
Procedural Ivy Generator
Houdini Digital Asset

by

Caoimhe McCarthy
s5204473

Masters Degree Project

MSc Computer Animation + Visual Effects

BOURNEMOUTH UNIVERSITY

August 2020

University Web Site URL Here (include http://)

Abstract

Vegetation growth has always been an important aspect of computer graph-

ics. In many instances, overgrowth of ivy and vines have played a key role in

achieving a realistic aesthetic scene. Though the artistic modelling of 3D ivy is

somewhat dated, the industry is constantly driving to be more and more pro-

cedural. This paper demonstrates the generation of a Houdini Digital Asset

for ivy growth. This procedural tool can generate a variety of different scenes

based on user defined parameter values. The ivy is generated using a sort of

particle based method first introduced in 1985 by Reeves and Blau (1985). Us-

ing this as the basis for the growth algorithm, the HDA also simulates external

tropisms such as gravitropism and phototropism.

Along with the ability to automatically generate ivy, this tool allows the user the

more stylistic approach of drawing ivy directly onto the environment geome-

try. This art-directable procedural tool demonstrates an easy way to generate

climbing ivy.

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1
1.2 The Problem . 2

1.2.1 Note . 2
1.3 Ivy . 3

1.3.1 Tropisms . 4

2 Relevant Work 5
2.1 L-Systems . 5
2.2 Particle Based . 6

3 Technical Background 8
3.1 VEX . 8
3.2 Houdini Digital Assets . 9
3.3 Signed Distance Fields . 9

4 Implementation 11
4.1 Growth . 11
4.2 Curve Growth . 14
4.3 Tendrils . 14
4.4 Stem Scaling . 15
4.5 Leaves . 15
4.6 Collision Detection . 17

5 Known Issues + Solutions 19
5.1 Bunching . 19
5.2 Merged Geometry . 19
5.3 Gravity . 20
5.4 Uniform Scaling . 20

6 Performance 21

7 Further Work 24

ii

8 Conclusion + Discussion 25

Bibliography 28

iii

1. Introduction

1.1 Motivation

Plant growth simulations have been present in this industry for a significant

length of time. Initially, this content had to be created manually by the artist

in an attempt to recreate a real world environment. The film and games indus-

try continue to require vast amounts of vegetation and overgrowth throughout

scenes as important background assets. Among the demands of modern re-

quirements such as hyper-realism and fast real-time rendering, these industries

have an ever growing need for procedural production tools that can be used

and implemented with relative ease. Typically, a procedural approach to con-

tent generation is far less time consuming and potentially lower in cost. Vege-

tation is an ideal candidate for a procedural approach as many natural patterns

and phenomena can be recreated using mathematics and can be generated in

vast quantities using specific programmable software. Having a procedural

approach can greatly shorten development times and generate an incredible

amount of variance entirely computer driven or even allow for intricate artistic

direction.

Vegetation such as vines and shrubs can add fine detail to scenes making them

appear more realistic as well as overgrowth bringing life to an otherwise dull

scene. Having a scene filled with plant life and growth can imply a passing

of time and can convey lively interaction between objects in the scene, without

which an audience would never consider. The methods in which all types of

growth are recreated on screen are fascinating, however in this instance this

project aims to demonstrate only a fraction of what can be achieved.

1

1.2 The Problem

The aim of this project is to create a system which generates climbing plants that

interact with the surrounding environment. The system framework should be

easily modified as per user preference.

The following is a list of statements to aid in drawing focus to the main tasks

set out by this project.

1. Given seed points, automatically generate climbing ivy. Should branches

be required, consider how they are then generated from the main stems.

Similarly, integrate a method of drawing curves directly into the scene for

full artistic control.

2. Introduce the main factors in plant growth, tropisms. The effects of grav-

ity and light exposure are have great influence over the growth of plants.

Depending on where the light source geometry is, a plant should be able

to direct its growth toward it.

3. Regarding collisions there are two priorities, avoiding the plant intersect-

ing the environment in an unnatural way and avoiding leaves colliding

with each other. Should collisions be detected there should be an appro-

priate reaction to counter this.

4. Customisation plays a key role in the overall goals of this project and

should allow the user the versatility to swap out geometries and alter

shapes should they wish. With the final product aiming to be a compact,

easy to use tool.

1.2.1 Note

It is important to note certain limitations of this tool. The tool was created with

the premise of adding growth and life to a scene though static. The ivy is not

simulated over time and instead the focus is on the overall shape and impres-

sion. Though realism is typically always an important goal in vegetation recre-

ation, this tool aims to also allow the artist manipulate real world environments

as they see fit.

2

1.3 Ivy

There are many different types of Ivy out there but generally all are climbing

vines. Ivy can grow vigorously, making it a great plant to give quick results

when trying to create a busy scene. The most common Ivy found in Europe

is known as English Ivy, or hedera helix. As well as being a vigorous climber,

hedera helix is also a trailing plant meaning with nothing to cling to it droops

with gravity, making it common in hanging baskets. This plant is very resilient

and can even survive winters with heavy frost, however due to it’s impressive

resilience some parts of North America have classified this plant an invasive

species (RHS, 2020).

FIGURE 1.1: Ivy growing on a tree at Queens University Belfast (Personal col-
lection).

Climbing plants such as English ivy or grapevine (vitis vinifera) generally pro-

duce two lateral buds. One which forms a lateral branch, a similar structure to

the main stem, whereas the other develops into a tendril. Tendrils are twisting

threadlike strands typically protruding from the vine stem. In English ivy, the

ends of the tendrils flatten and extrude an adhesive liquid upon contacting the

surface allowing the ivy to climb and support the weight of the vine.

3

The tool created during this project aims to recreate a general ivy vine close to

English ivy with the ability to alter various parameters resulting in the appear-

ance of different ivies.

FIGURE 1.2: Ivy branching at-
tached to a wall at Queens Univer-

sity Belfast (Personal collection)

Conditions such as specific characteristics of

different plants i.e leaf size and shape or di-

rection of branching can be altered easily to

generate visually different growth. However

depending on the parameters chosen, the tool

is always sensitive to the environment. Pa-

rameters may need to be altered for realistic

growth depending on what the plant is climb-

ing and the size of the scene. Geometry such

as walls have no big obstacle for the ivy to

overcome compared to a more complex struc-

ture where direction of growth is not so obvi-

ous.

1.3.1 Tropisms

A tropism is a biological response of a plants

growth in response to external environmental stimuli. Though there are many

different types of tropism few are considered during this project. Phototropism

is a plants response to sunlight and the effect it has on it’s directional growth.

By adding a sun object to the scene the direction of growth can be persuaded

towards it.

Geotropism refers to oriented growth in reaction to gravity. In certain species of

ivy this occurs when there are no surrounding objects to cling to and instead the

ivy hangs. Geotropism is also implemented in this tool with options to change

it’s strength.

4

2. Relevant Work

2.1 L-Systems

A widely used approach considered when aiming to recreate growth patterns is

the L-system. This method follows a set of repetitive replacement rules to cre-

ate fractal-like structures and realistic plant models (Prusinkiewicz and Hanan

1989). L-systems were introduced by Hungarian Biologist Aristid Lindenmayer.

He used L-systems to model the growth processes of plants. L- systems are a

type of formal grammar in that the system consists of rules, an alphabet and an

axiom (1990).

The production rules governing L-systems are versatile and a variety of struc-

tures can be created. These methods have gone beyond modeling trees and

plants and have found uses in documenting the morphology of many organ-

isms found in nature. L-systems are recursive by nature meaning intricate

fractal structures can be easily generated. This recursive nature can bring up

problems however as it can often lead to a distinct self similarity not typically

found in plants and trees. L-system’s can also have the issue of intersecting

branches, as the recursive nature dictates a newly created branch only considers

the branch before it regardless of the rest of the system (Kaandorp and Kubler

2001).

These systems are typically chosen due to the simplicity of their structure and

with the ability to expand existing L-systems, a variety of different plant char-

acteristics can be shown. Though the initial L-system structure proposed by

Lindenmayer was relatively simple, some have developed it further to consider

external factors and tropisms (Měch and Prusinkiewicz 1996).

5

Kniemeyer et al. (2008) introduced Relational Growth Grammars, a change

from the traditional L-system method of string rewriting grammars extending

the notations and semantics into graph grammars. This new method allowed

for more a more dynamic approach to L-systems and was embedded in the

language XL, bringing together object-oriented and rule-based programming

(Kniemeyer et al. 2008).

Though there are many applications of L-systems, this project has chosen to

instead focus on particle based growth algorithms that create less known exam-

ples of growth but are also frequently used in the industry.

2.2 Particle Based

Another method introduced when modelling plant growth is by using a particle

based system to generate points along the plant stems. Reeves and Blau (1985)

first introduced this method in 1985. Initially this method did not account for

environment interaction, meaning the systems were essentially closed. This be-

ing very limiting, it inspired further work. Both Arvo et al. (1988) and Green

(1989) implemented different techniques to allow for interaction between parti-

cles and the environment. Arvo et al. used ray casting to detect the proximity

of objects while Greene used the 3D grid values, voxels, to detect collisions.

Arvo’s method using raycasting limits the means of sensing the environment

which limits the type of information that can be obtained (Benes and Millán

2002). The method applied in Greene’s technique allows the plants to grow

based on predefined rules i.e relationships such as intersection and proximity.

These elements can be evaluated faster using voxel space rather than analytic

geometry (Greene 1989).

Each particle based method has the same foundation, the plants are generated

from given seed points. From there, particles are grown each depending on

some local variables. Beyond the simple versions, a more intricate version of a

particle based growth system, AMAP, was introduced in 1988 (de Reffye et al.

1988). AMAP is a biologically based system that uses so-called ”intelligent”

particles. This system considers even more environmental factors such as suffi-

cient food for the plants to grow among other important resources.

6

In 2002, Benes and Milan (2002) extended the particle based system even fur-

ther, introducing the concept of traumatic reiteration. This technique kills a

particle if no further growth is possible. The growth then filters down the plant

to the next available particle and begins to stimulate new lateral growth from

there. This method introduces obstacle avoidance, furthering the realistic inter-

action between the plant growth and the environment.

The tool described here uses a particle based approach to model the climbing

plants. By using Houdini’s VDB volumes, voxel space is used to aid in collision

detection and to direct the growth of the ivy.

FIGURE 2.1: Ivy generated by Benes and Milan (2002) using traumatic reitera-
tion.

7

3. Technical Background

3.1 VEX

The tool described in this paper was entirely made in the 3D procedural soft-

ware, Houdini. Houdini’s ability to handle different scripting languages makes

it versatile and makes geometry among others relatively easy to manipulate.

Houdini’s native scripting language is known as VEX. This expression lan-

guage can be used throughout Houdini with the option to be applied to render-

ing, compositing, modelling or particle systems. Though clearly not as widely

known and used across multiple DCC tools such as python, within Houdini

VEX is an incredibly versatile and extremely efficient language for writing cus-

tom shaders and nodes etc. The VEX language is somewhat based on C, C++

and RSL and is relatively easy to understand given any prior knowledge of

these languages. (SideFX, 2020)

Having knowledge of VEX is very useful when it comes to customising nodes

and tweaking attributes. The Attribute Wrangle node is a powerful node used for

implementing VEX code on different geometry types. The wrangle node’s use

of scripting can allow the network to be more versatile and faster to implement.

By using channel functions, we can add custom sliders to the code that allow for

procedural manipulation of the scene. Attribute Wrangle has been used multiple

times throughout this tool, it’s use primarily in forming the growth algorithm

though also simply to create and manipulate different attributes in the system

as will be explained later in Section 4.1 in greater detail.

8

3.2 Houdini Digital Assets

Houdini’s procedural power enables a user to convert their custom nodes into

reusable digital assets. These Houdini Digital Assets allow the user to package

complex networks and build custom interfaces into a node that users can install

and use similar to any other node within Houdini. The method to build a slick

HDA can be tedious in linking parameters and ensuring everything is portable

and contained within the asset though the convenience of the resulting tool

makes the process always worth it. These nodes are used at both object and

geometry level depending on the creators intentions. HDA’s also have built in

help cards, aiding the user each step of the way.

3.3 Signed Distance Fields

The particle based approach used in this tool would not be possible without the

use of Houdini volumes. Standard Houdini volumes store values for voxels i.e

3D pixels. The values stored can be position, size and orientation, etc. Depend-

ing on the type of volume different information is stored. For this project the

necessary information needed from the voxels is a signed distance field. SDF’s

are typically used for fluids though work equally well for polygons. An SDF

stores the distance from a point to the surface in each voxel.

FIGURE 3.1: Convex hull surrounding
”squab” geometry showing the exterior

band.

The VDB from Polygons SOP converts

polygonal surfaces into VDB volume

primitives. This node can create a

signed distance field encapsulating

the newly converted volume. To un-

derstand the SDF, first consider VDB

volumes, they have active regions or

what is called interior and exterior

bands. Increasing these bands in-

creases the active regions i.e spread-

ing out more voxels surrounding the

volume containing SDF values. For the signed distance field, it is convention

that any value contained within the surface has a negative value and voxels

9

outside the surface have a positive value. Furthermore, points on the surface of

the geometry have a zero value. This surface is regarded as an isocontour. See

Figure 3.2.

FIGURE 3.2: Depiction of a signed distance field encapsulating the ”squab”
geometry. Areas outside of the volume have a value of 1. While within the
interior band each voxel has a negative value. Values on the isocontour are

zero.

The VEX function volumesample() returns a float value which is the signed

distance from a given point to the volume surface. The volumegradient()

function returns a directional vector describing the direction of a low value to

a high value. This is not normalised upon return of the value so depending on

intentions, it is generally good to normalise it after it’s been computed. Having

access to both the distance and gradient allows for the necessary computations

throughout this HDA described in Section 4.1.

10

4. Implementation

The foundation of the particle based approach chosen for this paper is based on

a method described in a publication by Johannes Richter (Richter 2017). Richter

approaches the generation of the Ivy stems using points and determining the

placement of each point based on the previous point position. He describes the

points having main forces controlling where they will be placed. An upwards

direction enabling the plant to climb, a wander vector allowing the plant to

grow in a random direction each step and the final being a wall direction which

aims towards the closest object in the environment from each point.

The geometry in the scene is first inputted into a HDA called IvyGuides where

it is converted into a VDB using a VDB From Polygons SOP, this generates a

signed distance field around the geometry. Choosing the distance field to fill

the interior band is necessary to avoid potential incorrect values further in the

implementation. Filling the interior ensures each voxel contained within the

geometry will have a negative signed value. Having this conversion contained

within its own HDA makes the entire ivy generation quicker as once the geom-

etry is loaded in and converted it need not be altered again and Houdini will

not attempt to update it further.

4.1 Growth

Once the seed points are chosen and inputted into the IvyGenerator HDA the

growth algorithm can begin. In the attribute wrangle node named stem growth

the main variables are initialized. This wrangle takes in three separate inputs,

the first being the relevant points to work over, the second is the VDB from

which the signed distance field is generated and the third is the optional sun

object. Within the node a for loop begins with the max amount of steps the vine

11

stem can grow as its limit. A random vector is generated using the loops in-

crement counter to ensure variation. This random vector is used as the wander

vector and will be added to the overall direction calculated to allow the stem to

develop in any direction each step.

Using the signed distance field created earlier both the distance of the posi-

tion from the surface and the gradient to the surface are calculated using the

functions volumesample() and volumegradient(). As the gradient points

from a low value to a higher value, pushing out from the geometry, the value is

negated for use as an attraction factor instead.

Should the user want a sun effect influencing the growth pattern, the new ge-

ometry is brought into the wrangle, independent of the environment using a

point() function. This can access an attribute of the geometry in question, in

this case the sun’s position. The sun’s influence on each point is calculated by

normalizing the difference between the perspective position of the point and

the sun object’s position. The initial direction is then calculated. It is found by

a summation of the different tropisms along with user specified influences.

FIGURE 4.1: Stem and branch generation.
Lines have been resampled after growth.

This direction is then updated de-

pending on certain conditions. Should

the SDF distance of a position be

greater than the defined threshold i.e

no longer close enough to the geom-

etry, the direction vector is changed.

A clear issue would be if the vines

continued to grow upwards without

any object to cling to therefore the

upwards growth is removed. Simi-

larly if gravity is activated, the down-

wards direction and it’s influence are

added to the accumulated direction

vector. This direction is then nor-

malised and fit into specified bounds

using the fit01() function.

The functions volumegradient() and volumesample() are used once again

on the newly calculated position evaluated by the summation of the previous

12

position and the direction vector. Should the volumesample() return a neg-

ative value the newly generated position is inside the interior band voxels,

implying it is within the geometry. To correct this the position is pushed out

along the gradient vector away from the volume. A point is then added using

addpoint() and set to the newly found position using setpointattrib().

In case a seed point was generated too far away from geometry and the gravity

factor is turned off a condition is set using the removepoint() function. This

removes any seed points on the condition the user has chosen to do so.

The resulting points are connected using an Add SOP. Since the points are con-

tained within the for each loop the lines form individually regardless of the

increasing point number, @ptnum.

Branches are generated in a similar fashion where the seed points are instead

scattered points along the stem. Scattering points rather than using the gener-

ated points allows for more custom variation and control. The algorithm is also

updated to allow extra customisation i.e choosing the height at which branches

should grow. This allows for more stylized branches.

To address some potential collisions between points and the geometry, an At-

tribute Transfer SOP is applied. This transfers the normals of the scene geometry

onto the points of the curve. Doing this allows for a slider to push the curve out

away from the geometry along the normals to avoid any potential intersections

created during the smoothing process. The wrangle containing this runs over

all points and updates their @P position attributes by adding the geometry’s

normal.

Houdini’s convenient Smooth SOP allows to remove any overly jaggy point po-

sitions on the stem or branches before adding a slight, more realistic distortion.

This distortion is added using an Attribute VOP with a curl noise. This noise is

particularly useful for drawn curves as the growth appears more natural. Pa-

rameters of the noise have been promoted to allow for customisation though

very little change is typically needed.

13

4.2 Curve Growth

The curve growth is quite simple in comparison to the automation. Using a

Draw Curve or Curve SOP and inputting them into the IvyGenerator HDA the

stem is generated. In the network, Copy and Point Jitter nodes are added to

allow for further customisations.

FIGURE 4.2: ”NCCA” drawn on geometry using Draw Curve SOP with multi-
ple strokes.

4.3 Tendrils

The tendrils are generated by projecting points onto the geometry. This ap-

proach is reminiscent of the method behind ray-casting though it only used for

the tendrils as can be more computationally heavy. In a wrangle node with two

inputs, the tendril seed points and the mesh geometry, the projected points are

created.

Given positions on the stem, a normalised random vector is generated using

fit01() and rand() functions. Using the current point position and the ran-

dom vector, a normalised position is found radiating from the stem. A spread

14

factor is added to manipulate how far the tendrils may spread out along the ge-

ometry. Once the new positions are found, a projected position is found on the

geometry using the minpos() function. This function finds the closest position

on the surface of a geometry and returns that position. For a line to be created

between points in Houdini it is first necessary to add vertices at each point.

This is achieved using addprim() and addvertex() functions, creating the

line between the vertices. As the shape of tendrils in actuality are curved and

tend to be wider at the point of contact with an object, a ramp and curl noise

are applied to the lines. This is achieved within an attribute VOP node.

4.4 Stem Scaling

For converting the lines into actual tube geometry a Polywire SOP is used. As

with most vegetation, ivy is thicker at the base of the stem, where the plant is

older and thins out along the branches. L-systems in Houdini have a built in pa-

rameter called the @lage, this is a float value determining the position of each

generation in comparison to the root. Unfortunately, the nature of the system

designed here does not have access to such an attribute nor would one be easily

generated. Instead the primitives are grouped off upon generation, stemPrims

and branchPrims and a Resample node is used to create the @curveu attribute.

This attribute stores measurements of a curve from one edge to the other. This is

ideal for determining the scale of each curve based on the @curveu. In two sep-

arate wrangles, one running over stemPrims and the other over branchPrims

the @pscale attribute is defined using a ramp channel, created by chramp().

These ramps enable the user to vary the thickness of the ivy vines.

4.5 Leaves

In order to have realistic placement of the leaves the curve tangents of each

point were found. This was done using a Polyframe SOP and activating the

tangent attribute. Similarly to earlier in the network the normals of the envi-

ronment geometry are found and also transferred onto the points. Combining

these together in an attribute wrangle it is possible to manipulate the normals

15

FIGURE 4.3: Figure shows varying thickness of stems and branches using a
ramp.

to preference. Using simple vector algebra the new normal direction is calcu-

lated by finding the difference between the geometry normals and the tangent

normal. To customise this further an upwards direction vector is added to aim

the points even more.

Since the resulting vectors are relatively conforming to a single direction, a jitter

is added. In another wrangle node a random vector is generated along with an

influencing factor which are added to the normal directions. The random vector

allows for variation on each point.

In other wrangles more options are made available to the user. Using an if

statement and a removepoints() function, potential leaf points are removed.

In one wrangle it is solely based on height @P.y, however in the other these

points are removed depending on a direction set by the user. This could be

used to portray areas of seemingly dead branches where leaves no longer grow.

Using an Attribute Randomize SOP an attribute @pt is created. This attribute will

be used to determine which objects get copied to particular points and with

what weighting, adding further artistic control for the user. This is achieved

using a custom discrete distribution type within the Attribute Randomize. Con-

tained within a for each loop is a switch node, this node has been modified to

16

(a) (b)

(c) (d)

FIGURE 4.4: (a) Points scattered along ivy stem, (b) Normals transferred from
the wall geometry to the scattered points (c) Curve tangent attributes per point
(d) New computed normal direction for on each point for whitch the leaves

will be copied according to.

change input depending on the @pt attribute. The Copy to Points SOP packs

and instances the geometry before copying making the process faster.

4.6 Collision Detection

Dealing with a high amount of leaves an obvious issue that arises is leaf colli-

sions. For these collisions the copying leaves to points approach is modified.

Various tests were carried out to determine the most efficient method of inter-

section analysis in Houdini and are described in Section 6.

Where every for each loop prior to this in the network merges on each iteration,

instead this method manually merges the geometry. With the for each begin

loop set to ”fetch piece or point” and a second to ”fetch feedback”, the colli-

sion detection can begin using intersection analysis. Houdini provides a SOP

enabling this. During each iteration of the for each loop we must determine

which leaves to copy and which to not. This is done using a Switch node with

two inputs, the Copy to Points SOP and a Null. The Intersection Analysis node

checks if there is an intersection between geometries and returns the number of

17

intersecting points. If the number returned is greater than zero then the switch

node changes to have the null as its input, preventing the copy from occurring

on that iteration.

To speed this process up the for each loop is contained within a Compile Block.

In geometry networks, a compile block allows for multithreaded for each loops,

meaning each iteration is spread across multiple cores. These benefits come

with certain restrictions however and in this case, the issue of referencing other

nodes by name, compile blocks do not allow this. Compile blocks require all

inputs to be static i.e they are the same for every operation. Due to this, spare

inputs were instead created to access the information necessary in the intersec-

tion analysis. It is also required to fully encapsulate the for each loop within the

compile block. Every input into the for each loop requires a Compile Begin and

a For Each Begin node. The added for each begin blocks are set to ”fetch input”

to make the block fully compilable.

FIGURE 4.5: Image shows the collision detection method implemented in this
HDA. The for each loop is encapsulated within a compile block to help speed.

(Personal collection)

18

5. Known Issues + Solutions

5.1 Bunching

One issue that arises during the ivy generation are certain branching collisions.

In general, with ideal parameters set this issue becomes unnoticable in a scene

with the use of a Fuse SOP. However, for some cases should the max amount

of steps the ivy is allowed to grow be too large and the geometry in the scene

is small, bunching tends to occur at the highest point of the geometry. With

the Fuse SOP added to counteract this as well as the ability to trim away points

outside the SDF the HDA can be tweaked to prevent this. It can still however

cause unfortunate bunching should the steps be too high.

5.2 Merged Geometry

When converting the polygonal geometry into the VDB volume the interior and

exterior bands are generated. For geometry that is simply merged together with

intersecting meshes the SDF appears to disregard the intersecting cavity and

points could be created inside the interior band of the SDF.

These cavities cause issues during the sampling of the SDF values. The func-

tion does not return a negative value causing points to be generated inside the

geometry. The reason behind this occurrence is unknown at this point however

efforts have been made to resolve it. In the IvyGeoGuides HDA the polygonal

geometry is first converted into a fog volume then into an SDF using a Con-

vert VDB SOP, for the SDF to register the interior and exterior bands it is put

through a VDB From Polygons SOP once again to result in a functioning signed

19

distance field. This solves the problem satisfactorily however the multiple con-

versions take longer to cook. It is recommended this option is chosen however

should there be intersecting meshes in the environment geometry and after any

changes are made to the geometry.

(a) (b)

FIGURE 5.1: (a) Image shows geometry forming inside the environment due to
intersecting faces of the wall. (b) After correction by adding a fog volume, stem
geometry no longer generates in the cavities created by intersecting geometry.

5.3 Gravity

The effect of gravity in this tool has limitations and only works well with spe-

cific parameters et. If there is no ground plane present in the VDB to Polygons

and unless the seed points are within the SDF range initially gravity’s effect will

just make ivy growth fall downward without attaching to anything.

5.4 Uniform Scaling

Unfortunately there is no quick way for uniform scaling of the entire ivy plant.

To fit the geometry in the scene depends entirely on the parameters chosen.

Add a unit box or sphere to the IvyGenerator HDA would initially yield strange

results. To counter this appropriate values must be chosen i.e. max steps, step

size and leaf size etc.

20

6. Performance

As this project aimed to create a quick, user friendly tool, necessary attention

was given to the speed of the set-up. The process in which this tool works

is highly iterative, which can undoubtedly result in costly time consumption.

This first modification was made during the growth phase. Initially the branch

growth was generated inside a for each loop as adding lines is done by the point

number @ptnum. The foreach loop was necessary to separate each branching

point so that individual primitives could be generated. This was altered to gen-

erate primitives using an @id attribute created in a point wrangle. Creating this

attribute on the seed points of the branches allowed for the removal of the for

each loop.

A lot of focus for speeding up the tool was aimed at the leaves. Houdini 18’s

updated Copy to Points SOP has a built in piece attribute which initially seemed

the fastest way to copy the geometry. To use the piece attribute and for the

fastest results the geometry needs to be packed before copying using a Pack

SOP. While this did speed the process up, it did not work with the collision

detection method. In order for the intersection analysis to work the geometry

must have point attributes. Unpacking these attributes before copying made

little to no difference making the approach redundant as though the geometry

had never been packed at all.

As the intersection analysis node is computationally heavy, the entire for each

loop was contained within a compile block. As mentioned earlier, in Houdini

compile blocks enable a for each loop to become multithreaded allowing the

program to run over multiple cores. Unfortunately, given a very high volume

of points to copy to this process can still be exceedingly slow if the leaf geom-

etry has a high poly count. A possible solution to this would be to alter the

21

FIGURE 6.1: Figures show scene with and without leaf collision detection acti-
vated.

network so a low poly version of the leaf geometry is passed into the intersec-

tion analysis, then whichever points are chosen to copy, these could be fed into

the simple for each loop along with the high poly geometry.

Another significant factor to note is the actual computer the simulation is work-

ing on. One early use of collision detection ran at 52 minutes with low poly

geometry for 2663 points on a personal laptop compared to 6 minutes on a

powerful desktop computer.

Should the leaf geometry have a relatively high poly count, the speed severely

slows. Figure 6.1 shows the same scene of 504 scattered points. With collision

detection activated it took over 3 minutes to evaluate compared to seconds for

no collision detection. The pack and instance option available in the Copy to

Pints SOP had to be turned off due to the material applied to the leaf objects.

To aid in the interactive performance of the HDA it is advised to disable ”leaves”,

”branches” or ”tendrils” in the main tab of the IvyGenerator HDA when ma-

nipulating seed points or drawing in the viewport. As the HDA will attempt to

update the growth each time these relevant factors are moved, disabling these

allow for smooth, fast drawing/moving in the viewport. Simply renable the

toggles again when ready.

22

FIGURE 6.2: Ivy scene with collision detection without textures. A textured
version is shown in Figure 8.4.

FIGURE 6.3: Performance monitor showing over an hour to process collision
detection for the rendered scene shown in Figure 6.2.

23

7. Further Work

Though the tool is wrapped up nicely in a portable HDA, the potential for fur-

ther work is always present. Extra factors could be added, for example pseudo-

tropisms and animation. Initially, another aim of this tool was to allow for easy

animation of the growth using multiple Carve SOPs and relevant timeshifts or

even a wire solver. However, due to time constraints the final method of ani-

mation for each part of the ivy growth was not completed and instead removed

from the network.

Taking from Benes and Mill (2002) the idea of traumatic reiteration could be

introduced. The phenomena occurs when the plant is unable to grow along its

current path any more. If traumatic reiteration were to be added to this HDA,

obstacle avoidance could potentially be implemented.

Another attempted approach for obstacle avoidance was by using heat maps

and a gradient driving the direction of growth, should certain points of the ge-

ometry have a low heat value the growth would ignore that part of the geom-

etry, instead finding it’s way along an increasing path. Having obstacle avoid-

ance implemented in this system would have allowed for even more customi-

sation and potentially more realistic development in the ivy.

As it stands there is a limitation on the amount of different geometries that

can be used as leaves. This is relatively simple to adjust however if the user

is familiar with Houdini beyond the top level interface. Though access would

need to be available to dive inside the network and create another merge node.

24

8. Conclusion + Discussion

The HDA created alongside this thesis paper successfully generates procedural

ivy. It is an easy to use tool and allows for various customisation’s. A variety

of parameters are available to manipulate depending on the artists preferences.

The final result can produce realistic environments that are fully art-directable

in line with the original objectives of this paper.

The procedure used to generate ivy using this tool begins with the use of the

IvyGeoGuides HDA, where the VDB and SDF are created. The outputs of

IvyGuides input directly into the IvyGenerator HDA and seed points can be

generated by manually adding points to the third input of the HDA or sim-

ply using a scatter node. There are options to copy these points with varying

translations in order to generate more seed points in similar locations.

FIGURE 8.1: Typical network set-up using both IvyGeoGuides and IvyGener-
ator at geometry level.

The HDA also provides the ability to draw curves, taking curves into its fourth

input. These curves can be projected directly onto the geometry or randomly

25

positioned in space for a significantly stylised approach to the ivy. This ability

allows for highly art directed generation of plant growth.

The automatic growth begins with the seed points, the tool considers different

tropisms that will affect growth and allow the user to vary the influence of

these using appropriate sliders within the user interface. Should the user wish,

branching can occur for an even more realistic look and similar to the stem there

are various factors that can be applied to the branches as well as options to

manipulate the growth. Including whether or not a branch should grow based

on the height of each potential branching point.

FIGURE 8.2: Leaves swapped out for custom geometry.

As some ivies do not continue their climbing growth once they have reached

the top of their supporting environment, there is the option to trim the ivies in

which case regardless of the maximum amount of iterations of growth, once the

ivy has begun to grow too far away from the geometry it is trimmed.

The HDA provides the option of adding tendrils to the ivy plant, showing how

the ivy sticks to the wall, parameters for these can be tweaked as per user pref-

erence such as the maximum distance the stem can be before the tendrils stop

trying to attach to the object’s surface or how far they spread out from the stem.

The leaf parameters also allow variation in distribution of the leaf geometry

and orientation. There are default geometries built into the HDA for ease of use

26

along with options to use other objects in the scene file or files on disk such as

bgeo or obj files.

Both HDAs come with a help card to aid the user experience. The over-all result

of the IvyGenerator HDA can provide both realistic ivy growth or even surreal

scenes while using custom geometry.

FIGURE 8.3: Render of Ivy scene without collision detection using high poly
leaf geometry.

FIGURE 8.4: ”Hello” drawn on wall using Draw Curve SOP set to preject onto
geometry.

27

Bibliography

Arvo J. and Kirk D., 1988. Modeling plants with environment-sensitive au-

tomata. In In Proceedings of Ausgraph’88, 27–33.

Benes B. and Millán E. U., 2002. Virtual climbing plants competing for space.

Proceedings of Computer Animation 2002 (CA 2002), 33–42.

de Reffye P., Edelin C., Françon J., Jaeger M. and Puech C., 1988. Plant models

faithful to botanical structure and development. In Proceedings of the 15th

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH

’88, New York, NY, USA. Association for Computing Machinery, 151–158.

Greene N., July 1989. Voxel space automata: Modeling with stochastic growth

processes in voxel space. SIGGRAPH Comput. Graph., 23(3), 175–184.

Kaandorp J. A. and Kubler J., 2001. The Algorithmic Beauty of Seaweeds, Sponges,

and Corals. Springer-Verlag, Berlin, Heidelberg.

Kniemeyer O., Barczik G., Hemmerling R. and Kurth W., 2008. Relational

growth grammars – a parallel graph transformation approach with applica-

tions in biology and architecture. Applications of Graph Transformations with

Industrial Relevance Lecture Notes in Computer Science, 152–167.

Měch R. and Prusinkiewicz P., 1996. Visual models of plants interacting with

their environment. Proceedings of the 23rd annual conference on Computer graph-

ics and interactive techniques - SIGGRAPH 96.

Prusinkiewicz P. and Hanan J., 1989. Lindenmayer Systems, Fractals and Plants.

Springer-Verlag, Berlin, Heidelberg.

Prusinkiewicz P. and Lindenmayer A., 1990. The algorithmic beauty of plants.

The Virtual Laboratory.

28

Reeves W. T. and Blau R., 1985. Approximate and probabilistic algorithms for

shading and rendering structured particle systems. SIGGRAPH ’85, New

York, NY, USA. Association for Computing Machinery, 313–322.

RHS , 2020. Hedera helix [online]. Available at https://www.rhs.org.uk/

plants/43091/Hedera-helix/Details, [Accessed 7 August 2020].

Richter J., Oct 2017. Plants in houdini. 3D World, (225).

SideFX , 2020. Vex [online]. Available at https://www.sidefx.com/docs/

houdini/vex/index.html, [Accessed 17 August 2020].

29

https://www.rhs.org.uk/plants/43091/Hedera-helix/Details
https://www.rhs.org.uk/plants/43091/Hedera-helix/Details
https://www.sidefx.com/docs/houdini/vex/index.html
https://www.sidefx.com/docs/houdini/vex/index.html

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 The Problem
	1.2.1 Note

	1.3 Ivy
	1.3.1 Tropisms

	2 Relevant Work
	2.1 L-Systems
	2.2 Particle Based

	3 Technical Background
	3.1 VEX
	3.2 Houdini Digital Assets
	3.3 Signed Distance Fields

	4 Implementation
	4.1 Growth
	4.2 Curve Growth
	4.3 Tendrils
	4.4 Stem Scaling
	4.5 Leaves
	4.6 Collision Detection

	5 Known Issues + Solutions
	5.1 Bunching
	5.2 Merged Geometry
	5.3 Gravity
	5.4 Uniform Scaling

	6 Performance
	7 Further Work
	8 Conclusion + Discussion
	Bibliography

