase the playing experience and make the gamer feel more part of the game world, it 

can be used in training/educational simulations such as in medicine were surgeons can 

practice their techniques or pilots to learn the basics of how to fly a plane.  

Most importantly it can be used in motion capture for movies to decrease the cost of 

equipment in use and the general limitations currently faced. Other applications of the 

skeleton would be for smart homes were it would check for the health of the person or for 

any intruders in the house.  

This method could also be supplied with many additional systems such as facial 

recognition or speech recognition that could improve the final use of the skeleton. 
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CONCLUSION 

 

 

The method used to extract the 3D skeleton with one Kinect camera works and gives 

positive results, but it is not the most efficient way to tackle this research question.  

The skeleton is sensitive due to Kinect’s frame rate of the depth sensor as explained in 

chapter 3.3, thus losing track of the fingers when the hand is in motion.  

Also the use of blobs to track the fingers from 2D in 3D has many disadvantages such as 

merging meshes when getting really close, but it was the only method out of the three that 

worked.  

The skeletonization technique resulted into many miss-detections that confused the final 

skeleton and although it works very well for the 2D, it caused issues to the 3D method such 

as self-occluded lines. The major problem with the skeletonization method is that it is 

formed in a two dimensional image whereas the Kinect can develop a three dimensional 

environment. So when a point was detected in 3D, it had to be drawn in a 2D matrix even 

though it contained the 3D information, therefore being exposed to merging with other 

points. It is suggested that should it was possible to draw points on a 3D environment the 

second method attempted would have worked very efficiently because only the points with 

the wanted depth value would have been identified. 

Overall the 3D skeleton constructed in this application works as a proof of concept, 

suggesting that in the end it can be done, but it should be approached differently.  

It suggests that with the current state of computer vision, line skeletonization should not 

be used to develop the three dimensional skeleton. Blob extraction method to track the 

Chapter 13 
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fingers is also not a recommended solution neither is the use of angles as they are both very 

limited. 

As a further development, this research question should be approached with a thorough 

study in computer vision analyzing all the possible routes and techniques before 

implementing in code. Detecting the joints and tracking the joints are two totally different 

areas in skeleton extraction and really hard to combine, but with the proper amount of tests 

and improvements it can be done. 

 

PARTICLE APPLICATION (grab function) 

 

 

 

 

 

 

 



 77 

 

BIBLIOGRAPHY 

 

Bradski, G. and Kaehler A., 2008. Learning OpenCV: Computer Vision with the OpenCV Library, First 
edition, US: O’REILLY.  
 
Safaee-Rad R. and Benhabib B. and Smith K.C. and Zhou Z., 1989. Pre-Marking Methods For 3D Object 
Recognition. In: IEEE International Conference on 14-17 Nov. 1989, 10.1109/ICSMC.1989.71366, 
Page(s): 592 - 595 vol.2, Cambridge, MA. 
 
Giannitrapani R. and Vittorio M., 1989. Three-dimentional skeleton extraction by point set contraction.  
In: Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on 24-28 Oct. 1999, 
Digital Object Identifier: 10.1109/ICSMC.1989.71366, Page(s): 565 - 569 vol.1, Kobe, JA. 
 
Sato, M. and Bitter, I. and Bender, M.A. and Kaufman, A.E. and Nakajima, M., 2000. TEASAR: tree-
structure extraction algorithm for accurate and robust skeletons. In: Computer Graphics and 
Applications, 2000. Proceedings. The Eighth Pacific Conference on 3-5 Oct. 2000, 
10.1109/PCCGA.2000.883951, Page(s): 281 - 449, Hong Kong, HK. 
 
Weik, S., 2000. A passive full body scanner using shape from silhouettes. In: Pattern Recognition, 2000. 
Proceedings. 15th International Conference on 3-7 Sept. 2000, 10.1109/ICPR.2000.905495 , Page(s): 
750 - 753 vol.1, Barcelona, ES. 
 
Jeong-Sun Park and Il-Seok Oh, 2002. Shape decomposition and skeleton extraction of character 
patterns. In: Pattern Recognition, 2002. Proceedings. 16th International Conference on 11-15 Aug. 
2002, 10.1109/ICPR.2002.1047934 , Page(s): 411 - 414 vol.3. 
 
Yi Sun and Mei-Hua Li and Jia-Sheng Hu and En-Liang Wang, 2002. 2D recovery of human posture. In: 
Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on 4-5 Nov. 
2002, 10.1109/ICMLC.2002.1167490 , Page(s): 1638 - 1640 vol.3, Beijing, CN. 
 
Chaichana, T. and Sangworasil, M. and Pintavirooj, C. and Aootaphao, S., 2006. Accelerate a Dlt Motion 
Capture System With Quad-Tree Searching Scheme. In: Communications and Information 
Technologies, 2006. ISCIT '06. International Symposium on Oct. 18 2006-Sept. 20 2006, 
10.1109/ISCIT.2006.339935 , Page(s): 1035 – 1038, Bangkok, TH. 
 
Chih-Chang Yu and Jenq-Neng Hwang and Gang-Feng Ho and Chaur-Heh Hsieh, 2007. Automatic 
Human Body Tracking and Modeling from Monocular Video Sequences. In: Acoustics, Speech and Signal 
Processing, 2007. ICASSP 2007. IEEE International Conference on 15-20 April 2007, 
10.1109/ICASSP.2007.366058, Page(s): I-917 - I-920, Honolulu, HI. 
 
Yu-Shuen Wang and Tong-Yee Lee, 2008. Curve-Skeleton Extraction Using Iterative Least Squares 
Optimization. In: Visualization and Computer Graphics, IEEE Transactions on July-Aug. 2008, 
10.1109/TVCG.2008.38, Page(s): 926 – 936 vol.14. 
 
Takahashi, K. and Nagasawa, Y. and Hashimoto, M., 2007. Remarks on 3D human body’s feature 
extraction from voxel reconstruction of human body posture. In: Robotics and Biomimetics, 2007. 
ROBIO 2007. IEEE International Conference on 15-18 Dec. 2007, 10.1109/ROBIO.2007.4522146 , 
Page(s): 121 - 126, Sanya, CN. 
 

http://dx.doi.org/10.1109/PCCGA.2000.883951


 78 

Faming Gong and Cui Kang, 2009.  3D Mesh Skeleton Extraction Based on Feature Points. In: Computer 
Engineering and Technology, 2009. ICCET '09. International Conference on 22-24 Jan. 2009, 
10.1109/ICCET.2009.71, Page(s): 326 - 329, Singapore, SG. 
 
En Peng and Ling Li, 2008.  Acquiring human skeleton proportions from monocular images without 
posture estimation. In: Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th 
International Conference on 17-20 Dec. 2008, 10.1109/ICARCV.2008.4795882, Page(s): 2250 - 2255, 
Hanoi, VN. 
 
Xin Yuan and Xubo Yang, 2009.  A Robust Human Action Recognition System Using Single Camera. In: 
Computational Intelligence and Software Engineering, 2009. CiSE 2009. International Conference on 
11-13 Dec. 2009, 10.1109/CISE.2009.5366107, Page(s): 1 - 4, Wuhan, CN. 
 
Sang Min Yoon and Graf, H., 2009.  Automatic skeleton extraction and splitting of target objects. In: 
Image Processing (ICIP), 2009 16th IEEE International Conference on 7-10 Nov. 2009, 
10.1109/ICIP.2009.5414139, Page(s): 2421 - 2424, Cairo, EG. 
 
Jianhao Ding and Yigang Wang and Lingyun Yu, 2010.  Extraction of Human Body Skeleton Based on 
Silhouette Images. In: Education Technology and Computer Science (ETCS), 2010 Second 
International Workshop on 6-7 March 2010, 10.1109/ETCS.2010.241, Page(s): 71 - 74, Wuhan, CN. 
 
Le Zhang and Qing He and Ito, S.-I. and Kita, K., 2010.  Euclidean distance-ordered thinning for skeleton 
extraction. In: Education Technology and Computer (ICETC), 2010 2nd International Conference on 
22-24 June 2010, 10.1109/ICETC.2010.5529241, Page(s): V1-311 - V1-315, Shanghai, CN. 
 
Xujia Qin and Xiansheng Sang and Sida Zhu and Shiwei Cheng, 2010.  Line-Skeleton Extraction of 3D 
Meshes Based on Geometry Segmentation. In: Cryptography and Network Security, Data Mining and 
Knowledge Discovery, E-Commerce & Its Applications and Embedded Systems (CDEE), 2010 First 
ACIS International Symposium on 23-24 Oct. 2010, 10.1109/CDEE.2010.73, Page(s): 354 - 357, 
Qinhuangdao, CN. 
 
Jing Tong and Jin Zhou and Ligang Liu and Zhigeng Pan and Hao Yan, 2012.  Scanning 3D Full Human 
Bodies Using Kinects. In: Visualization and Computer Graphics, IEEE Transactions on April 2012, 
10.1109/TVCG.2012.56, Page(s): 643 – 650, vol.18. 
 
Wright M. and Cipolla R. and Giblin P., 1994.  Skeletonisation using an extended Euclidean distance 
transform. In: Proceeding BMVC 94 Proceedings of the conference on British machine vision (vol. 2), 
ISBN:952-1898-1-X, Page(s) 559 - 568, Surrey, UK. 
 
Cao J. and Tagliasacchi A. and Olson M. and Hao Zhang Zhinxun Su, 2010.  Point Cloud Skeletons via 
Laplacian Based Contraction. In: Proceeding SMI '10 Proceedings of the 2010 Shape Modeling 
International Conference IEEE Computer Society Washington, DC, USA ©2010, 
10.1109/SMI.2010.25, Page(s) 187-197, Washington, US. 
 
Oscar Kin-Chung Au and Chiew-Lan Tai and Hung-Kuo Chu and Daniel Cohen-Or and Tong-Yee Lee, 
2008.  Skeleton extraction by mesh contraction. In: ACM Transactions on Graphics (TOG), Volume 27 
Issue 3, August 2008, 10.1145/1360612.1360643, Page(s): 1 – 10, New York, US. 
 
Panagiotakis C., and Tziritas G., 2004.  Recognition and Tracking of the Members of a Moving Human 

Body⋆. In: F.J. Perales and B.A. Draper (Eds.): AMDO 2004, LNCS 3179, Page(s): 86–98, Berlin, DE. 
 
Aitpayev K., and Gaber J., 2010.  Creation of 3D Human Avatar using Kinect. In: Asian Transactions on 
Fundamentals of Electronics, Communication & Multimedia (ATFECM) (ATFECM ISSN: 2221-4305) 
Volume 01 Issue 05, Jan 2012, Page(s): 1 - 2, Beijing, CN. 



 79 

Li Ming and Wang Jun and Zhu Meiqiang, 2010.  On skeleton extraction algorithm for path planning of 
mobile robots in complex planar maps. In: Control Conference (CCC), 2010 29th Chinese 29-31 July 
2010, 11611752, Page(s): 3704 - 3708, Beijing, CN. 
 
Aipeng Qi and Jing Xu, 2010.  Skeleton extraction of cerebral vascular image based on topology node. 
In: Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on 16-18 Oct. 
2010, 10.1109/BMEI.2010.5640001, Page(s): 569 - 573, Yantai, CN. 
 
Chayanurak, R. and Cooharojananone, N. and Satoh, S. and Lipikorn, R., 2010.  Carried object detection 
using star skeleton with adaptive centroid and time series graph. In: Signal Processing (ICSP), 2010 
IEEE 10th International Conference on 24-28 Oct. 2010, 10.1109/ICOSP.2010.5655765, Page(s): 736 
- 739, Beijing, CN. 
 
She, F.H. and Chen, R.H. and Gao, W.M. and Hodgson, P.H. and Kong, L.X. and Hong, H.Y., 2009.  
Improved 3D Thinning Algorithms for Skeleton Extraction. In: Digital Image Computing: Techniques 
and Applications, 2009. DICTA '09. 1-3 Dec. 2009, 10.1109/DICTA.2009.13, Page(s): 14 - 18, 
Melbourne, VIC. 
 
Hongbo Jiang and Wenping Liu and Dan Wang and Chen Tian and Xiang Bai and Xue Liu and Ying Wu 
and Wenyu Liu, 2010.  Connectivity-Based Skeleton Extraction in Wireless Sensor Networks. In: Parallel 
and Distributed Systems, IEEE Transactions on May 2010, 10.1109/TPDS.2009.109, Page(s): 710 - 
721. 
 
Tierny, J. and Vandeborre, J.-P. and Daoudi, M., 2008.  Fast and precise kinematic skeleton extraction of 
3D dynamic meshes. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on 8-11 
Dec. 2008, 10.1109/ICPR.2008.4761011, Page(s): 1 - 4, Tampa, FL. 

 
 
 
 


