Bournemouth
University

ADAPTIVE AND ADVANCED BEHAVIOUR OF
ARTIFICAL INTELLIGENCE IN COMPUTER
GAMES

A thesis submitted by
HARI SUBRAMANI

$5319307

In partial fulfilment of the requirement of the award of

MSc Computer Animation and Visual Effects

National Centre for Computer Animation
Bournemouth University
Submission Date22/08/2021
Word Count:8220

ABSTRACT

In this thesis, we will be investigating and implementivegadaptive and advanced behaviour
of artificial intelligence (Al) in video games. In addition to basic techniques such as
pathfinding adaptive behaviour is introduced through reinforced learning as welbagplex
decisionmaking based on the response of the playable character.

The first scenario is the implemetiten of a combat level between the playable character and

an individual Alwhere the Al shows adaptive behavibyrreading the data of the playable
character as well as making complex decisions. The second scenario will demonstrate the
movement tactics a@coordinated response of an Al squad against the playable character thus
simulating advanced behaviour.

ACKNOWLEDGEMENT

| would like to thank my supervisor, Professor Jon Macey faadiwece andyuidance in driving
this project forwardaindtriggering my enthusiasm in other areas of computer graphics.

| would also wish to thanthe rest othe teaching staff in the Natidn@entre for Computer
Animation for directly as well as indirectly aiding me over the year to hone my skills in various
subject aream and out of this course

Finally, 1 wish tothank the unreal engine communityr helping the development of this
projed athttps://forums.unrealengine.com/c/community/12

https://forums.unrealengine.com/c/community/12

TABLE OF CONTENTS
Abstract

Acknowledgement

Table of Contents

List of Figures

1. Introduction
2. Previous Work
2.1 Advanced Al
2.1 Adaptive Al
3. Technical Background
3.1 Behaviour Tree
3.2 Perception
3.3 Environment Query System
4. Development
4.1 Objectives
4.2 Scope
4.3 Character design
4.3.1 Player Character
4.3.2 Enemy Al

4.3.2.1BP_AlCharacter
4.3.2.2 BP_AlICharacterAlt
4.3.2.1 BP_AlIFlanker

4.4 Implementation

4.4.1 Scenario 1 Player vs Al (Solo)
4.4.1.1 Decision making

a) Patrolling

b) Engaging player on sight

c) Investigation

© © O O © ©OW 00 00 00 0 0 o O o B~ W N DN P

e =
R O O O

4.4.1.2 Adaptive Al
a) Shoot Intervals
b) Checking possible cover locations
4.4.2 Scenario B Player vs Al (Team)
4.4.2.1 Approaching the Player
4.4.2.2 Tactical movement and Coordinated response
4.4.2.3 Flanking
5. Observations
5.1 Performance
5.1.1 Alin Scenario 1
5.1.2 Al Team irScenario 2
5.2 Technical difficulties during development
6. Conclusion and Future Work
Appendix A : C++ Source Code

References

13
13
13
14
14
16
16
17
17
17
18
18
19
20
44

LIST OF FIGURES

Figure 2.1 Police chasesponse of Al in Grand Theft Auto V 2
Figure 2.2 Different enemy types in Assassins Creed Valhalla 3
Figure 2.3 Nemesis System for Al in Middle Earth: Shadow of Mordor 4
Figure 3.1 Behaviour Tree asset used by Enemy Al for decisi@imgha 5
Figure 3.2 lllustration of Al hearing perception event 6

Figure 3.3 lllustration of Al sight perception where the perception event is updated a@er
having a clear line of sight to the character

Figure 3.4 An EQS generator having multiple tests to filter and score the best possilile
result

Figure 3.5 Preview of an EQS query by filtered results placed in the game environm@nt
in the form of spheres

Figure 4.1Behaviour tree sequence of events for Al patrolling task 10
Figure 4.2 Al Perception event handling for Al sight in BP_Enemy blueprint class 11
Figure 4.3 Enemy Al engaging with the player after having the player in its sights 11

Figure 4.4 Bhaviour tree sequences for Al investigative tasks of hearing perceptionl2
event

Figure 4.5 Al investigating the last seen location of the player 12
Figure 4.6 Behaviour tree sequence with the Shoot Interval task having ShootSpeetikey
Figure 4.7 Al checking possible cover points including bushes after reading recorddd data
Figure 4.8 Al characters establishing line of sight towards the player 15

Figure 4.9 Behaviour tree sequence of Al finding and moving to cover points 15
incrementally

Figure 4.10 Al characters demonstrating tactical movement and coordinated resporige

Figure 4.11 Al Enemy flanker seen at the bottof the image moving away from the 17
direct line of sight towards the player.

Vi

CHAPTER 1

INTRODUCTION

Computer games have evolved significantly overaas. One of the daast games to use Al

was Nim, a mathematical strategy garacman, another game released in 1980 uses
pathfinding in Al to chase down the player. These two games along with countless others before
the 2F' century uses simple Al mement and respons® make games an immersive
experience with competitive Al. But these Al entities will follow a repetitive pattern with no
complex decision making and not adapting to any style of play by thesemdor player.
Recent games have employdidferent decisiormaking techniques to give programmed
responsesike patrolling the environmentaking cover while engaging the player chargcter

etc. but there is less focus on adaptive Al with tactical movement, coordinated team response
with a few exceptions.

This thesis will describe the design and the implementatioadaptiveAl as well asits

advanced behaviouhe project has two scenarios. The first scenario is about a single Al
engaging with the player showiagadaptive responde theply er 6 s styl e of pl a\
scenario is about an Al team, working in a coordinated way along with moving tactically to
engage the player character.

Chapter 2 covers previous waakd examples designing Artificial Intelligencewith
complex behaviours anthplementingthemin various genresf video games

Chapter 3 introduces concepts of Behaviour tree, Perception, Environment query system (EQS)
used in the game engine Unreal engine witkrezfces to tactical and militalike movement
and response by team Al employed against the player.

Chapter 4describes the design and implementation of the project detailing the scenarios about
the individual as well as the team Al with the use eémgine tools and programming along
with details of the development process.

Chapter 5covers thaesults and observations includitige technical difficulties encountered
during the development of the project.

Chapter 6 covers the conclusion and future workHte project described in this thesis.

Appendix A containshe source codir this projectwritten in C++ programming language

CHAPTER 2
PREVIOUS WORK

2.1 Advanced Al

Modern video games use-@mgine tools in combination withrogramming to design and

evoke complex behavioural responses frAinentities. Theseresponsesare predefined
depending on the environment, situation, and genre of the game. For example, Grand Theft
Auto V (Rockstar Games, 2013 a big, operworld gamewith numerous noiplayable
characters (NPC) populating the vast area of the map. All these NPCs are of course Al entities
each programmed to perform different operations depending on the roddsandteracting

with each other on occasio®rexample, f t he pl ayer hits an NPCO:
be an ordinary citizen, it will evoke a response of either cursidgtéacking the player or flee

away but if that vehicle belongs to the police NPC, then a chase and bust response is triggered
against the player where even helicopters and big armoured trucks are called in asabackup
shown in Figure 2.IThese responsese preprogrammed iad designed to work based on the

type of NPC in the worlédind most of them are often repetitive confining to a particular type
(Ashwin et al. 2007).

Another example is thenemy Al entitiesn games like Assassins creed Valhgllbisdt,
2020) where different types of enemies the battlefield will have their own set of attack
tactics against the player where each set ippsgrammed for a particular type of eneasy
shown in Figure 2.2ZThese responses are often disorganized vatboordination between the
type of enemies to make it more challengiog the player. But these improvements are
significant when compared to the simple chase and attack movement in early video games.

Figure 2.1 Police chase response of AGrand Theft Auto V

Figure 2.2 Different enemy types in Assassins Creed Valhalla

2.2 Adaptive Al

Examples mentioned in 2.2 is largely aboutpregrammed behaviours of Al in various games
but with a few notable exceptions, almost #lé Al used ingames have a set of pre
programmed responsesich would not adapttthep | ayer 6 s styl e of pl ay
area largely unexplored due to the notion of missing the element of fun in video Bamgs.

play games to have a good, fun time rathanttussling with an adaptive, tough Al and not
make progress. But this notion is kept in the mind of developers for a long time since the
inception of game development and the evolution of the mindset of gamers who are willing to
explore the unknown, wilpavethe way into making more adaptive Al entities to give a
realistic, immersive experience in the future. It may well have applications beyond gaming,
like training military personnel to increase their combat skills when having a virtual fight
against arAl enemy adapting to your moves.

There are also attempts in making Als in games adapilidele Earth: Shadow of Mordor

game has a system called Nemésig/hich if a player is defeated by a type of enemy Al, it

will rose through the ranks of the enefmgrarchy as well as remembering the scars inflicted
upon it and battle tactics of the player. This will provide a new level of immersion when the
next time the player encounters that same Al, the responses are enhanced thus giving a stern
challenge.

The Design of adaptive Al needs to meet computational requirements such as speed,
effectiveness, robustnesand efficiency as well as functional requirements such as clarity,
variety, consistengyand scalabilityPieter et al. 2006)

Figure 2.3Nemesis System for Al in Middle Earth: Shadow of Mordor

CHAPTER 3
TECHNICAL BACKGROUND

3.1Behaviour Tree

Decisionmaking is pivotal in allowing Al to respond to different situations. The described
project uses Unreal engine, a powerful game engine aitlbt of inengine tools for
development. To make decisions depending on different actions, Behaviour Tree ®hissed.
behaviour tree asset is used to execute different branches of logic for different needs. It also
relies on another asset called Blaskbr d whi ch i s touted as the
where it can have many usgefined Keys to hold and use in the behaviour tree I&pme

of the key types including but not limited to are bool, int, float, vector, object which can be
declared in the blackboard and modified in any Al controller class using the behavias tree
shown in Figure 3.1The typical workflow for this setup i® create a blackboard asset, add

any number of blackboard keyand useghemin the behaviour tree that uses the blackboard
asset.These keys are used in the behaviour tree to switch between different logic or can be a
part of a tasidriven inside the Igic. The behaviour tree cadlsohave any number of tasks and
services to carry out the decisioraking logic.

Apart from the prgorogrammed onesustomizedasks and services can beeatedthrough
blueprints or C++ programming to achieve the desiradlte Typically, a behaviour tree
executes logic from left to right butig also possible to handle concurrent behaviour through
Simple Parallel nodes, services, and decorators.

Figure 3.1 Behaviour Tree asset used by Enemy Al for decrsaing

3.2 Perception

Realistic human response to events like sight, touch, heatimgan also be simulated in the

game world through modern tools and techniques. This response is collectively called
Perception. When perception can be addedltdat would greatly enhance the simulation of
interaction in the game world. Unreal engine
to events such as sighiearing and touchPerception components are added to the enemy Al
controller class and eaclbrponent can have a particular dominant sense of stirmaluse

For example, if sight perception needs to be configuagqmerception component is added to

the controller class and the dominant sense is set to Al sight cArfegu parameters such as

sight range, peripheral vision angesalso configuredlIf there is no blockage to the line of

sight, the sight perception is updated after spotting an actor in thessceim@wn in Figurg.3,

This methodof configurationworks for hearingsee Figure 3.23s well as touch perception
events.The response to any configured perception is obtained and utilized in the controller
class to sel customized variable or even setting the blackboard keys to be used in the
behaviour tree to drive artain logic.

Player character,
causing the
noise

Al registering hearing,
eventwhen heard a

noise in range

Figure 3.2 lllustration of Al hearing perception event

Obstacle

Sight perception event
updated after seeing the
playe

Figure 33 lllustration of Al sight perception where the perception event is updated after
having a clear line of sight to the character.

3.3 Environment Query System

Unreal engine comes with tools and features for Al development. One such feature is called
Environment Query System (EQS) which can be used to collect information about the
environmeninsidethe game level.

The data collected from the environment is theshto a Generator in which the system can
guery the data with questions and udefinedtests and returning the best possible result to be
used in a behaviour tree task

For example, if the Al needs to find cover points away from the player, an EQS query is run in
the behaviour tree where the query system collects data from the environment through points
of weighted/filtered resultdrawninsidethe navigable bounds. Thatd is then queried against
different userdefined tests added to the generator. Some examples of the tests include finding
the distance between the querier and any context added (e.g., Player), tracing to the added
context, finding the dot product betwetre querier and the context addett.as shown in

Figure 3.4.

All the added tests can be run to filter and score cover points placed in the environment and
finally the best possible cover point satisfying the tests in the generator is filtered aneldetur
This point can be used as the best possible location to take cover from the player.

Generator
-

SimpleGrid: generate around Querier
radius: 1500.0, space between: 200.0, projection (height: 1,024)

Trace: to PlayerCharacterContext on Visibility

v il
oS
e]
PN, e 3
D iy

Figure 3.5 Preview of an EQS query by filtered respliésed in the game environment in the
form of spheres.

7

The resul of the query can be previewed inside the viewport editor of the game engine to
adjust the test parameters as well as add new custom tests to the generator by observing real
time calculations of scores hyeighted/filtered results in the form of sphepaced in the
environments shown in Figure 3.5

CHAPTER 4
DEVELOPMENT

4.1 Objectives
The project described within this thesishao scenarios.

1. Scenario 1 is talesign and implemerdn individual Al with adaptive as well as
decisionmaking skillsand place it against the player in a game level

2. Scenario 2 is tereate a team Al demonstrating tactical movement and coordinate
response against the p&a placed in another level.

4.2 Scope

The projectlescribed in this thesfecuses only on thiechnical aspects as well as the working
of the artificial intelligence entities within the game.

The quality of level desigrHUD, 3D modelsanimation, visual effeci&ind rendering are not
considered during the development of the pragect are outside the scope

To demonstrate the working of the artificial intelligence inside the game environment, Unreal
engine 5 application is used rathbam developing a system from scrat@his enabled the
ease of implementing th@rojectwith good visual detail. The tools for Al in the game engine
are also exploited to provide a complete solutmappeal visually.

4.3 Characterdesign
4.3.1 Player Chracter

This is aC++ classwritten based on the ACharacter class provided in the engine. This class
acts as a base classdesign a blueprint clagsside unreal enginealled BP_PlayerCharacter
which is to be used for the player. Movemenintrols, healthand damage events are
implemented inside the class to terivedby the blueprint classThe source code for this
PlayerCharactetlassis presented in Appendix A.

4.3.2EnemyAl
4.3.2.1BP_AICharacter

A blueprint class which has the PlayerCharacter class as the base class but acts as the enemy
Al when spawned inside the level. This will retain the same movement controls, health
damage events but when spawned inside the level, acts as the endrhg Blueprint class
contains a controller class called Enemy, a C++ dlzthas the AAIController class as the
base classThe source code for the Enemy class is presented in Appendixig\controller
class enables the character to behave like anhfnwplaced inside the level along with the
player. The enemy class contains all the decisiaking, tracing as well as blackboard key
setting logicfor the behaviour tree declared in this clashe adaptive featuseare also
designed and implemented iddition to other C++ classes for the functioning of the enemy
Al. This enemy class acts as the base fortilneprint class called BP_Enemy which will
implementperception andhandling the inputs of blackboard keys to be used in the behaviour
tree.

4.3.2.2 BP_AlCharacterAlt

This characteblueprint classs designed the same way as the BP_AICharatassbut it is
designed to work in the enemy Al team for the demonstration of the second scEmarabass
does not have adaptive capabilities andlso has its owblueprintenemy controller class
called BP_EnemyAlderived from theenemy class for customizing individual actions. It also
has its own behaviour tree and blackbcassets to execute actions required to work as a team
player.

4.3.2.3BP_AlFlanker

This is another character blueprint class designed the same way as the BP_AICharacterAlt class
to work in a team environment. It also has its own blueprint enemy controller class called
BP_EnemyFlanker derived from the Enemy class abaitigits own behaviour tree but shares

the same blackboard asset as the BP_Enemy controller class.

4.4 Implementation

The two scenarios mentioned in the objectives are implemented in two different levels and they
are explained as follows.

4.4.1 Scenario 1 Player vs Al (Solo)

In this scenario, the player is placed against an Al which is the BP_AICharacter actor. Different
responses are evoked through decision making in the behaviour tree and adaptive responses
are also implemented which are detailed #s\ics.

4.4.1.1 Decision making
a) Patrolling:

When the game starts, initially the player is spawneddéstance not within the sights of the

Al and at this stage, the Al starts the patrolling task defined in the behavio(sdecEigure

4.1) by picking random location pointthfeedimensional vectors) and moving back and forth
of selected random locatis. These events will run in sequence until the Al encounters a
different event needing a different response.

64
et GI.’!

westigatingNoise is Is Not §

ove to Random Location GL

ve Speed |

| &
"

| e BTService_WalkSpeed

| BTService_WalkSpeed:

‘ Speed:100.0

Z¢ Get Random Location !
BTTas ndomLocation: 1

Location: TargetLocation

Z¢ Clear Blackboard value
| ClearBlackboardCondition

+= Move To
MoveTo: TargetLocation

Figure 4.1 Behaviour tree sequence of events for Al patrolling task.

Boolean blackboard keys are used to facilitate such conditional respotidbese keys are

used inthe blackboard decorator placed on the task. For example, in Figure 4.1, the sequence
AMove to Random Locationo has a bl ackboard k
Al nvestigating Noi s e ? ocewhetherthat seguerece carebe startedtoro r w
not It is doneby settingthe blackboard key IsinvestigatingNoise which carabeessed and

changedn the controller class.g., BP_Enemy

b) Engaging player on sight

While patrolling, when the player comes in the range and angle of the sight perception, a
stimulus event isegisteredseeFigure 4.2, and the response is recorded to a blackboard key
which will start the sequential response of moving towards the @aykdire weapon to cause
damageas shown in Figure 4.3

10

Figure 4.2 Al Perception event handling for Al sight in BP_Enemy blueprint class.

Figure 4.3 Enemy Al engaging with the player after having the player in its sights.

c) Investigation:

Two types of investigative events occur in this encounter. One is for investigating noises
obtained through hearing perception eventsthadther is investigatig thelast knownplayer
location after losing sight of the player.

11

