
A Fluid Implicit Particle

Approach to a Pyro Solver in

Houdini

Ahmad Ghourab

National Centre for Computer Animation

Bournemouth University

A thesis submitted for the degree of

Masters of Science (MSc)

19 August, 2011

mailto:ahmad.ghourab@gmail.com
http://ncca.bournemouth.ac.uk/
http://home.bournemouth.ac.uk/

Abstract

Contemporary films and commercials often incorporate the use of computer

generated Pyro simulations. Behind such simulations are a variety of tech-

nologies, that give artists access to a wide variety of tools, enabling them

to create realistic and integrated effects. This paper looks at the imple-

mentation of a viable alternative to the current Pyro tools in Houdini, one

that would allow for faster simulations, less secondary storage, slow motion

functionality, and more artistic control over the flow of simulations through

the use of a custom Fluid Implicit Particle Pyro solver. An extension of the

solver is developed through a set of custom set-ups that allow for further

artistic control, and an interaction of a variety of solvers together.

Acknowledgements

Foremost, I would also like to thank Julien Depredurand, whose guidance,

advice and support was an invaluable contribution to this thesis, and a

constant source of motivation. I would also like to thank Jon Macey, for

all the useful feedback and suggestions throughout the course of this thesis

and my masters degree. My thanks go to Dr. Hammadi Nait-Charif for

the many times he welcomed me into his office to discuss my progress, and

reorient my efforts to more beneficial ends. Finally, I would like to thank

the entire NCCA staff and my colleagues at the MSc for their tips, support

and friendship throughout the year.

Contents

List of Figures vii

List of Tables x

1 Introduction 1

2 Previous Work 2

2.1 Publications . 2

2.1.1 Harlow . 2

2.1.2 Brackbill and Ruppel . 3

2.1.3 Zhu and Bridson . 3

2.1.4 Horvath and Geiger . 3

2.2 Off-the-shelf Systems . 4

2.2.1 Naiad . 4

2.2.2 Houdini Pyro solver . 5

2.2.3 Houdini FLIP solver . 6

2.3 Proprietary Systems . 7

2.3.1 ILM Plume . 7

2.3.2 DNeg Squirt . 7

3 Theory : Fluid Implicit Particle Method 9

3.1 Navier Stokes . 9

3.1.1 The incompressible Navier Stokes equations 9

3.1.2 Advection . 10

3.1.3 Pressure . 11

3.1.4 External Forces . 11

iv

CONTENTS

3.1.5 Diffusion . 12

3.1.6 The Incompressibility Condition 12

3.2 Fluid Viewpoints . 13

3.2.1 Eulerian Viewpoint . 13

3.2.2 Langrangian Viewpoint . 13

3.2.3 Hybrid Viewpoint . 14

3.2.4 Advantages and Disadvantages 15

3.3 Fluid Implicit Particle Method . 16

3.3.1 Particle In Cell . 16

3.3.2 Fluid Implicit Particle . 16

3.3.3 Solve Steps . 17

3.3.4 Initialise Particles . 18

3.3.5 Transferring to the Grid . 18

3.3.6 Updating Particle Velocities . 19

4 Motivation 20

4.1 Speed . 20

4.2 Resolution . 20

4.3 Slow Motion . 21

4.4 Memory . 22

4.5 Control . 22

5 Houdini Technical Background 23

5.1 Introduction - Dynamics System (DOPS) 23

5.2 Houdini’s Open System . 25

5.3 Creating a local object . 25

5.4 Configure Object . 26

5.5 Forces . 27

5.6 Merge Objects . 27

5.7 Solvers . 28

5.8 Micro-Solvers . 28

6 Implementation 29

v

CONTENTS

7 Custom Setups 30

7.1 Slow Motion . 30

7.2 Solver Networking - Fire + Water . 31

7.2.1 Custom Fields . 32

7.2.2 Advect FLIP Pyro . 33

7.2.3 Negate FLIP Pyro Fuel and Temperature 34

7.2.4 Collision . 34

7.3 Fire Spread Across Multiple Solvers . 35

7.3.1 Overview . 35

7.3.2 Temperature Impacts . 36

7.3.3 Particle Seeding . 36

8 Conclusion 38

8.1 Results Analysis . 38

8.1.1 Speed . 38

8.1.2 Resolution . 39

8.1.3 Slow Motion . 39

8.2 Memory . 40

8.3 Control . 40

8.4 Future Work . 40

8.4.1 SOP Solver Seeding . 40

8.4.2 Render-time Volumizer . 40

8.4.3 GPU Simulation . 40

8.4.4 Particle Turbulence . 41

8.5 Conclusion . 41

References 42

9 User Guide 45

vi

List of Figures

2.1 A comparison between the results of the FLIP and PIC methods for the

same simulation. Image taken from Zhu and Bridson (2005). 2

2.2 Two Coarse Grid Step renders taken from Hovrath and Gieger (2009). . 3

2.3 A simulation with millions of particles in the Naiad dynamics package.

Image taken from (Seymour, 2010). 4

2.4 Explosion, fire and smoke simulations generated using Houdini’s Pyro

solver. Rendered in Mantra with the Pyro Shader. Image taken from

Klosters (2009). 5

2.5 A screen-shot of a detailed FLIP simulation. Image taken from (Clark,

2010). 6

2.6 An example of the level of detail achieved with ILM’s Plume 3D Coarse

Grid Step system in The Last Airbender (2010). Image taken from

(Failes, 2010). 8

2.7 Pyroclastic ash clouds from the film 2012 (2009), made using Double

Negative’s squirt dynamics engine. Image taken from (Desowitz, 2009). 8

3.1 An image of depicting atmospheric advection. Image taken from F.A.A.

(1975). 10

3.2 Pressure = Force per unit of area. Lowering the piston increases pressure,

and vice versa. Image taken from Baratuci (2006). 11

3.3 An image of several liquids with different levels of viscosity. Image taken

from (Rutter, 2011). 12

3.4 Three Eulerian grids, with resolutions of 43, 83 and 163 respectively.

Note that doubling the resolution increases details eight fold each time. 13

3.5 A Langrarian, Eulerian and Hybrid viewpoint respectively. 14

vii

LIST OF FIGURES

3.6 Simulations of sand and water using the FLIP method, taken from Zhu

and Bridson (2005). 16

3.7 Between 4 and 16 particles are seeded in each grid cell to prevent gaps

or noise in the simulation. 18

3.8 An example of pure FLIP noise. The image on the left has a FLIP to

PIC ratio of %100 to %00, whereas the image on the right has a ratio of

%80 to %20 . 19

4.1 The image on the left, taken from Hovrath and Gieger (2009), was simu-

lated using the first stage (FLIP) of the Coarse Grid Step method, on a

grid with 503 grid cells. The image on the right was simulated in Houdini

with the same number of cells using the Volume method. The former

contains significantly more details despite having the same number of

grid divisions. 21

4.2 The files on the left were generated by a Houdini Pyro Volume solver with

3803 grid cells (Ghourab, 2011), and were saved in a compressed format.

The files on the right were generated from our ’Fire + Water’ example,

which at render-time was converted into a volume with approximately

4003 grid cells at its peak scale. 22

5.1 An overview of the DOP Network necessary for our FLIP Pyro solver. . 24

5.2 A screen-shot of the Volume Pyro Solver’s interior network in Houdini,

which any user may modify or extend. 25

5.3 A screen-shot of the FLIP Liquid configure objects interior network in

Houdini. Data is piped in via the top-left most node. Nodes at the top

are field visualisers, and nodes at the bottom are our scalar and vector

fields to be visualised. 26

5.4 A RBD ball bounding on a ground surface. The merge node creates the

collision relationship between the ball and the ground objects. 27

5.5 A screen-shot of the solver building blocks, microsolvers, available in

Houdini 11. 28

7.1 Our muzzle flash, slowed down by a factor of 7.5x (180fps). 30

7.2 Liquid colliding, advecting and cooling our FLIP Pyro fire. 31

viii

LIST OF FIGURES

7.3 We create and initialise FLIP liquid temperature attribute. 32

7.4 Our advection and negation setup. 33

7.5 Our fire spreading from the bunny to the table and the lamp. 35

7.6 We import the FLIP Pyro particles, create a temperature scalar field

which we then sample to increment our emission attribute. 36

7.7 Our SOP network, where primitives that have accumulated an arbitrary

number of temperature hits is then activated for particle emission in our

FLIP Pyro Solver. 37

ix

List of Tables

3.1 Houdini fluid methods comparison table. Modified from Lait (2010),

with additions from Priscott (2010, pg. 4) and Bridson (2008, pg. 6). . . 15

x

1

Introduction

Most of-the-shelf software packages that feature tools allowing artists to generate fire

and smoke use what is commonly termed as the “Eulerian Viewpoint” to do so. This

involves the simulation of fluids on a three dimensional grid, where each cell on the

grid holds information describing the current fluids quantity at that point. While this

method does typically allow for realistic results, it suffers from a number of limitations,

namely: speed, memory, resolution, and control.

Propitiatory pyro simulation software, developed in house by some of the largest film

VFX studios, have employed the Fluid Implicit Particle (FLIP) method, implemented

in this paper, to great advantage. By eliminating the memory constraints enforced by a

pure Eulerian system, they are able to simulate pyro effects at much higher resolutions.

By reducing CPU constraints, they are able to output more simulations in a fraction

of the time. In addition, they are able to art direct their simulations with greater ease

due to the implicit nature of particles.

The focus of this thesis is to create a FLIP Pyro solver in Houdini, giving artists

the aforementioned capabilities, currently only accessible by artists working for large

VFX studios in the form of proprietary systems.

We demonstrate the validity of our earlier criticism of pure Eulerian systems, and

the success of a Houdini FLIP Pyro method in mitigating the shortcomings associated

with it.

1

2

Previous Work

2.1 Publications

2.1.1 Harlow

The FLIP method that we implement is actually a simple modification of the Particle

In Cell (PIC) method, pioneered by the Los Alamos National Laboratory in the 1950’s

(Harlow, 2004), and later described by Harlow’s paper in 1963 (Harlow, 1963).

PIC was an early ’Hybrid’ method, where particles stored all the fluid quantities,

and handled their transportation, while a grid evaluated them. However, the PIC

method suffered shortcoming that prevented it from accurately depicting fine fluid

flow, as a result of excessive numerical dissipation (Zhu and Bridson, 2005).

Figure 2.1: A comparison between the results of the FLIP and PIC methods for the same

simulation. Image taken from Zhu and Bridson (2005).

2

2.1 Publications

Figure 2.2: Two Coarse Grid Step renders taken from Hovrath and Gieger (2009).

2.1.2 Brackbill and Ruppel

In 1986, Brackbill and Ruppel attempted to solve the short comings of the PIC method,

by the introduction of a simple variation. This was called the Fluid Implicit Particle

Method, and allowed for accurate representation of fluids, with almost no numerical

dissipation (Brackbill and Ruppel, 1986).

2.1.3 Zhu and Bridson

In 2005, Zhu and Bridson introduced the FLIP method to incompressible flow. This

allowed for highly detailed fluid motion on relatively coarse grids (Zhu and Bridson,

2005).

2.1.4 Horvath and Geiger

In 2009, Horvath and Geiger published a paper detailing the Coarse Grid Step, which

is a two step, slight variation, of the FLIP method (Hovrath and Gieger, 2009). The

Coarse Grid Step uses a simple wavelet decomposition on the velocity grid that produces

multiple levels of detail. The result is then projected onto a series of two dimensional

image planes that are resolved by the incompressible Navier-Sokes equations indepen-

dently, producing some of he most detailed computer generated fire to date.

3

2.2 Off-the-shelf Systems

Figure 2.3: A simulation with millions of particles in the Naiad dynamics package. Image

taken from (Seymour, 2010).

2.2 Off-the-shelf Systems

2.2.1 Naiad

In 2008, Nordenstam and Bridson founded Exotic Matter, developers of the Naiad fluid

and dynamics engine (Nordenstam and Bridson, 2008). Naiad first saw action in the

Blockbuster film Avatar (2009), where it was used to produce the VES award winning

“drinking shot” (Seymour, 2010). Since then it has been adopted by a number of film

studios as one of the primary fluid simulation tool (Nordenstam, 2011).

Naiad was praised for its capacity to produce very detailed and realistic fluid motion,

while allowing for a large amount of creative control over the simulation process. The

technology behind the fluid solvers use the FLIP method, or optionally in more recent

releases, a variation of it known as DEFLIP. Naiad’s Gas Solver is still a fully Eulerian

three dimensional grid based solver (Nordenstam, 2010).

4

2.2 Off-the-shelf Systems

Figure 2.4: Explosion, fire and smoke simulations generated using Houdini’s Pyro solver.

Rendered in Mantra with the Pyro Shader. Image taken from Klosters (2009).

2.2.2 Houdini Pyro solver

In 2009, Side Effects released version 10 of Houdini (Self, 2009), which introduced the

Pyro Solver, capable of producing various fire and smoke simulations. In version 11,

a set of presets were created in order to enable artists to quickly achieve the desired

effects. However, while Houdini’s Pyro tools are capable of producing detailed realistic

results, it may be possible that artists find that these tools have steep learning curve

and lack of control. Furthermore, higher resolution simulations are very slow, and

require huge amounts of secondary storage.

That said, the advantage of Houdini is that it is not a black box system, meaning

artists can easily dive into the solver and modify the actual structure to better suit

their requirements. Houdini also provides users with a rich set of solver building blocks

called micro-solvers, which capable users can use to build the Pyro solvers, or their own

solvers, from scratch.

5

2.2 Off-the-shelf Systems

Figure 2.5: A screen-shot of a detailed FLIP simulation. Image taken from (Clark, 2010).

2.2.3 Houdini FLIP solver

In 2010, Side Effects Software released the eleventh version of the Houdini 3d animation

package, that also saw the introduction of a FLIP liquid solver (Self, 2010). In personal

communication with Jeff Wagner, of the Side Effects support team, he noted that

Houdini’s FLIP solver was in fact a hack that worked “O.K.”.

The solver is capable of handling hundreds of thousands of particles to produce

complex fluid motion with a fairly coarse grid, and requires no sub-stepping. Further-

more, the solver is also unconditionally stable, making it advantageous over the previous

Houdini Volume and Smooth Particle Hydrodynamic solvers in many situations (Lait,

2010).

6

2.3 Proprietary Systems

2.3 Proprietary Systems

2.3.1 ILM Plume

We have previously discussed the predecessor to Industrial Light and Magic’s Plume

dynamic simulation engine and renderer (Failes, 2010), namely the publication by Hor-

vath and Gieger (Hovrath and Gieger, 2009). Plume is only a slight variation of their

method, as they abandoned the 2D slicing of the Coarse Grid Step refinement process,

opting for a fully 3d refinement step instead, simulated on the GPU (Desowitz, 2010).

This was used with great success in creating the fire simulations seen in the film The

Last Airbender (2010).

2.3.2 DNeg Squirt

Double Negatives Squirt is another proprietary fluid simulation package that uses the

FLIP method, simulated on the GPU, to create very detailed high resolution fluid sim-

ulations. Originally developed by Exotic Matter founders Marcus Nordenstam and Dr.

Robert Bridson (Seymour, 2010).

7

2.3 Proprietary Systems

Figure 2.6: An example of the level of detail achieved with ILM’s Plume 3D Coarse Grid

Step system in The Last Airbender (2010). Image taken from (Failes, 2010).

Figure 2.7: Pyroclastic ash clouds from the film 2012 (2009), made using Double Nega-

tive’s squirt dynamics engine. Image taken from (Desowitz, 2009).

8

3

Theory : Fluid Implicit Particle

Method

3.1 Navier Stokes

3.1.1 The incompressible Navier Stokes equations

The Incompressible Navier-Stokes equations is composed of a set of partial differential

equations that form an excellent model to simulate fluid flow (Stam, 1999), commonly

used as the basic building block of many solvers.

Strictly speaking, one need not understand the maths behind the Navier Stokes

equations in order to implement a fluid solver of their own within the Houdini frame-

work. Instead, only an understanding of the concepts that govern fluid motion, as set

out by the equations, is necessary, as most of the maths is already implemented and

ready for use in the form of microsolvers. A more in-depth explanation of the Incom-

pressible Navier-Stokes equations can be found in Bridson (2008).

9

3.1 Navier Stokes

The Navier-Stokes equations usually appear in the form of:

∂~u

∂t
+ ~u · O~u+

1

ρ
Op = ~g + νO · O~u (3.1)

O · ~u = 0 (3.2)

~u velocity

t time

Where: ρ pressure

~g external forces

ν viscosity

Equation (3.1) is called the momentum equation, and is actually quite simply a

variation on Newton’s second law of motion ~F = m~a (Bridson, 2008, pg. 4). Equation

(3.2) is the incompressibility condition.

3.1.2 Advection

(~u · O)~u

Advection is defined as the transport of matter by the flow of a fluid (Bridson, 2008, pg.

8). Visually we can think of this as the rising smoke from a lit cigarette, where chemical

reactions at the end of the cigarette release, amongst other things, soot particles and

heat. In this case, heat flowing to cooler areas of the surrounding environment carry

the soot particles along with it. The horizontal and vertical components of this motion

are referred to as advection.

Figure 3.1: An image of depicting atmospheric advection. Image taken from F.A.A.

(1975).

10

3.1 Navier Stokes

Figure 3.2: Pressure = Force per unit of area. Lowering the piston increases pressure,

and vice versa. Image taken from Baratuci (2006).

3.1.3 Pressure

p

Pressure is defined as the force per unit area(Harris, 2005, Chap. 38). Higher pressure

areas will have an outward motion, exerting force on lower pressure regions. This can

be visualised as a gun being fired, where the initial burning of gunpowder causes a

significant release of hot gasses in the confined space of a gun’s chamber, resulting in

a very large force per unit area, i.e. pressure, that propels the bullet out of the gun’s

barrel.

3.1.4 External Forces

~g

This term, in the context of the Navier Stokes equations, refers to the combination

of all external forces that act on a body of fluid(Harris, 2005, Chap. 38). There are

two main classifications of external forces, local forces or body forces. Local forces are

any force that results in only a part of the fluid body to accelerate, such as buoyancy.

External forces are any force that result in the entirety of the fluid to accelerate, such

as gravity.

11

3.1 Navier Stokes

Figure 3.3: An image of several liquids with different levels of viscosity. Image taken

from (Rutter, 2011).

3.1.5 Diffusion

νO · O~u
Viscosity is defined as the measure of a fluids resistance to deformation and flow(Harris,

2005, Chap. 38). The more viscous a fluid is, the slower and more uniform its direction

of motion along a surface. Visually this may be the difference between water and honey.

Water has very low viscosity, it changes form and flows with ease, the direction of its

motion uninhibited. Honey on the other hand has a high viscosity, its shape relatively

uniform, and its flow along a surface cumbersome.

3.1.6 The Incompressibility Condition

O · ~u = 0

In nature, the volume of fluids can change, but rarely significantly enough that a

visual difference is noted. Simulating the change in volume of fluids is complicated and

computationally expensive, as such we presume that our fluids are incompressible and

that the volume is maintained throughout the simulation.

12

3.2 Fluid Viewpoints

3.2 Fluid Viewpoints

There currently exist three main viewpoints to simulating three dimensional fluids in

computer graphics. A brief introduction to the methods is necessary in order to better

understand the motivation for the use of a Fluid Implicit Particle method to simulate

our pyro effects.

3.2.1 Eulerian Viewpoint

Figure 3.4: Three Eulerian grids, with resolutions of 43, 83 and 163 respectively. Note

that doubling the resolution increases details eight fold each time.

With the Eulerian viewpoint, named after the famous Swiss mathematician Leon-

hard Euler, we concern ourselves with a specific discretized finite volume of space. This

is typically represented as a three or two dimensional grid, where fluid quantities are

stored, evaluated and flow by each individual cell of the grid (Bridson, 2008, pg. 7). In

a Eulerian system, the fluids may only exist within the confines of the grid, and as such

they are effectively bounded. This limits the simulation of the fluids to a particular

location.

Visualization : Weather forecast station.

3.2.2 Langrangian Viewpoint

With the Langrangian method, named after the French mathematician Lagrange, we

deal with a set of individual particles that carry with them fluid quantities, in addition

to having their own unique position and velocity(Bridson, 2008, pg. 6). The particles

are unbounded, and as such are capable of occupying an infinite space.

Visualization : Weather balloon.

13

3.2 Fluid Viewpoints

3.2.3 Hybrid Viewpoint

In a hybrid method, components of both the Eulerian and Langrangian methods are

used to advantage. Fluid quantities are carried by particle masses that flow through

an Eulerian grid. Advection is handled by particles, and all other fluid quantities are

integrated on the grid. At every time step, grid values are set as a weighted average

of nearby particles, and upon evaluation, the particle values are interpolated from the

updated grid values(Bridson, 2008, pg. 137).

As with the Eulerian method, the system is bounded and may occupy a finite space.

Figure 3.5: A Langrarian, Eulerian and Hybrid viewpoint respectively.

14

3.2 Fluid Viewpoints

3.2.4 Advantages and Disadvantages

Each viewpoint can be implemented in a number of ways, however, as we are primarily

concerned with fluids in the Houdini context, we will compare the current implemen-

tation of each viewpoint within Houdini.

Feature Volume - Eulerian FLIP - Hybrid Smooth Particle Hy-

drodynamics - Lan-

grangian

Substeps 10x 1x 100x

Data Storage Volumes Particles Particles

Control Fields Full Force

Velocity

Distribution Even Slices

High Speed

Arbitrary Slices

High Speed

Arbitrary Slices

Good

Problems Viscosity Evaporation

Memory Intensive

Grid Limited Resolu-

tion

Grid Limited Size

Lacks Slow-Motion

Compression

Large Substeps

Explosions

Slow

Advantages Performance Indepen-

dent of Particles

Fast

Memory Efficient

Coarse Grids

Easier Manipulation

with Particle Tools

Unbounded

Easier Manipulation

with Particle Tools

Table 3.1: Houdini fluid methods comparison table. Modified from Lait (2010), with

additions from Priscott (2010, pg. 4) and Bridson (2008, pg. 6).

15

3.3 Fluid Implicit Particle Method

Figure 3.6: Simulations of sand and water using the FLIP method, taken from Zhu and

Bridson (2005).

3.3 Fluid Implicit Particle Method

3.3.1 Particle In Cell

The Particle In Cell (PIC) method is an early hybrid method developed by Harlow

(Harlow, 1963). As defined in 3.2.3, particles carry the fluid quantities and a grid

integrates them. Advection is handled by the particles.

The problem with PIC is the excess of numerical diffusion as a result of repeatedly

averaging the weight of particles onto grid cells, then re-interpolating them back onto

the particles. As a result of the numerical diffusion, fine details are lost, making this

an unsuitable method to simulate fluid motion with an acceptable level of detail(Zhu

and Bridson, 2005).

3.3.2 Fluid Implicit Particle

In 1986, Brackbill and Ruppel published a paper on the Fluid Implicit Particle (FLIP)

method that remedied the aforementioned issues with the PIC method. Unlike the

PIC method, in the FLIP method particle values are updated by the difference of the

evaluated grid values, from the start of the time-step, as opposed to being completely

overwritten by the new grid values.(Brackbill and Ruppel, 1986).

16

3.3 Fluid Implicit Particle Method

3.3.3 Solve Steps

The steps of the FLIP method, as defined by Zhu and Bridson (2005) are (modified for

a Gas Solver):

1: Initialize particle positions and velocities.

For each time step:

[2] At each cell in the grid, compute a weighted average of nearby particle

fluid quantities.

[3] Save the grid fluid quantities.

[4] Do all non-advection steps of a standard pyro solver.

[5] Subtract the new grid fluid quantities from the saved fluid quantities, then

add a percentage (FLIP - typically 95%) of the difference, and a percentage

of the grid value (PIC - typically 5%), to each particle.

[6] Move particles through the grid velocity field with an ODE solver, making

sure to push them outside of solid wall boundaries.

[7] Write the particle positions to output

17

3.3 Fluid Implicit Particle Method

Figure 3.7: Between 4 and 16 particles are seeded in each grid cell to prevent gaps or

noise in the simulation.

3.3.4 Initialise Particles

Typically 8 particles are seeded per cell (Bridson, 2008, pg. 147), and are randomly

jittered to avoid aliasing when our flow is under-resolved at the simulation resolution

(Zhu and Bridson, 2005). It was found that seeding significantly more or less particles

would allow for too much noise or occasional gaps in the fluid flow respectively (Zhu

and Bridson, 2005). During implementation, it was noted that while seeding too few

particles did indeed result in gaps, seeding significantly more particles did not always

introduce a significant increase in noise, and was at times desirable.

3.3.5 Transferring to the Grid

At every time step, we copy a weighted average of the nearby particles onto our grids.

Convention dictates that nearby particles are defined as those who exist in a cube that

is twice the grid cell width (Zhu and Bridson, 2005). During implementation, it was

found that this need not necessarily be a rule of thumb, and that finer details could be

achieved by reducing the extrapolation distance. Increasing the extrapolation distance

further produced more cohesive results. Manipulating the extrapolation distance allows

for artists to attain further control over the movement of the fluids. Furthermore, it was

18

3.3 Fluid Implicit Particle Method

also found that when simulating on higher density grids, increasing the extrapolation

distance was a necessity.

3.3.6 Updating Particle Velocities

At every time step, we trilinearly interpolate the difference in the fluid quantities, and

a fraction of the grid value, back to our particles(Zhu and Bridson, 2005). This is

effectively a combination of the PIC and pure FLIP methods.

If we were to only copy the difference (i.e. purely FLIP) back onto the particles,

the system would develop a significant degree of noise as there is no cohesion between

the particle what so ever(Bridson, 2008, pg. 149). By adding a fraction of each system,

typically 95% FLIP and 5% PIC, to the particle, we eliminate the noise while not

introducing significant dissipation.

By varying the ratio of FLIP to PIC in our system we can effectively control viscosity

as an added bonus. During development, a ratio of 70% FLIP and 30% PIC was found

to produce results that most closely resemble the original Eulerian solver.

Figure 3.8: An example of pure FLIP noise. The image on the left has a FLIP to PIC

ratio of %100 to %00, whereas the image on the right has a ratio of %80 to %20

19

4

Motivation

There exist a number of reasons why a FLIP Pyro solver would be considered advan-

tageous to that of a purely Eulerian grid based method. In this chapter we discuss the

advantages and pitfalls of the FLIP method to that of the Houdini Volume Eulerian

method.

4.1 Speed

In a FLIP method, multiple particles, convention dictating around 8 for reasons dis-

cussed in 3.3.4, are seeded in each cell. Each particle may be seeded with, or incre-

mented from interpolation, unique fluid quantities and velocity. This allows for many

more degrees of freedom in the particles than in the grid(Bridson, 2008, pg. 149).

This produces a significant speed advantage, as we only need to solve our fluids on

a grid that is a fraction of the resolution of a purely Eularian grid to achieve the same

level of detail (Hovrath and Gieger, 2009).

When simulating both methods with the same Grid resolution, ignoring the extra

degrees of freedom of the particles, the Eulerian method is marginally faster, as a result

of the absence of the interpolation of fluid quantities to and from the particles process.

4.2 Resolution

The FLIP method usually requires a significantly lower resolution grid to achieve the

same level of detail in a fluids motion by comparison to that of a purely Eulerian

20

4.3 Slow Motion

Figure 4.1: The image on the left, taken from Hovrath and Gieger (2009), was simulated

using the first stage (FLIP) of the Coarse Grid Step method, on a grid with 503 grid cells.

The image on the right was simulated in Houdini with the same number of cells using the

Volume method. The former contains significantly more details despite having the same

number of grid divisions.

method (Hovrath and Gieger, 2009). During Implementation, it was found that parti-

cles simulated on a grid with a spacing of 0.1 units could continually add fine details

to grids with a spacing of 0.01 units, effectively 10 times level of detail of the original

simulation.

4.3 Slow Motion

Simulating a fully Eulerian grid based fluid at a very high frame rate results in sig-

nificant smoothing and general loss of detail. This is a result of excessive numerical

dissipation produced by semi-Lagrangian advection(Zhu and Bridson, 2005, pg. 35).

At every time step, when using the semi-Langrangian advection scheme, we take a

weighted average of values from the previous time step, and as such are doing an av-

eraging operation (Bridson et al., 2006, pg. 35). When we increase the number of

time steps we are effectively increasing the number of averaging operations, and thus

smoothing results and loosing details.

In a Fluid Implicit Particle method, advection is handled by the particles. As we

are only incrementing the change of fluid quantities there is a negligible dissipation.

21

4.4 Memory

Figure 4.2: The files on the left were generated by a Houdini Pyro Volume solver with

3803 grid cells (Ghourab, 2011), and were saved in a compressed format. The files on the

right were generated from our ’Fire + Water’ example, which at render-time was converted

into a volume with approximately 4003 grid cells at its peak scale.

4.4 Memory

Eularian three dimensional grid based methods can be very expensive. Doubling the

resolution of the grid effectively requires 8 times the memory and roughly 8 times the

calculation times (Bridson et al., 2006, pg. 63). Furthermore, most grid methods

require us to store grid cells that may have no fluid quantities stored within them or

any bearing on the simulation.

With the FLIP method, there are no persistent fields. All fields are created at the

start of every time step, and destroyed at the end of every time step, and as such we

need not store any grid data on secondary storage(Zhu and Bridson, 2005). Particle

masses are instead saved. This is advantageous as the particles typically have a smaller

memory footprint than three dimensional grids. Furthermore, we need only store par-

ticles that have significant bearing on the simulation. Any particles that stray from

the simulation, or no longer make any significant contribution to the simulation can be

trivially removed.

4.5 Control

In an Eulerian system, we may add custom controls, such as wind and gravity, to

better refine the fluid motion to suit our needs. These forces are then combined and

introduced into the system as a single force, denoted as ~g in the Navier-Stokes equation.

As the FLIP method is inherently particle based, this allows us to subject the

particles in the simulation to traditional particle manipulation techniques, in addition

to the aforementioned field forces.

22

5

Houdini Technical Background

5.1 Introduction - Dynamics System (DOPS)

The Houdini DOP context handles all non-particle dynamic simulations within Houdini.

Houdini’s DOP context behaves differently to other contexts. Data flows through a

network in the order of top to bottom, left to right, and the state of frame is stored

and updated from at the next frame. Furthermore, most data is hidden from the user,

visible via Houdini’s details view.

In this chapter, we unravel Houdini’s DOPs system, and have a closer look at the

building blocks of Houdini’s solvers, its micro-solvers.

23

5.1 Introduction - Dynamics System (DOPS)

Figure 5.1: An overview of the DOP Network necessary for our FLIP Pyro solver.

24

5.2 Houdini’s Open System

Figure 5.2: A screen-shot of the Volume Pyro Solver’s interior network in Houdini, which

any user may modify or extend.

5.2 Houdini’s Open System

One of the most important aspects of Houdini’s DOP system is that it is ’open’, that is

to say it is not a black box system. The user is given access to the networks contained

within most DOP nodes that perform a number of functions. An example of this is

fluid solvers, where a user may dive into the solvers node tree and modify its structure.

The user may also create a new custom solver of his own, as all the necessary functions

to do so are provided to the user in the form of micro-solvers and DOP nodes.

5.3 Creating a local object

The first step to creating a simulation within DOPs is to create an local dynamics object

that represents the type of data we wish to simulate and its initial state. All objects in

DOPs must have a unique DOPs identification and must be contained within a Houdini

dynamics container, as Houdini’s DOP context cannot directly handle external data.

To do so, we lay down the first node in our network, an Empty Object DOP. This node

simply creates an empty container with a unique name that the DOPs context can see

and manipulate.

25

5.4 Configure Object

Figure 5.3: A screen-shot of the FLIP Liquid configure objects interior network in Hou-

dini. Data is piped in via the top-left most node. Nodes at the top are field visualisers,

and nodes at the bottom are our scalar and vector fields to be visualised.

5.4 Configure Object

However, it’s still empty, so our next step is to fill it up with the relevant data. There

are approximately two main data types, geometry, which may be the mesh of a Rigid

Body Dynamics (RBD) object, and fields, which are Eulerian three or two dimensional

grids that may contain scalar or vector data.

This is done using a configure object, which allows us to import external data into our

container, set its initial attributes and create persistent fields. For geometry we may

attach physical attributes such as mass, bounce or friction. For fluids we may add fields

that store its density, temperature or pressure.

26

5.5 Forces

Figure 5.4: A RBD ball bounding on a ground surface. The merge node creates the

collision relationship between the ball and the ground objects.

5.5 Forces

As we know from Isaac Newton’s apple analogy, the apple only falls to earth as a result

of gravity, and in the absence of it would remain stationary and attached to the tree.

The same is true for our Dynamics objects, as simply having physical properties will

not translate into anything interesting in the absence of forces. Houdini gives users

access to a number of default force nodes, such as gravity, wind and vortex. However,

for good measure Houdini also allows users to create custom forces using a VOP Force

node.

5.6 Merge Objects

Most dynamic simulations usually involve a large array of objects interacting with one

another. Visualise water gushing from a broken fire hydrant, breaking against the

overhead shop curtain, its cloth swaying wildly, the ground beneath absorbing falling

water droplets.

In order to correctly simulate all the interactions, Houdini provides us with the

Merge DOP, which merges several objects into the same stream and creates affector

relationships between the various streams. It allows us to cause the water to collide

with the overhead shop curtain using the collision relationship, and allows us to delete

water that collides with the ground using the sink relationship. There are several more

relationships it allows us to use in order to bring scenes to life and create believable

interactions.

27

5.7 Solvers

Figure 5.5: A screen-shot of the solver building blocks, microsolvers, available in Houdini

11.

5.7 Solvers

The Solver role is to take all the attached objects and integrate them together. Although

we set our initial objects attributes, connect a force to, perhaps even assign collision

geometry, there is nothing to evaluate them interacting together.

Solvers integrate them together, allowing objects to behave in a physically believable

manner, for forces to manipulate them correctly, and for collision objects to affect their

path of motion accurately. The solver can be thought of as the brain of the system.

5.8 Micro-Solvers

Micro-solvers are the basic building blocks of Houdini’s solvers. Houdini has a total of 74

microsolvers, which in combination together can create any type of solver. Furthermore,

for volume data, if a user finds that there exists no custom micro-solver suitable for his

purposes, he may make one of his own using the Gas Field VOP node.

28

6

Implementation

Removed from public version.

29

7

Custom Setups

7.1 Slow Motion

As mentioned in 4.3, Eulerian based solvers are incapable of creating ultra slow-motion

simulations. Our FLIP pyro solver on the other hand is capable of slow motion simu-

lations by default. This is due to the fact that our fluid quantities are carried by the

particles, and their values are unaffected by the advection process.

In our setup, we simulate the muzzle flash from a discharging gun. Our fuel and

source object is a sphere that encompasses the last fraction of the guns barrel, and

a fraction outside of it. As objects are heated up, and gas is released, this causes a

forward and outward motion of our fire. A large quantity of particles are seeded at the

initial frame, which makes up the bulk of the muzzle flash, and a small number are

seeded thereafter to create an after flame on the tip of our barrel.

To enable slow-motion we simply change our scenes frames-per-second attribute to

match the duration we would like our simulation to take. In our case, we adjusted our

scene to 180FPS, which slows the simulation down by a factor of 7.5.

Figure 7.1: Our muzzle flash, slowed down by a factor of 7.5x (180fps).

30

7.2 Solver Networking - Fire + Water

7.2 Solver Networking - Fire + Water

We mentioned earlier the use of Merge DOPs to create relationships between objects

on the DOP level, however this does not give us the necessary functionality to allow

for two or more solvers to affect one another based on attributes present in any of the

interacting systems. For example, we know that in nature, water may be used to quench

a fire. In order for a similar effect to be simulated within Houdini we require a custom

extension of our solvers. This section details a custom work-flow that allows for the

interaction of other particle based solvers with our FLIP Pyro solver, and demonstrates

its validity by causing a FLIP liquid solver to collide with, advect and put out a separate

FLIP Pyro system.

Figure 7.2: Liquid colliding, advecting and cooling our FLIP Pyro fire.

31

7.2 Solver Networking - Fire + Water

Figure 7.3: We create and initialise FLIP liquid temperature attribute.

7.2.1 Custom Fields

The first issue we may run into when attempting to influence our solver using any of

the existing solvers is the lack of standardised attributes on all the independent solvers.

The FLIP liquid solver, for example, lacks a temperature attribute. Houdini allows an

end user to add custom fields and values to any of the existing solvers without the need

to modify the contents of the solver itself.

Giving our FLIP liquid solver a temperature attribute is actually fairly simple:

For each time-step:

1: Create temperature field using Geometry as reference for scale.

2: Set the initial value of our temperature field to zero.

3: Copy our field values onto the particles.

4: Feed newly created nodes into the third input of our FLIP liquid solver, ensuring

data gets attached.

32

7.2 Solver Networking - Fire + Water

Figure 7.4: Our advection and negation setup.

7.2.2 Advect FLIP Pyro

Using a SOP Solver DOP, we can import our particle Geometry at every frame into

our FLIP Pyro network. To advect our Pyro effect, we need to combine the velocity of

both our simulations, and feed the result back into the FLIP Pyro solver. The steps to

do this are:

For each time-step:

1: Import FLIP Liquid particle geometry, assign local unique identification.

2: Create temporary velocity vector field.

3: Resize temporary field to match FLIP Pyro field scale.

4: Extrapolate FLIP Liquid particle geometry’s velocity onto temporary field.

5: Add temporary velocity field value to FLIP Pyro’s velocity field, multiplying

temporary field by an arbitrary fraction to soften influence.

33

7.2 Solver Networking - Fire + Water

7.2.3 Negate FLIP Pyro Fuel and Temperature

The main two attributes that cause the combustion effect in our FLIP Pyro solver are

fuel and temperature. By negating them with the FLIP liquids values, we also end

the combustion process and reduce the systems fluid quantities to null with time. The

steps to do this are:

For each time-step:

1: Import FLIP Liquid particle geometry, assign local unique identification.

2: Create temporary temperature scalar field.

3: Resize temporary field to match FLIP Pyro field scale.

4: Extrapolate FLIP Liquid particle geometry’s temperature onto temporary field.

5: Using a custom Gas Field VOP script, invert the temporary fields values.

6: Multiply an arbitrary fraction of our temporary fields value with the FLIP Pyro’s

temperature and fuel fields.

7: Feed the values back into the FLIP Pyro’s network, just before we create our old

fields (solver input 3).

7.2.4 Collision

Collisions are done in a straight forward manner. At every time-step we create a mesh

out of our FLIP Liquid particle geometry using the Particle Fluid Surface SOP. We

can then import the generated mesh into our DOP network, and assign it as a collision

object using the standard method 5.6.

34

7.3 Fire Spread Across Multiple Solvers

7.3 Fire Spread Across Multiple Solvers

In nature, fire tends to spread from one object to another. Different object may have

different chemical compositions, and as such burn in a different manner with varying

levels of ferocity. We demonstrates a custom setup that allows us to replicate the effect

of fire spreading through an environment across multiple solvers.

7.3.1 Overview

Our system simulates fire spreading from a bunny, to a table, then finally onto a

lamp. The way in which the system works is that it records temperature impacts

from influencing systems at every time step. Once a certain threshold is passed for a

certain point on the affected object, particles are seeded from that point. Whenever an

object is activated, i.e. begins seeding particles after passing an arbitrary temperature

threshold, it acts as an influence on both the environment objects, and the object from

which it was seeded, allowing fire to creep along the objects self without the need for

an separate temperature source.

Figure 7.5: Our fire spreading from the bunny to the table and the lamp.

35

7.3 Fire Spread Across Multiple Solvers

Figure 7.6: We import the FLIP Pyro particles, create a temperature scalar field which

we then sample to increment our emission attribute.

7.3.2 Temperature Impacts

Using a custom SOP Solver, we can sample temperature impacts at any geometric point

in our scene. The steps necessary in order to achieve this are:

For each time step:

1: Import particle Geometry from all affector FLIP Pyro systems into an external

SOP Solver.

2: Copy temperature attributes from particles onto a temporary SOP scalar volume.

3: Using a custom VOP SOP script sample the volumes attributes.

4: (In VOP SOP) If the temperature values exceed a certain value, increment a

custom emission attribute on the closest point of our emission geometry.

7.3.3 Particle Seeding

Now at every frame, objects that come into contact with hot flames from one of our

scenes FLIP Pyro solvers will have an emission attribute incremented by an arbitrary

value at every frame. But that doesn’t control anything just yet.

The Particle Fluid Emitter DOP in each of our solvers has the capability of emitting

particles from faces depending on their value. However, there are issues with this

method, as if we were to feed it two faces, one with an emission value of 0.1, and

36

7.3 Fire Spread Across Multiple Solvers

the other with an emission value of 1.0, both give very similar results. This in turn

causes the whole geometry object to be engulfed in flames immediately, and beyond

our control. A more simple and controllable approach to this would be: For each time

step:

1: Accumulate emission attributes on affected objects, each step indicating a single

impact.

2: Group all faces that have accumulated an arbitrary number of impacts, corre-

sponding to the number of frames it takes to set allight an object under constant

impact.

3: Assign any faces in our group with a custom seed attribute with a value of one.

Remaining faces are assigned a seed attribute with a value of zero.

4: In our FLIP Pyro particle emitter, set emission to be based on the seed attribute.

The user may now control the time it takes for objects to be set alight, and the

time it takes for the fire to spread.

Figure 7.7: Our SOP network, where primitives that have accumulated an arbitrary

number of temperature hits is then activated for particle emission in our FLIP Pyro Solver.

37

8

Conclusion

8.1 Results Analysis

The initial motivation for a FLIP Pyro solver were primarily concerned with : Speed,

Resolution, Slow Motion, Memory and Control. The results where not conclusive.

However, there is evidence to show that the FLIP Pyro solver can produce a realistic

and aesthetically pleasing result at a reduced cost.

8.1.1 Speed

Early on during development, it was noted that a like for like comparison with the

Volume Pyro solver was not possible. In the Volume solver, resolution is determined

by the grid size, i.e. the number of present cells. In a FLIP Pyro system, resolution

is determined by the grid size, the number of particles, the particle scale and the

extrapolation distance.

If we increase the number of seeded particles, the simulation times significantly in-

crease, but the resolution increases proportionally. The particle scale and extrapolation

distances both affect the amount of influence particles have on one another, and as such

the degree of independence present in the particles. Increasing the particle scale and

extrapolation distances lowers the resolution, increases viscosity, and vice-versa is true.

Our FLIP Pyro solver resizes dynamically at ever frame, as mentioned in ??. For

large simulations, the Volume solver must start off with a large grid, which severely

affects simulations time.

38

8.1 Results Analysis

As there are more degrees of freedom in our particles than grid cells, we can output

fairly detailed fluid motion on course grids, where the volume solver would output poor

details. It is perhaps more appropriate to compare our solver with a much higher reso-

lution Volume solver, which would conclusively point to a significant speed advantage.

That said, the results were not as overwhelming as expected. Particle operators

(POPs) are amongst the oldest operators in Houdini, and are generally very slow with

many nodes still lacking multi-threading capability. We have two POP solvers in our

system, one that seeds particles, and another that manipulates them. During the im-

plementation of the ’Fire Spread’ setup, it was observed that every time a large number

of particles were impulse seeded into the system, that frame would take approximately

3 to 6 time longer to simulate.

Another probable cause for the underwhelming performance is the process where

we copy particles to and from the grid. In the FLIP Liquid solver, this operation is

performed two times at every time-step, however in our system this operation is per-

formed ten times at every time-step. The process is quite slow in Houdini, particularly

when working with fairly dense grids or a large number of particles.

Finally, and in the absence of a render-time point cloud volumizer, we still need to

convert our points into volumes in the SOP context prior to rendering it. This process

is very slow, and while it does not affect simulation times, it increases render-times

significantly. Furthermore, this process caps the amount of detail we can render from

our points.

8.1.2 Resolution

During the implementation of the ’Fire + Water’ example, we simulated it on a grid

with a division scale of 0.1 units. The particles were then fed into our volumizer, where

we were able to extract new details from the system up until a division scale of 0.01

units, at which point we hit a memory limit. Effectively, our particles simulated with

10 fold the grids level of detail.

8.1.3 Slow Motion

Slow motion worked as intended. The only observation noted was that the system may

produce slightly varying results as we change the frame rate value, similar to when we

increase the number of sub-steps for any of the standard solvers.

39

8.2 Memory

8.2 Memory

We have found a very significant memory decrease with the FLIP Pyro solver. This

could in retrospect be improved further by deleting unnecessary attributes from the

particles prior to storage. Figure4.2 is an illustration of just how significant the memory

decrease was found to be.

8.3 Control

We were able to incorporate a POP Solver into our system, which allowed us to apply

particle forces and manipulators to our particles at every time-step just prior to solving.

Effectively, we can use any of Houdini’s particle operations to control the motion and

trajectory of our particles, in addition to standard DOP forces and manipulators.

8.4 Future Work

8.4.1 SOP Solver Seeding

One of the ways we can increase the speed of the system is by using SOP Solvers to

seed particles. SOP Solvers are fully multi-threaded, and generally much faster than

POP Solvers. Houdini’s upcoming twelfth release will also see the introduction of a new

geometry engine which promises very significant speed increases, a further motivation

to abandon POP Solvers in favour of SOP Solvers (SESI, 2011).

8.4.2 Render-time Volumizer

A render-time volumizer is necessary in order for our solver to truly rival the current

volume render solution. By using a point cloud lookup in a volume shader at render-

time, we should be able to circumvent the slow process of volumizing our particles prior

to rendering, as well are removing the current resolution limit.

8.4.3 GPU Simulation

Houdini’s upcoming twelfth release allows users to simulate Pyro Volume effects on the

GPU (SESI, 2011), a feature present in many of the propitiatory systems discussed in

2.3. By using the new GPU based solvers, we should be able to convert our FLIP Pyro

40

8.5 Conclusion

solver into a GPU based one, allowing us to significantly increase performance, and

possibly resolution.

8.4.4 Particle Turbulence

An integral component of pyro simulations is turbulence operations that introduces

swirling motions into our fluids (Bridson et al., 2007). This is usually computed on the

grid, however, with the grid method we are effectively limited by the grids resolution.

If we instead compute turbulence on a particle level we may achieve significantly more

detailed motion at distances significantly smaller than the grid cell. This applies to any

other force that evolves through space.

8.5 Conclusion

We successfully demonstrated the first FLIP Gas Solver in Houdini, and that it is even

possible. Through a set of custom setups, we showed we were able to produce realistic

and detailed results. We demonstrated the ability to integrate our solver with a variety

of other solvers, proving its extensibility. We were able to control our simulations

using particle operations in addition to the standard dynamic operations. We showed

that our solver requires minimal secondary storage, and that we can achieve very slow

motion simulations with it.

This implementation still requires a number of iterations before our solver is a

complete and viable alternative to the current existing off-the-shelf solutions. Much

work is needed in order to produce results as seen in current propitiatory systems, and

it is the authors full intention to continue development until such is possible.

41

References

2012 (2009), Film. Directed by Roland Emmerich. USA: Columbia Pictures.

Avatar (2009), Film. Directed by James Cameron. USA: Twentieth Century Fox Film

Corporation.

Baratuci, D. (2006), ‘What is pressure ?.’, Learn Thermo. Available From : http://

www.learnthermo.com/T1-tutorial/ch01/lesson-E/pg02.php [Accessed 15 Au-

gust 2011].

Brackbill, J. U. and Ruppel, H. M. (1986), ‘Flip: A method for adaptively zoned,

particle-in-cell calculuations of fluid flows in two dimensions.’, J. Comp. Phys.

65, 314–343.

Bridson, R. (2008), Fluid Simulation for Computer Graphics., A.K Peters.

Bridson, R., Fedkiw, R. and Muller-Fisher, M. (2006), ‘Fluid simulation’, SIG-

GRAPH 2006 course notes . Available From : http://www.cs.ubc.ca/rbridson/

fluidsimulation/ [Accessed 08 August 2011].

Bridson, R., Houriham, J. and Nordenstam, M. (2007), ‘Curl-noise for procedural fluid

flow.’, ACM Trans. Graph. 26(3).

Clark, J. (2010), ‘Houdini 11 review.’, 3D World. Available From : http://www.

3dworldmag.com/2010/11/09/houdini-11-review/ [Accessed 08 August 2011].

Desowitz, B. (2009), ‘2012: The end of the world as we know it.’, Animation

World Network. Available From : http://www.awn.com/articles/article/

2012-end-world-we-know-it/page/3,1 [Accessed 08 August 2011].

42

http://www.learnthermo.com/T1-tutorial/ch01/lesson-E/pg02.php
http://www.learnthermo.com/T1-tutorial/ch01/lesson-E/pg02.php
http://www.cs.ubc.ca/ rbridson/fluidsimulation/
http://www.cs.ubc.ca/ rbridson/fluidsimulation/
http://www.3dworldmag.com/2010/11/09/houdini-11-review/
http://www.3dworldmag.com/2010/11/09/houdini-11-review/
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/3,1
http://www.awn.com/articles/article/2012-end-world-we-know-it/page/3,1

REFERENCES

Desowitz, B. (2010), ‘Introducing plume for firebending.’, Animation World Net-

work. Available From : http://www.awn.com/articles/visual-effects/

introducing-plume-firebending [Accessed 08 August 2011].

F.A.A., F. A. A. (1975), Aviation Weather., Aviation Supplies Academics, Inc.

Failes, I. (2010), ‘Ilms elements for the last airbender.’, fxguide. Avail-

able From : http://www.fxguide.com/featured/ILMs_Elements_for_The_Last_

Airbender/ [Accessed 08 August 2011].

Ghourab, A. (2011), ‘Ahmad ghourab showreel 2011.’, Vimeo.

Harlow, F. H. (1963), ‘The particle-in-cell method for numerical solution of problems

in fluid dynamics.’, Experimental Arithmetic, High Speed Computations and Mathe-

matics. pp. 269–269. Providence, RI: American Math. Society.

Harlow, F. H. (2004), ‘Fluid dynamics in group t-3 los alamos national laboratory.’, J.

Comput. Phys. 195(2), 414–433.

Harris, M. (2005), Fast Fluid Dynamics Simulation on the GPU., Addison-Wesley Pro-

fessional.

Hovrath, C. and Gieger, W. (2009), ‘Directable, high-resolution simulation of fire on

the gpu.’, ACM Trans. Graph. 28(3).

Klosters, C. (2009), ‘Masterclass: Pyro fx.’, Side Effects Software. Avail-

able From : http://www.sidefx.com/index.php?option=com_content&task=

view&id=1496&Itemid=166 [Accessed 08 August 2011].

Lait, J. (2010), Flip Fluid Masterclass., Side Effects Software. Avail-

able From : http://www.sidefx.com/index.php?option=com_content&task=

view&id=1834&Itemid=166 [Accessed 08 August 2011].

Nordenstam, M. (2010), ‘Naiad 0.4.2 release notes.’, Exotic Matter Sup-

port. Available From : http://exoticmatter.zendesk.com/entries/

310914-naiad-0-4-2-release-notes/ [Accessed 15 August 2011].

Nordenstam, M. (2011), ‘News.’, Exotic Matter. Available From : http://www.

exoticmatter.com/ [Accessed 15 August 2011].

43

http://www.awn.com/articles/visual-effects/introducing-plume-firebending
http://www.awn.com/articles/visual-effects/introducing-plume-firebending
http://www.fxguide.com/featured/ILMs_Elements_for_The_Last_Airbender/
http://www.fxguide.com/featured/ILMs_Elements_for_The_Last_Airbender/
http://www.sidefx.com/index.php?option=com_content&task=view&id=1496&Itemid=166
http://www.sidefx.com/index.php?option=com_content&task=view&id=1496&Itemid=166
http://www.sidefx.com/index.php?option=com_content&task=view&id=1834&Itemid=166
http://www.sidefx.com/index.php?option=com_content&task=view&id=1834&Itemid=166
http://exoticmatter.zendesk.com/entries/310914-naiad-0-4-2-release-notes/
http://exoticmatter.zendesk.com/entries/310914-naiad-0-4-2-release-notes/
http://www.exoticmatter.com/
http://www.exoticmatter.com/

REFERENCES

Nordenstam, M. and Bridson, R. (2008), ‘Naiad [computer program]’, Exotic Matter.

Available From : http://www.exoticmatter.com/company/ [Accessed 08 August

2011].

Priscott, C. (2010), 3d langrangian fluid solver using sph approximations., Master’s

thesis, N.C.C.A. Bournemouth Univesity.

Rutter, G. (2011), ‘Liquids.’, Chemistry Explained. Available From : http://www.

chemistryexplained.com/Kr-Ma/Liquids.html [Accessed 15 August 2011].

Self, B. (2009), ‘Houdini 10 blasts off with pyro fx tools progressive ipr and stereoscopic

3d.’, Side Effects Software. Available From : http://www.sidefx.com/index.php?

option=com_content&task=view&id=1478&Itemid=55 [Accessed 08 August 2011].

Self, B. (2010), ‘Side effects software releases houdini 11 faster, easier and more produc-

tive.’, Side Effects Software. Available From : http://www.sidefx.com/index.php?

option=com_content&task=view&id=1772&Itemid=55 [Accessed 08 August 2011].

SESI (2011), ‘Sneak peek houdini 12.’, Side Effects Software. Avail-

able From : http://www.sidefx.com/index.php?option=com_content&task=

view&id=2005&Itemid=66 [Accessed 08 August 2011].

Seymour, M. (2010), ‘The tech behind the tools of avatar part 2: Naiad.’, fxguide. Avail-

able From : http://www.fxguide.com/featured/The_Tech_Behind_the_Tools_

of_Avatar_Part_2_Naiad/ [Accessed 08 August 2011].

Stam, J. (1999), ‘Stable fluids.’, Computer Graphics Proceedings, Annual Conference

Series (SIGGRAPH 99). 24(3), 121–128.

The Last Airbender (2010), Film. Directed by M. Night Shyamalan. USA: Paramount

Pictures.

Zhu, Y. and Bridson, R. (2005), ‘Animating sand as a fluid.’, ACM Trans. Graph.

(Proc. SIGGRAPH) 24(3), 965–972.

44

http://www.exoticmatter.com/company/
http://www.chemistryexplained.com/Kr-Ma/Liquids.html
http://www.chemistryexplained.com/Kr-Ma/Liquids.html
http://www.sidefx.com/index.php?option=com_content&task=view&id=1478&Itemid=55
http://www.sidefx.com/index.php?option=com_content&task=view&id=1478&Itemid=55
http://www.sidefx.com/index.php?option=com_content&task=view&id=1772&Itemid=55
http://www.sidefx.com/index.php?option=com_content&task=view&id=1772&Itemid=55
http://www.sidefx.com/index.php?option=com_content&task=view&id=2005&Itemid=66
http://www.sidefx.com/index.php?option=com_content&task=view&id=2005&Itemid=66
http://www.fxguide.com/featured/The_Tech_Behind_the_Tools_of_Avatar_Part_2_Naiad/
http://www.fxguide.com/featured/The_Tech_Behind_the_Tools_of_Avatar_Part_2_Naiad/

9

User Guide

Please refer to the scene files submitted with this report for the basic set-up of the

DOP Network.

Option Functionality

Smoke Amount Emit smoke from source object

Fuel Amount Emit Fuel from source object

Scale Temperature Temperature scale from source object

Add Noise Adds noise to source object. Creates non-uniform sourcing.

Force Scale Scales particle attributes update amount

Viscosity Changes the ratio of FLIP to PIC. 0 is purely FLIP, 1 Is purely PIC.

Cooling Rate The rate at which temperature is decremented at every frame

Buoyancy The total buoyancy force

Buoyancy Direction Buoyancy direction control

Vortex Confinement Larger values increases curl forces in the system

Separation Controls particle separation scale and operations

Ignition Temperature The temperature required before combustion takes place

Burn Rate The amount of fuel used for every ignition

Soot Smoke Rate Amount of density released for every unit of fuel consumed

Temperature Output The amount of temperature released for every unit of fuel consumed

Gas Released The amount of gas released, outward force for every unit of fuel consumed

Heat Cool Time The number of seconds it takes heat to cool from 1 to 0.

Diffusion The blur scale applied to each of the scalar fields at every frame

Turbulence Introduces curl noise into the system

Volume Limit The maximum size and position the simulation may occupy

Extrapolation The cell distance at which particle data is extrapolated to

Vorticle Strength Overall scale of vorticle forces.

Clear User may choose which fields to clear at every frame to save memory

45

	List of Figures
	List of Tables
	1 Introduction
	2 Previous Work
	2.1 Publications
	2.1.1 Harlow
	2.1.2 Brackbill and Ruppel
	2.1.3 Zhu and Bridson
	2.1.4 Horvath and Geiger

	2.2 Off-the-shelf Systems
	2.2.1 Naiad
	2.2.2 Houdini Pyro solver
	2.2.3 Houdini FLIP solver

	2.3 Proprietary Systems
	2.3.1 ILM Plume
	2.3.2 DNeg Squirt

	3 Theory : Fluid Implicit Particle Method
	3.1 Navier Stokes
	3.1.1 The incompressible Navier Stokes equations
	3.1.2 Advection
	3.1.3 Pressure
	3.1.4 External Forces
	3.1.5 Diffusion
	3.1.6 The Incompressibility Condition

	3.2 Fluid Viewpoints
	3.2.1 Eulerian Viewpoint
	3.2.2 Langrangian Viewpoint
	3.2.3 Hybrid Viewpoint
	3.2.4 Advantages and Disadvantages

	3.3 Fluid Implicit Particle Method
	3.3.1 Particle In Cell
	3.3.2 Fluid Implicit Particle
	3.3.3 Solve Steps
	3.3.4 Initialise Particles
	3.3.5 Transferring to the Grid
	3.3.6 Updating Particle Velocities

	4 Motivation
	4.1 Speed
	4.2 Resolution
	4.3 Slow Motion
	4.4 Memory
	4.5 Control

	5 Houdini Technical Background
	5.1 Introduction - Dynamics System (DOPS)
	5.2 Houdini's Open System
	5.3 Creating a local object
	5.4 Configure Object
	5.5 Forces
	5.6 Merge Objects
	5.7 Solvers
	5.8 Micro-Solvers

	6 Implementation
	7 Custom Setups
	7.1 Slow Motion
	7.2 Solver Networking - Fire + Water
	7.2.1 Custom Fields
	7.2.2 Advect FLIP Pyro
	7.2.3 Negate FLIP Pyro Fuel and Temperature
	7.2.4 Collision

	7.3 Fire Spread Across Multiple Solvers
	7.3.1 Overview
	7.3.2 Temperature Impacts
	7.3.3 Particle Seeding

	8 Conclusion
	8.1 Results Analysis
	8.1.1 Speed
	8.1.2 Resolution
	8.1.3 Slow Motion

	8.2 Memory
	8.3 Control
	8.4 Future Work
	8.4.1 SOP Solver Seeding
	8.4.2 Render-time Volumizer
	8.4.3 GPU Simulation
	8.4.4 Particle Turbulence

	8.5 Conclusion

	References
	9 User Guide

