

ADAPTIVE AND ADVANCED BEHAVIOUR OF

ARTIFICAL INTELLIGENCE IN COMPUTER

GAMES

A thesis submitted by

HARI SUBRAMANI

s5319307

In partial fulfilment of the requirement of the award of

MSc Computer Animation and Visual Effects

National Centre for Computer Animation

Bournemouth University

Submission Date: 22/08/2021

Word Count: 8220

i

ABSTRACT

In this thesis, we will be investigating and implementing the adaptive and advanced behaviour

of artificial intelligence (AI) in video games. In addition to basic techniques such as

pathfinding, adaptive behaviour is introduced through reinforced learning as well as complex

decision-making based on the response of the playable character.

The first scenario is the implementation of a combat level between the playable character and

an individual AI where the AI shows adaptive behaviour by reading the data of the playable

character as well as making complex decisions. The second scenario will demonstrate the

movement tactics and coordinated response of an AI squad against the playable character thus

simulating advanced behaviour.

ii

ACKNOWLEDGEMENT

I would like to thank my supervisor, Professor Jon Macey for his advice and guidance in driving

this project forward and triggering my enthusiasm in other areas of computer graphics.

I would also wish to thank the rest of the teaching staff in the National Centre for Computer

Animation for directly as well as indirectly aiding me over the year to hone my skills in various

subject areas in and out of this course.

Finally, I wish to thank the unreal engine community for helping the development of this

project at https://forums.unrealengine.com/c/community/12.

https://forums.unrealengine.com/c/community/12

iii

TABLE OF CONTENTS

Abstract i

Acknowledgement ii

Table of Contents iii

List of Figures v

1. Introduction 1

2. Previous Work 2

 2.1 Advanced AI 2

2.1 Adaptive AI 3

3. Technical Background 4

 3.1 Behaviour Tree 4

 3.2 Perception 5

 3.3 Environment Query System 6

4. Development 8

 4.1 Objectives 8

 4.2 Scope 8

 4.3 Character design 8

 4.3.1 Player Character 8

 4.3.2 Enemy AI 9

 4.3.2.1 BP_AICharacter 9

 4.3.2.2 BP_AICharacterAlt 9

 4.3.2.1 BP_AIFlanker 9

 4.4 Implementation 9

 4.4.1 Scenario 1 ï Player vs AI (Solo) 9

 4.4.1.1 Decision making 10

 a) Patrolling 10

 b) Engaging player on sight 10

 c) Investigation 11

iv

 4.4.1.2 Adaptive AI 13

 a) Shoot Intervals 13

 b) Checking possible cover locations 13

 4.4.2 Scenario 2 ï Player vs AI (Team) 14

 4.4.2.1 Approaching the Player 14

 4.4.2.2 Tactical movement and Coordinated response 16

 4.4.2.3 Flanking 16

5. Observations 17

 5.1 Performance 17

 5.1.1 AI in Scenario 1 17

 5.1.2 AI Team in Scenario 2 18

 5.2 Technical difficulties during development 18

6. Conclusion and Future Work 19

Appendix A : C++ Source Code 20

References 44

v

LIST OF FIGURES

Figure 2.1 Police chase response of AI in Grand Theft Auto V 2

Figure 2.2 Different enemy types in Assassins Creed Valhalla 3

Figure 2.3 Nemesis System for AI in Middle Earth: Shadow of Mordor 4

Figure 3.1 Behaviour Tree asset used by Enemy AI for decision making 5

Figure 3.2 Illustration of AI hearing perception event 6

Figure 3.3 Illustration of AI sight perception where the perception event is updated after 6

 having a clear line of sight to the character

Figure 3.4 An EQS generator having multiple tests to filter and score the best possible 7

 result

Figure 3.5 Preview of an EQS query by filtered results placed in the game environment 7

 in the form of spheres

Figure 4.1 Behaviour tree sequence of events for AI patrolling task 10

Figure 4.2 AI Perception event handling for AI sight in BP_Enemy blueprint class 11

Figure 4.3 Enemy AI engaging with the player after having the player in its sights 11

Figure 4.4 Behaviour tree sequences for AI investigative tasks of hearing perception 12

 event

Figure 4.5 AI investigating the last seen location of the player 12

Figure 4.6 Behaviour tree sequence with the Shoot Interval task having ShootSpeed key 13

Figure 4.7 AI checking possible cover points including bushes after reading recorded data 14

Figure 4.8 AI characters establishing line of sight towards the player 15

Figure 4.9 Behaviour tree sequence of AI finding and moving to cover points 15

 incrementally

Figure 4.10 AI characters demonstrating tactical movement and coordinated response 16

Figure 4.11 AI Enemy flanker seen at the bottom of the image moving away from the 17

 direct line of sight towards the player.

vi

1

CHAPTER 1

INTRODUCTION

Computer games have evolved significantly over the years. One of the earliest games to use AI

was Nim, a mathematical strategy game. Pac-man, another game released in 1980 uses

pathfinding in AI to chase down the player. These two games along with countless others before

the 21st century uses simple AI movement and response to make games an immersive

experience with competitive AI. But these AI entities will follow a repetitive pattern with no

complex decision making and not adapting to any style of play by the end-user or player.

Recent games have employed different decision-making techniques to give programmed

responses like patrolling the environment, taking cover while engaging the player character,

etc. but there is less focus on adaptive AI with tactical movement, coordinated team response

with a few exceptions.

This thesis will describe the design and the implementation of adaptive AI as well as its

advanced behaviour. The project has two scenarios. The first scenario is about a single AI

engaging with the player showing an adaptive response to the playerôs style of play. The second

scenario is about an AI team, working in a coordinated way along with moving tactically to

engage the player character.

Chapter 2 covers previous work and examples in designing Artificial Intelligence with

complex behaviours and implementing them in various genres of video games.

Chapter 3 introduces concepts of Behaviour tree, Perception, Environment query system (EQS)

used in the game engine Unreal engine with references to tactical and military-like movement

and response by team AI employed against the player.

Chapter 4 describes the design and implementation of the project detailing the scenarios about

the individual as well as the team AI with the use of in-engine tools and programming along

with details of the development process.

Chapter 5 covers the results and observations including the technical difficulties encountered

during the development of the project.

Chapter 6 covers the conclusion and future work for the project described in this thesis.

Appendix A contains the source code for this project written in C++ programming language.

2

CHAPTER 2

PREVIOUS WORK

2.1 Advanced AI

Modern video games use in-engine tools in combination with programming to design and

evoke complex behavioural responses from AI entities. These responses are pre-defined

depending on the environment, situation, and genre of the game. For example, Grand Theft

Auto V (Rockstar Games, 2013) is a big, open-world game with numerous non-playable

characters (NPC) populating the vast area of the map. All these NPCs are of course AI entities

each programmed to perform different operations depending on the role and also interacting

with each other on occasions. For example, if the player hits an NPCôs vehicle who happens to

be an ordinary citizen, it will evoke a response of either cursing and attacking the player or flee

away but if that vehicle belongs to the police NPC, then a chase and bust response is triggered

against the player where even helicopters and big armoured trucks are called in as backup as

shown in Figure 2.1. These responses are pre-programmed and designed to work based on the

type of NPC in the world and most of them are often repetitive confining to a particular type

(Ashwin et al. 2007).

 Another example is the enemy AI entities in games like Assassins creed Valhalla (Ubisoft,

2020) where different types of enemies on the battlefield will have their own set of attack

tactics against the player where each set is pre-programmed for a particular type of enemy as

shown in Figure 2.2. These responses are often disorganized with no coordination between the

type of enemies to make it more challenging for the player. But these improvements are

significant when compared to the simple chase and attack movement in early video games.

Figure 2.1 Police chase response of AI in Grand Theft Auto V

3

Figure 2.2 Different enemy types in Assassins Creed Valhalla

2.2 Adaptive AI

Examples mentioned in 2.2 is largely about pre-programmed behaviours of AI in various games

but with a few notable exceptions, almost all the AI used in games have a set of pre-

programmed responses which would not adapt to the playerôs style of play. Adaptive AI is an

area largely unexplored due to the notion of missing the element of fun in video games. People

play games to have a good, fun time rather than tussling with an adaptive, tough AI and not

make progress. But this notion is kept in the mind of developers for a long time since the

inception of game development and the evolution of the mindset of gamers who are willing to

explore the unknown, will pave the way into making more adaptive AI entities to give a

realistic, immersive experience in the future. It may well have applications beyond gaming,

like training military personnel to increase their combat skills when having a virtual fight

against an AI enemy adapting to your moves.

There are also attempts in making AIs in games adaptive. Middle Earth: Shadow of Mordor

game has a system called Nemesis in which if a player is defeated by a type of enemy AI, it

will rose through the ranks of the enemy hierarchy as well as remembering the scars inflicted

upon it and battle tactics of the player. This will provide a new level of immersion when the

next time the player encounters that same AI, the responses are enhanced thus giving a stern

challenge.

The Design of adaptive AI needs to meet computational requirements such as speed,

effectiveness, robustness, and efficiency as well as functional requirements such as clarity,

variety, consistency, and scalability (Pieter et al. 2006).

4

Figure 2.3 Nemesis System for AI in Middle Earth: Shadow of Mordor

CHAPTER 3

TECHNICAL BACKGROUND

3.1 Behaviour Tree

Decision-making is pivotal in allowing AI to respond to different situations. The described

project uses Unreal engine, a powerful game engine with a lot of in-engine tools for

development. To make decisions depending on different actions, Behaviour Tree is used. This

behaviour tree asset is used to execute different branches of logic for different needs. It also

relies on another asset called Blackboard which is touted as the ñBrainò for the behaviour tree

where it can have many user-defined Keys to hold and use in the behaviour tree logic. Some

of the key types including but not limited to are bool, int, float, vector, object which can be

declared in the blackboard and modified in any AI controller class using the behaviour tree as

shown in Figure 3.1. The typical workflow for this setup is to create a blackboard asset, add

any number of blackboard keys, and use them in the behaviour tree that uses the blackboard

asset. These keys are used in the behaviour tree to switch between different logic or can be a

part of a task-driven inside the logic. The behaviour tree can also have any number of tasks and

services to carry out the decision-making logic.

Apart from the pre-programmed ones, customized tasks and services can be created through

blueprints or C++ programming to achieve the desired results. Typically, a behaviour tree

executes logic from left to right but it is also possible to handle concurrent behaviour through

Simple Parallel nodes, services, and decorators.

5

Figure 3.1 Behaviour Tree asset used by Enemy AI for decision making

3.2 Perception

Realistic human response to events like sight, touch, hearing, etc. can also be simulated in the

game world through modern tools and techniques. This response is collectively called

Perception. When perception can be added to AI, it would greatly enhance the simulation of

interaction in the game world. Unreal engineôs AI Perception is used in this project to respond

to events such as sight, hearing, and touch. Perception components are added to the enemy AI

controller class and each component can have a particular dominant sense of stimulus source.

For example, if sight perception needs to be configured, a perception component is added to

the controller class and the dominant sense is set to AI sight config. A few parameters such as

sight range, peripheral vision angle are also configured. If there is no blockage to the line of

sight, the sight perception is updated after spotting an actor in the scene as shown in Figure 3.3.

This method of configuration works for hearing (see Figure 3.2) as well as touch perception

events. The response to any configured perception is obtained and utilized in the controller

class to set a customized variable or even setting the blackboard keys to be used in the

behaviour tree to drive a certain logic.

6

Figure 3.2 Illustration of AI hearing perception event

Figure 3.3 Illustration of AI sight perception where the perception event is updated after

having a clear line of sight to the character.

3.3 Environment Query System

Unreal engine comes with tools and features for AI development. One such feature is called

Environment Query System (EQS) which can be used to collect information about the

environment inside the game level.

The data collected from the environment is then fed to a Generator in which the system can

query the data with questions and user-defined tests and returning the best possible result to be

used in a behaviour tree task.

7

For example, if the AI needs to find cover points away from the player, an EQS query is run in

the behaviour tree where the query system collects data from the environment through points

of weighted/filtered results drawn inside the navigable bounds. The data is then queried against

different user-defined tests added to the generator. Some examples of the tests include finding

the distance between the querier and any context added (e.g., Player), tracing to the added

context, finding the dot product between the querier and the context added, etc. as shown in

Figure 3.4.

All the added tests can be run to filter and score cover points placed in the environment and

finally the best possible cover point satisfying the tests in the generator is filtered and returned.

This point can be used as the best possible location to take cover from the player.

Figure 3.4 An EQS generator having multiple tests to filter and score the best possible result.

Figure 3.5 Preview of an EQS query by filtered results placed in the game environment in the

form of spheres.

8

The results of the query can be previewed inside the viewport editor of the game engine to

adjust the test parameters as well as add new custom tests to the generator by observing real-

time calculations of scores by weighted/filtered results in the form of spheres placed in the

environment as shown in Figure 3.5.

CHAPTER 4

DEVELOPMENT

4.1 Objectives

The project described within this thesis has two scenarios.

1. Scenario 1 is to design and implement an individual AI with adaptive as well as

decision-making skills and place it against the player in a game level

2. Scenario 2 is to create a team AI demonstrating tactical movement and coordinate

response against the player placed in another level.

4.2 Scope

The project described in this thesis focuses only on the technical aspects as well as the working

of the artificial intelligence entities within the game.

The quality of level design, HUD, 3D models, animation, visual effects, and rendering are not

considered during the development of the project and are outside the scope.

To demonstrate the working of the artificial intelligence inside the game environment, Unreal

engine 5 application is used rather than developing a system from scratch. This enabled the

ease of implementing the project with good visual detail. The tools for AI in the game engine

are also exploited to provide a complete solution to appeal visually.

4.3 Character design

4.3.1 Player Character

This is a C++ class written based on the ACharacter class provided in the engine. This class

acts as a base class to design a blueprint class inside unreal engine called BP_PlayerCharacter

which is to be used for the player. Movement controls, health, and damage events are

implemented inside the class to be derived by the blueprint class. The source code for this

PlayerCharacter class is presented in Appendix A.

9

4.3.2 Enemy AI

4.3.2.1 BP_AICharacter

A blueprint class which has the PlayerCharacter class as the base class but acts as the enemy

AI when spawned inside the level. This will retain the same movement controls, health, and

damage events but when spawned inside the level, acts as the enemy AI. The blueprint class

contains a controller class called Enemy, a C++ class that has the AAIController class as the

base class. The source code for the Enemy class is presented in Appendix A. This controller

class enables the character to behave like an AI when placed inside the level along with the

player. The enemy class contains all the decision-making, tracing as well as blackboard key

setting logic for the behaviour tree declared in this class. The adaptive features are also

designed and implemented in addition to other C++ classes for the functioning of the enemy

AI. This enemy class acts as the base for the blueprint class called BP_Enemy which will

implement perception and handling the inputs of blackboard keys to be used in the behaviour

tree.

4.3.2.2 BP_AICharacterAlt

This character blueprint class is designed the same way as the BP_AICharacter class but it is

designed to work in the enemy AI team for the demonstration of the second scenario. This class

does not have adaptive capabilities and it also has its own blueprint enemy controller class

called BP_EnemyAlt derived from the Enemy class for customizing individual actions. It also

has its own behaviour tree and blackboard assets to execute actions required to work as a team

player.

4.3.2.3 BP_AIFlanker

This is another character blueprint class designed the same way as the BP_AICharacterAlt class

to work in a team environment. It also has its own blueprint enemy controller class called

BP_EnemyFlanker derived from the Enemy class along with its own behaviour tree but shares

the same blackboard asset as the BP_Enemy controller class.

4.4 Implementation

The two scenarios mentioned in the objectives are implemented in two different levels and they

are explained as follows.

4.4.1 Scenario 1 ï Player vs AI (Solo)

In this scenario, the player is placed against an AI which is the BP_AICharacter actor. Different

responses are evoked through decision making in the behaviour tree and adaptive responses

are also implemented which are detailed as follows.

10

4.4.1.1 Decision making

a) Patrolling:

When the game starts, initially the player is spawned at a distance not within the sights of the

AI and at this stage, the AI starts the patrolling task defined in the behaviour tree (see Figure

4.1) by picking random location points (three-dimensional vectors) and moving back and forth

of selected random locations. These events will run in sequence until the AI encounters a

different event needing a different response.

Figure 4.1 Behaviour tree sequence of events for AI patrolling task.

Boolean blackboard keys are used to facilitate such conditional response and these keys are

used in the blackboard decorator placed on the task. For example, in Figure 4.1, the sequence

ñMove to Random Locationò has a blackboard key IsInvestigatingNoise in a decorator called

ñInvestigating Noise?ò where the decorator will decide whether that sequence can be started or

not. It is done by setting the blackboard key IsInvestigatingNoise which can be accessed and

changed in the controller class e.g., BP_Enemy.

b) Engaging player on sight:

While patrolling, when the player comes in the range and angle of the sight perception, a

stimulus event is registered (see Figure 4.2), and the response is recorded to a blackboard key

which will start the sequential response of moving towards the player and fire weapon to cause

damage as shown in Figure 4.3.

11

Figure 4.2 AI Perception event handling for AI sight in BP_Enemy blueprint class.

Figure 4.3 Enemy AI engaging with the player after having the player in its sights.

c) Investigation:

Two types of investigative events occur in this encounter. One is for investigating noises

obtained through hearing perception events and the other is investigating the last known player

location after losing sight of the player.

