
Bournemouth University
National Centre for Computer Animation

MSc in Computer Animation and Visual Effects

evulkan
A Vulkan Graphics Library

Eimear Crotty

github.com/eimearc/masters

August 2020

Abstract

Vulkan is a low-level graphics and compute API which aims to provide users with faster
draw speeds by removing overhead from the driver. The user is expected to explicitly
provide the details previously generated by the driver. The resulting extra code can be
difficult to understand and taxing to write for beginners, leading to the need for a helper
library.

i

Acknowledgements

Thanks to Jon Macey for his help on the C++ side of things and for loaning me his
Vulkan book.

Many thanks to my uncle Neil for giving me a second home during the year. Those
curries and trips to the Glasshouse kept me going through multiple challenging assign-
ments. I’m sorry they were cut short.

Finally, thanks to my mum Kerry, dad Owen, siblings Rory, Aisling, Aoife and Ellie
for their support during the last year.

ii

Contents

1 Introduction 1

2 Previous Work 2
2.1 V-EZ . 2
2.2 Anvil . 2
2.3 GLOVE . 2
2.4 MoltenVK . 3
2.5 Personal Inquiry . 3

3 Technical Background 4
3.1 Useful Resources . 4
3.2 Comparison with OpenGL . 4
3.3 Vulkan Layers . 5

3.3.1 Loader . 5
3.3.2 Dispatch Chains . 6

3.4 Vulkan Components . 7
3.4.1 VkInstance . 7
3.4.2 VkPhysicalDevice . 8
3.4.3 VkDevice . 8
3.4.4 VkQueue . 8
3.4.5 VkDeviceMemory . 8
3.4.6 VkCommandBuffer . 9
3.4.7 VkSwapchainKHR . 9

3.5 Vulkan Object Model . 10

4 The evulkan Library 11
4.1 How does it work? . 11

4.1.1 evk::Device . 11
4.1.2 evk::Texture . 12
4.1.3 evk::Attachment . 13
4.1.4 evk::Buffer . 13
4.1.5 evk::Descriptor . 14
4.1.6 evk::Subpass . 15
4.1.7 evk::Renderpass . 16
4.1.8 evk::Pipeline . 16
4.1.9 evk::Shader . 17
4.1.10 evk::VertexInput . 18
4.1.11 Window System Integration . 18
4.1.12 Error Handling . 20

iii

4.2 Installation and Use . 22
4.3 Known Problems . 23

4.3.1 Colo(u)r . 23
4.3.2 Pointers . 23

4.4 Why Should You Use This Library? . 23
4.4.1 Things You Don’t Need to Learn About 23

5 Results 25
5.1 Efficiency . 25

5.1.1 Time Profile . 25
5.1.2 Benchmark . 25

5.2 Usability . 26
5.3 Availability . 27

6 Conclusion 28
6.1 What Could Have Been Better . 28

6.1.1 COVID-19 . 28
6.1.2 Data-Driven Design . 28
6.1.3 Mesh Shader . 28

6.2 Future Developments . 28
6.3 Alternatives Considered . 29

6.3.1 Bazel . 29
6.3.2 Node-Based Graph . 29

iv

List of Figures

3.1 OpenGL compared to Vulkan (Khronos Group 2016c, p.1). 4
3.2 Vulkan dispatch chain (Karlsson 2018, p.1). 6
3.3 Vulkan dispatch table (Karlsson 2018, p.1). 7
3.4 Vulkan API objects and their interactions (AMD 2018, p.1). 7
3.5 Multithreaded command buffer usage (Crotty 2020, p.6). 9

4.1 Device class diagram. 11
4.2 Texture class diagram. 12
4.3 Attachment class diagram. 13
4.4 Buffer class diagram. 14
4.5 Descriptor class diagram. 15
4.6 Subpass class diagram. 15
4.7 Renderpass class diagram. 16
4.8 Pipeline class diagram. 16
4.9 Vulkan pipeline (Khronos Group 2016d, p.5). 17
4.10 Shader class diagram. 17
4.11 VertexInput class diagram. 18
4.12 evulkan architecture. 22
4.13 Instructions for installing evulkan. 22

5.1 Test results for simple triangle and evulkan triangle. 26

6.1 Triangle example in action. 32
6.2 OBJ example in action. 35
6.3 Multipass example in action. 39
6.4 Draw time for different examples over multiple threads. 43
6.5 Setup time for different examples over multiple threads. 44

v

Listings

4.1 Device usage. 11
4.2 Secondary command buffer usage. 12
4.3 Primary command buffer usage. 12
4.4 Texture usage. 12
4.5 Attachment usage. 13
4.6 StaticBuffer usage. 14
4.7 DynamicBuffer usage. 14
4.8 Descriptor usage. 15
4.9 Subpass usage. 16
4.10 Renderpass usage. 16
4.11 Pipeline usage. 17
4.12 Shader usage. 18
4.13 VertexInput usage. 18
4.14 GLFW window surface usage. 19
4.15 SDL window surface usage. 19
4.16 Window resize callback usage. 19
4.17 Example program usage. 22
6.1 Triangle drawing with evulkan library (triangle.cpp). 32
6.2 OBJ drawing with evulkan library (obj.cpp). 35
6.3 Multipass drawing with evulkan library (multipass.cpp). 39

vi

https://github.com/eimearc/masters/blob/master/examples/triangle/triangle.cpp
https://github.com/eimearc/masters/blob/master/examples/obj/obj.cpp
https://github.com/eimearc/masters/blob/master/examples/multipass/multipass.cpp

Chapter 1

Introduction

Vulkan (Khronos Group 2016b) is a cross-platform graphics and compute API. It aims
to provide higher efficiency than other current cross-platform APIs, by using the full
performance available in today’s largely-multithreaded machines. Vulkan achieves this
by allowing tasks to be generated and submitted to the GPU in parallel (multithreaded
programming). In addition, the API itself is written at a lower-level than other graphics
APIs, meaning that the developer is required to provide many of the details previously
generated by the driver at run-time.

This project aims to alleviate this cost by providing a wrapper library for Vulkan,
which allows a developer to use some of the more common features of Vulkan with
much less effort than writing an application from scratch. This library is written in C++,
using modern C++ features, adheres to both the official C++ Core Guidelines (Stroustrup
and Sutter 2020) and Google C++ Style Guide (Google 2020) and is fully unit tested.
The library is available for download from GitHub and can be built using CMake.

The library is specifically written with beginners and casual users of Vulkan in mind.
The examples included in the repository provide a demonstration of how to use the li-
brary for different purposes, including drawing a triangle, loading an OBJ with a texture
and using multiple passes to render simple objects with deferred shading. A non-goal is
to create a library which is as fast as writing pure Vulkan, however the library must be
reasonably fast.

1

Chapter 2

Previous Work

While Vulkan is a relatively new API for graphics and compute, many engines now
support Vulkan, including CryEngine (Crytek 2002), Source (Valve 2004), Unity (Unity
Technologies 2005) and Unreal Engine (Epic Games 1998). As a result, there are many
libraries and utilities available online for Vulkan, each of which serves a different purpose.

2.1 V-EZ
AMD created the open-source V-EZ library (AMD 2018). Its goal is to increase the
adoption of Vulkan in the games industry by reducing the complexity of Vulkan. It is
a lightweight C API wrapped around the basic Vulkan API. It is part of the GPU-Open
initiative.

It still requires the user to have a good knowledge of Vulkan, making it difficult for
beginners to adopt. For example, some rather complex components include semaphores,
swapchain creation and lengthy enumerations such as

VK_BUFFER_USAGE_TRANSFER_DST_BIT

While it does remove some of the boilerplate, it is still relatively low level and, as a
result, is not perfectly suited to beginners.

2.2 Anvil
The goal of Anvil (AMD 2016) is to reduce the amount of time taken to write Vulkan
applications. It is ideal for rapidly prototyping Vulkan applications, but it still requires a
large amount of writing. It is stated in the documentation itself that Anvil is not suitable
for beginners.

Anvil is not the right choice for developers who do not have a reasonable
understanding of how Vulkan works. (AMD 2016)

2.3 GLOVE
GLOVE (Think Silicon 2016) provides an intermediate layer between an OpenGL ES
application and Vulkan. It is easy to build and integrate new features and has a GL

2

interface for developing applications.

GLOVE is useful for developing Vulkan applications for embedded devices, especially
for developers who already have an understanding of GL applications. However, GLOVE
is not useful for learning Vulkan as it only provides a GL interface.

2.4 MoltenVK
As Apple hardware lacks native Vulkan driver support, MoltenVK (Khronos Group 2016a)
provides an interface over Apple’s Metal graphics framework. This provides no speedup
in terms of development time, it simply allows Vulkan to be developed and run on
macOS. As a result, it does not provide any extra help for beginners to Vulkan.

2.5 Personal Inquiry
This library was developed using a previous project as a starting point (Crotty 2020).
The base project can be found at http://github.com/eimearc/vulkan. It provided the
boilerplate to run an instance of Vulkan and it saved days of typing 1000 lines of code
to simply have a starting point. All class construction, library design and testing was
implemented in this masters project.

3

Chapter 3

Technical Background

3.1 Useful Resources
As Vulkan is a relatively complex topic, many resources, both online and in-print, came
in useful during this project and may help the reader with their Vulkan understanding.

• Vulkan Programming Guide (Sellers 2016)

• Sascha Willem’s Vulkan examples (Willems 2015)

• Vulkan Tutorial (Overvoorde 2020)

• ARM Vulkan tutorial (ARM 2020)

3.2 Comparison with OpenGL
Vulkan is a low-overhead, cross-platform graphics and computing API. It was developed
to allow higher performance and more balanced CPU/GPU usage in comparison to older
APIs such as OpenGL.

Figure 3.1: OpenGL compared to Vulkan (Khronos Group 2016c, p.1).

4

While OpenGL acts as a state machine, keeping track of application state, Vulkan
requires the developer to keep track of such state. OpenGL requires operations to be
submitted in sequence, while Vulkan takes full advantage of modern multicore machines
and allows operations to be recorded and submitted in parallel.

OpenGL handles host-device synchronization and memory management in the driver,
while Vulkan requires the developer to deal with this. The idea behind this is that the
developer knows best how their data will be accessed and, as a result, the developer
knows the optimal way to lay out data in memory. While this does result in a more ex-
plicit, low level API and longer development times, the advantage becomes apparent in
the runtime speedup. There is much less overhead in the Vulkan driver, as the developer
provides most of the required detail. Less driver work generally results in faster run times.

OpenGL provides a constant level of error checking. While this is useful during the
development phase, once an application is rolled out to production, error checking slows
down the application. Vulkan provides a way around this with validation layers that
can be registered during development and removed afterwards, further speeding up an
application.

OpenGL reads shader code in GLSL and compiles it at run time. This leads to a
slower run time in the best case, or run time errors in the worst case when the GLSL is
not properly formed. Vulkan requires the developer to compile the shader code to byte
code (SPIR-V) ahead of time. This has the dual advantage of ensuring the shader code
is correct and speeding up the run time.

The pattern is apparent; Vulkan requires more setup, state tracking and memory
management from the developer. This removes much of the required work from the
driver, resulting in faster draw speeds in comparison with older APIs such as OpenGL.

3.3 Vulkan Layers
More traditional APIs have a flat structure. Any calls made to the API are forwarded to
the driver for more work. If a developer wants to extend the structure and capabilities of
the API, they are required to either “hack” together a platform-specific implementation,
or have their extension built directly by the API developers into the API and driver. This
increases the bulkiness of the API, requiring all users to have this large API when they
may only use the minimal number of features. This “all-or-nothing” approach decreases
the speed of the application, which is quite important for smaller applications running
on embedded systems.

Vulkan, in contrast, is a layered API, using a loader to create this layered architecture.
This layered approach results in faster applications, as certain features which are needed
in development, such as validation, can be unloaded when releasing an application.

3.3.1 Loader
The Vulkan loader is “the central arbiter in the Vulkan runtime” (Karlsson 2018). The
application interfaces with the loader and it is the task of the loader to dispatch incoming

5

requests to the correct subsystem. The loader exposes all of the core Vulkan functions.
When an application calls such functions, they are routed through the loader, instead of
directly to the driver.

When creating an instance, certain extensions are required. Extensions are grouped
into layers. These layers are specific to a system and platform and are registered in a
well-known location on that machine in JSON files. These files contain the names of
the extensions provided by the layer and where to find the actual library on the system.
This means that whenever the Vulkan loader queries for a specific layer, the JSON file
is read - the layer module itself does not need to be loaded.

For example, a layer JSON file may be found at

/usr/local/share/ vulkan /
explicit_layer .d/ VkLayer_khronos_validation .json

Included in the file may be the following (edited for brevity):
" instance_extensions ": [

...
{

" spec_version ": "1",
"name": " VK_EXT_debug_utils "

},
...

],
...
" library_path ": " ../../../ lib/ libVkLayer_khronos_validation .dylib"

3.3.2 Dispatch Chains
A dispatch chain (figure 3.2) is the path along which execution flows. The application
calls a function, for example vkCreateInstance. In the loader code, the layers and
extensions are validated. The loader then passes execution along to the first layer,
which also calls vkCreateInstance, then passing execution along to the following layer.
The loader terminates with its own code, before passing off the execution to the ICD
(installable client driver). All available layers are now combined into one unified front.

Figure 3.2: Vulkan dispatch chain (Karlsson 2018, p.1).

6

This execution style also creates a dispatch table (figure 3.3), where each layer in
the queue calls vkGetInstanceProcAddr on the next layer. This long chain of function
pointers means that each layer knows how to pass on control to the next layer in the
chain.

Figure 3.3: Vulkan dispatch table (Karlsson 2018, p.1).

3.4 Vulkan Components

Figure 3.4: Vulkan API objects and their interactions (AMD 2018, p.1).

3.4.1 VkInstance
A Vulkan instance is the first Vulkan component a developer creates in their application.
As Vulkan has no global state, all per-application state is contained within a Vulkan
instance. By creating a VkInstance, the application loads the Vulkan commands and

7

initializes Vulkan. Within each instance are multiple physical devices. After the Vulkan
instance is created, devices and queues are the main way the application interacts with
the Vulkan implementation.

3.4.2 VkPhysicalDevice
A physical device represents a single hardware device on the machine which has Vulkan
capabilities, such as a GPU.

3.4.3 VkDevice
A logical device (or simply a “device”) is a software abstraction around a physical device.
A physical device is queried for its capabilities and, based on required application criteria,
a device is created from the suitable physical device. A device represents an instance of
a physical device and contains its own state and resources. This is the Vulkan compo-
nent that is most commonly interacted with and is used in constructing all subsequent
components. An application is required to create a different device for each physical
device it uses. Each device exposes a number of queues.

3.4.4 VkQueue
A queue is where a piece of work is submitted for completion by the GPU, for example
a draw command. A queue is created in conjunction with a device and the application
queries the device for a suitable queue. Queues are partitioned into a set of families,
where each family supports one or more types of functionality. Examples of such func-
tionality include graphics, presentation and compute. For most applications, graphics
functionality is required to modify the incoming vertices and presentation support is re-
quired to display the resulting images on the screen.

Queue submission occurs when work is submitted to a queue using commands such
as vkQueueSubmit. Such commands specify a set of underlying operations which are
to be executed by the associated physical device. Each queue works asynchronously to
other queues.

3.4.5 VkDeviceMemory
Memory is explicitly managed by the application. There are two types of memory in
Vulkan, host memory and device memory. Device local memory is physically connected
to the device, while host visible memory is visible to the host. Each device exposes the
types of memory available to the application.

When creating a buffer, the user must specify both how the buffer will be used and
where this buffer will reside. Host-visible memory is accessible by the CPU through the
use of the vkMapMemory command, while device-local memory is the most efficient for
GPU access.

8

Figure 3.5: Multithreaded command buffer usage (Crotty 2020, p.6).

3.4.6 VkCommandBuffer
The application can control the device through the submission of command buffers.
Prior to submission, the application records units of work into these command buffers.
These command buffers may be constructed over multiple threads and may be reused
multiple times. The command buffers are submitted to queues. Command buffers in
separate queues may execute in parallel, while command buffers in a single queue execute
in respect to queue submission order. Upon command buffer queue submission, control
is returned to the application immediately.

There are two different types of command buffers (figure 3.5), primary command
buffers and secondary command buffers.

• A primary command buffer is submitted to a queue for execution. It may hold
references to an array of secondary command buffers.

• A secondary command buffer is not submitted to a queue for execution. Instead,
work is recorded into it and a reference to the command buffer is attached to
a primary command buffer, along with other secondary command buffers. This
allows for multiple threads to construct multiple secondary command buffers in
parallel, attach them to a primary command buffer and submit for execution.

All of this work can be recorded into the buffers ahead of draw time, resulting in
faster draw speeds.

3.4.7 VkSwapchainKHR
The swapchain is an abstraction around a series of images that are presented to the
screen. One image is presented at a time, but at the same time the application may
be writing to another image (double buffering). The minimum and maximum number
of images in a swapchain is implementation-dependent. It is possible to query Vulkan

9

(using the vulkaninfo command) to determine the correct number of images to re-
quest in a swapchain. For many graphics cards, this number is between 2 and 3 inclusive.

The KHR suffix indicates that this is not a core Vulkan object, but is provided as
part of an extension. This is because Vulkan is platform-agnostic and so cannot tie its
presentation support to a single window system or presentation engine.

The application acquires an image from the swapchain using the vkAcquireNextImageKHR
command and releases it for presentation using the vkQueuePresentKHR command.

3.5 Vulkan Object Model
Vulkan objects (VkInstance, VkDevice and so on) are represented by handles - an ab-
stract reference to a piece of memory that is managed by Vulkan. Handles come in two
types; dispatchable and non-dispatchable.

Dispatchable objects consist of a pointer to an opaque type. These objects internally
hold a dispatch table. This table is used by other components of the system to deter-
mine what code to execute when the application makes calls to Vulkan. Examples of
dispatchable objects include the VkInstance, VkPhysicalDevice, VkDevice, VkCommand-
Buffer and VkQueue. The first argument to any Vulkan function is a dispatchable object.
This excludes VkInstance creation, as this is the first dispatchable Vulkan object created.

Non-dispatchable objects are 64-bit integer types which are implementation depen-
dent. They either contain a reference to another object, or encode information about
the object directly. Objects created on a specific device are private to that device and
cannot be used on another device.

10

Chapter 4

The evulkan Library

4.1 How does it work?
The library exposes a number of components, each of which is a wrapper around one or
more Vulkan objects.

4.1.1 evk::Device

Figure 4.1: Device class diagram.

A Device is the basic component of the library. It is the first Vulkan component that
is constructed in the application. It encapsulates, among other things, a VkInstance,
VkPhysicalDevice, VkDevice and VkQueues. A user can set up the Device with or with-
out validation layers. Leaving validation layers turned off results in a faster application
ideal for production.

Listing 4.1: Device usage.
Device device = Device (

numThreads , deviceExtensions , swapchainSize ,
validationLayers

);

The Device object tracks state across the program. It is used in the creation of other

11

Vulkan objects. The Device is responsible for creating a VkInstance, VkPhysicalDevice,
VkDevice, VkSwapchainKHR, VkFramebuffer and all the required command buffers and
synchronization objects.

The Device is multithreaded, making use of Vulkan’s multithreading capabilities. For
some more intensive operations, such as recording draw operations into the command
buffer, it splits the operation across multiple threads, each of which records its portion
of the operation into a separate secondary command buffer.

Listing 4.2: Secondary command buffer usage.
vkCmdDrawIndexed (

secondaryCommandBuffer , numIndices ,
1, indexOffset , 0, 0

);

These secondary command buffers are then executed from the primary command
buffer.

Listing 4.3: Primary command buffer usage.
vkCmdExecuteCommands (

primaryCommandBuffer ,
secondaryCommandBuffers .size (),
secondaryCommandBuffers .data ()

);

4.1.2 evk::Texture

Figure 4.2: Texture class diagram.

A Texture allows a user to load in a texture from a file. It transitions the image to a
transfer-optimal format before copying the pixels from the image to device-local memory,
allowing for faster GPU access. It then transitions the image to a layout readable by the
shader, frees unneeded resources and finally creates a VkImageView and VkSampler.

A VkImageView is required by the Shaders to access images. They represent contigu-
ous ranges of subresources and any metadata required to operate on them. A VkSampler
is a handle to an image sampler and is used by the Shader to read image data from Tex-
tures and apply filters.

Listing 4.4: Texture usage.
Texture texture (device , " viking_room .png");

12

4.1.3 evk::Attachment
An Attachment represents a resource that can be read from, or written to by a Shader.
Each Attachment has a binding location and a Type, one of FRAMEBUFFER, COLOR or
DEPTH. Both a FRAMEBUFFER and DEPTH Attachment are required for any program
as the shaders must write to the depth buffer and to the screen. For more advanced
usages (see the multipass example) a COLOR Attachment is useful.

Listing 4.5: Attachment usage.
Attachment framebufferAttachment (

device , 0, Attachment :: Type :: FRAMEBUFFER
);
Attachment depthAttachment (

device , 1, Attachment :: Type :: DEPTH
);

An Attachment consists of a VkAttachmentDescription, which describes the proper-
ties of the Attachment, and multiple VkAttachmentReferences, which allow other stages
to refer to these Attachments. For DEPTH and COLOR Attachments, a VkImage is cre-
ated, while this is already created in the Device creation stage for the FRAMEBUFFER
Attachment.

An Attachment also contains a VkClearValue. This value specifies how an Attach-
ment should be cleared before it is used.

Figure 4.3: Attachment class diagram.

Attachments are used in Subpasses as either an input attachment, a colour attach-
ment or a depth attachment. A colour or depth attachment is written by the shader,
while an input attachment is read into a shader, making it useful for multipass rendering.

4.1.4 evk::Buffer
A Buffer encapsulates VkBuffer-related structs and methods. It handles the creation and
copying of VkBuffers, which are linear arrays of data, along with copying user data into
them and updating them after creation. There are two types of Buffers; StaticBuffer
and DynamicBuffer.

A StaticBuffer is suitable for a Buffer that will not be updated after it has been cre-
ated. This allows for some optimization to take place. The Buffer contents are copied
to device-local memory to allow faster GPU access at draw time. A StaticBuffer uses
multiple threads to copy the buffer data across to the device-local memory. The user

13

Figure 4.4: Buffer class diagram.

is able to specify the desired number of threads to use when copying across the data,
allowing for speed ups in the application set up time. The number of threads is specified
at Device creation time.

Listing 4.6: StaticBuffer usage.
StaticBuffer indexBuffer (

device , in.data (), sizeof (in [0]) ,
in.size (), Buffer :: Type :: INDEX

);

A DynamicBuffer is suitable for a Buffer where its contents will be updated at draw
time. This skips the relatively expensive step of copying the Buffer data to device-
local memory, and leaves the data in host-visible memory for faster update speeds. A
DynamicBuffer can be updated using the update() command.

Listing 4.7: DynamicBuffer usage.
DynamicBuffer ubo(

device , &uboUpdate , sizeof (uboUpdate),
1, Buffer :: Type :: UBO

);
...
ubo. update (& uboUpdate);

4.1.5 evk::Descriptor
A Descriptor is used to describe any resources that will be accessed by the Shader, such
as a texture sampler, a uniform buffer or an input attachment. A user constructs a
Descriptor and then adds the necessary resources using class methods. Descriptors are
bound in advance of draw commands.

14

Figure 4.5: Descriptor class diagram.

Listing 4.8: Descriptor usage.
Descriptor descriptor (device , swapchainSize);
descriptor . addTextureSampler (

1, texture , Shader :: Stage :: FRAGMENT
);

When a user calls one of these functions, for example addTextureSampler(), the
following happens:

• A VkDescriptorSetLayoutBinding is constructed. This describes the shader stage
(e.g. a fragment shader) at which the resource will be accessed, in addition to the
type of the resource.

• A VkWriteDescriptorSet is constructed, specifying the binding of the resource,
along with the type and any other information required for a descriptor set write
operation. In this example, extra information includes the texture sampler handle
along with the image view handle.

• Later on in the program, during pipeline creation, the finalize() method is called
on the Descriptor. This creates the VkDescriptorPool, from which the VkDescrip-
torSets are allocated. VkDescriptorSets are sets of resources which are bound into
the VkPipeline as a group. Finally, the VkWriteDescriptorSets are updated using
vkUpdateDescriptorSets() command, binding the resources into the descriptor
sets.

4.1.6 evk::Subpass

Figure 4.6: Subpass class diagram.

A Subpass describes a pass, or a
phase of operation, within a Render-
pass. It can depend on the comple-
tion of other Subpasses. It has a set
of Attachments, which can be either
colour, depth or input Attachments
(as described above) along with their
references. Contained within the Sub-
pass is a VkSubpassDescription, a

15

struct describing the Subpass. The
index of the Subpass indicates when

the Subpass will be executed, in relation to the other Subpasses.

Listing 4.9: Subpass usage.
Subpass subpass (

0, dependencies , colorAttachments ,
depthAttachments , inputAttachments

);

4.1.7 evk::Renderpass

Figure 4.7: Renderpass class diagram.

A Renderpass object is a collection
of Subpasses, along with their depen-
dencies and attachments. A VkRen-
derPass is created within the Ren-
derpass by passing in the set of Vk-
SubpassDescriptions, VkAttachment-
Descriptions and the VkSubpassDe-
pendencies between subpasses.

Listing 4.10: Renderpass usage.
Renderpass renderpass (device , subpasses);

4.1.8 evk::Pipeline
A Pipeline takes all the previous information and generates a VkPipeline - the sequence
of operations that takes the input vertices and produces the output, to the screen or
otherwise. We will only cover graphics pipeline creation here. A Pipeline is associated
with exactly one Subpass.

Figure 4.8: Pipeline class diagram.

A Pipeline setup call takes the user-provided Shaders, Renderpass and Subpass, and
combines it with automatically generated fixed-function information (input assembly,

16

viewport state, rasterizer, multisampling, colour blending) to create the VkPipeline.

Listing 4.11: Pipeline usage.
Pipeline pipeline (

device , subpass , descriptor , vertexInput ,
renderpass , shaders

);

Figure 4.9: Vulkan pipeline (Khronos Group 2016d, p.5).

4.1.9 evk::Shader
A Shader represents a shader program, which contains operations that execute for each
vertex or fragment. A shader contains a VkShaderModule, which contains the shader
code, and a VkPipelineShaderStageCreateInfo struct, which is used during Pipeline con-
struction.

Figure 4.10: Shader class diagram.

There are two supported Shader
stages in the evulkan library, vertex
and fragment. A vertex Shader op-
erates on each vertex and any asso-
ciated vertex input attributes, speci-
fied using the VertexInput struct. A
fragment Shader operates on every
fragment. Both a vertex Shader and
fragment Shader are required for the

evulkan library.

17

Listing 4.12: Shader usage.
Shader vertexShader (

device , " shader_vert .spv", Shader :: Stage :: VERTEX
);
Shader fragmentShader (

device , " shader_frag .spv", Shader :: Stage :: FRAGMENT
);

The specified shader code must be in the SPIR-V format. A user can load in SPIR-V
code from a file of their choice. SPIR-V is easily generated from GLSL using the glslc
command, which is available for download from https://github.com/google/shaderc, or
with the Vulkan SDK from LunarG.

4.1.10 evk::VertexInput

Figure 4.11: VertexInput class diagram.

A VertexInput object is a wrapper around a VkVertexInputAttributeDescription and
a VkVertexInputBindingDescription. It is used for describing vertex attributes that will
be bound to the shader, such as colour and normal.

Listing 4.13: VertexInput usage.
VertexInput vertexInput (sizeof (Vertex));
vertexInput . setVertexAttributeVec3 (

0, offsetof (Vertex ,pos)
);
vertexInput . setVertexAttributeVec3 (

1, offsetof (Vertex ,color)
);

4.1.11 Window System Integration
Vulkan is a platform-agnostic API. It is up to the application to specify the extensions
required to interface with the window system. The way in which the VkSurfaceKHR
object is created also needs to be handled by the application.

To keep the evulkan library platform-agnostic, the user must register two things: a
function which will be called to create the surface and the set of instance extensions
required for Vulkan to correctly interface with the surface object. For GLFW, this may
result in something like the following

18

Listing 4.14: GLFW window surface usage.
auto glfwExtensions = glfwGetRequiredInstanceExtensions (

& glfwExtensionCount
);

std :: vector <const char*> surfaceExtensions (
glfwExtensions , glfwExtensions + glfwExtensionCount

);

auto surfaceFunc = [&](){
glfwCreateWindowSurface (

device . instance (), window , nullptr , & device . surface ()
);

};

device . createSurface (
surfaceFunc ,800 ,600 , surfaceExtensions

);

For SDL, the following would suffice

Listing 4.15: SDL window surface usage.
SDL_Vulkan_GetInstanceExtensions (

window , & sdlExtensionCount , surfaceExtensions
);

auto surfaceFunc = [&](){
SDL_Vulkan_CreateSurface (

window , device . instance (), & device . surface ()
);

};

device . createSurface (
surfaceFunc ,800 ,600 , surfaceExtensions

);

When a window is resized, the evk library automatically recreates the required
objects (swapchain, framebuffer, input attachments). The window resize triggers a
VK_ERROR_OUT_OF_DATE_KHR or VK_SUBOPTIMAL_KHR result from either the vkAc-
quireNextImageKHR() function or the vkQueuePresentKHR() function within the draw()
method. However, there are times when the platform or driver does not correctly trigger
a resize event. As such, it is recommended that the user register a callback function as
follows

Listing 4.16: Window resize callback usage.
glfwSetFramebufferSizeCallback (

window , framebufferResizeCallback
);

19

4.1.12 Error Handling
Error handling is a contentious topic. Different people have varying (strong) opinions
on which approach to take. Unlike other programming languages, C++ does not have a
unified approach to error handling, leading to diverging dialects of the language.

There are two main types of errors: user errors and programming errors. The former
are the fault of the person using the library, while the latter are the fault of the library
developer. User errors should be reported to the user and the program should continue
execution. Programming errors, on the other hand, should halt the program and provide
low level information to help the programmer debug the issue. Such errors would then
be fixed before release (ideally). The remainder of this section will discuss programming
errors.

Error Return Codes

A common way to handle errors is to return a simple type (bool or int) which the user
can then test to determine if a method succeeded.

bool create_file (const std :: string &name);

There are many problems with this approach.

• The return channel is blocked with the error code, meaning the function can not
return anything else. A solution would be to use “out parameters”.

• A bool has low information bandwidth - it tells us if an operation failed, but it
does not tell us how or why it failed. Of course, the bool type could be extended
to use an unsigned int, but then it is up to the user to compare the int against
enums to determine the correct path to take. This can be messy. Messy code is
brittle code.

• The user can choose to ignore the value and continue on, leading to reduced
code safety. A nodiscard keyword could be added here, but only if the error is
being returned, and could not used if an out parameter is used as specified above.
nodiscard was only introduced in C++17 and is not available in C++14.

• The code that is written to handle the error can be totally unrelated to the code
that detects the error. For example, a function 30 levels deep into the call stack
might generate an error that can only be handled at the top level in main.

Exceptions

Exceptions are the official way to handle errors. It involves throwing an error in the body
of code and catching it and dealing with it somewhere else.

void create_file (const std :: string &name);

try
{

20

create_file (" my_file .txt");
} catch (std :: exception &e)
{

// Handle error.
}

There are some problems with using exceptions:

• Exceptions augment the function stack frame to include information about how
to handle an exception by unwinding the stack.

• Like error codes, there is a disconnect between the code that throws the exception
and the code that catches the exception. There may be functions embedded within
the two that become involved in the stack unwinding process. Such disconnect
makes writing robust programs difficult. It means that every part of the code
needs to be able to handle a less-than-graceful exit.

• Again like error codes, the user might have to figure out how to handle the plethora
of possible exceptions generated by the code.

By using exceptions instead of just crashing we are creating a more compli-
cated API (the API now includes all the different exceptions that the different
functions might call) and significantly increasing the mental burden on the
caller for very little gain. (Frykholm 2012)

C++20 has a proposal in the works for contract-based programming (Dos Reis et al.
2018) which eliminates many of these problems, but as this library is explicitly being
developed for C++14, it’s out of scope.

Some developers advocate against the use of exceptions completely, disabling their
use at the compiler level. Instead, they use assertions.

Assertions

An assertion checks an expression passed to it. If it evaluates to true, nothing happens
- if it evaluates to false, the program is halted and some information is displayed to the
developer. Assertions can be extended to pass helpful messages to the developer.

Assertions ensure that invariants hold. By placing assertions throughout a code base,
potentially difficult to find bugs manifest themselves before they become a problem. The
error cannot be ignored as the program has crashed.

Assertions are defined using macros and are used during development. Prior to re-
lease, they can be removed to gain some performance. By toggling a variable, assertions
can be easily switched on and off.

Assertions are the industry standard for video games, and, as such, they are used
in the evulkan library. The Game Engine Architecture Book (Gregory 2014) has an
excellent section discussing the advantages and disadvantages of different kinds of error
handling.

21

Figure 4.12: evulkan architecture.

4.2 Installation and Use
As the library uses CMake, it is relatively easy to install. Follow the instructions in figure
4.13 from the root of the directory.

$ mkdir build
$ cd build
$ cmake ..
$ make
$ make install

Figure 4.13: Instructions for installing evulkan.

The library and header file will be installed in /usr/local/ by default. Example
files can be run from the generated build/examples/ directory.

Listing 4.17: Example program usage.
triangle$./ triangle

multipass$./ multipass --num_threads 3
obj$./ obj

22

4.3 Known Problems

4.3.1 Colo(u)r
Spelling is always an issue in writing code, given the wide-reaching nature of its collab-
oration. In order to match the spelling of the (mostly American led) Vulkan, American
spelling of some words was used, including “color”. However, given the audience, within
this paper the British spelling is used.

4.3.2 Pointers
In order to allow this library to handle the binding of any type of vertex data, void *
pointers had to be used. In addition, there is also the need to have naked pointer
arithmetic (void *dst) for offsetting indices when multithreading. This is not a robust
solution and should be improved in future revisions.

4.4 Why Should You Use This Library?
The idea for the evulkan library surfaced when a lecturer was questioning whether or
not to teach an introduction to Vulkan next year. A major problem with starting Vulkan
is the sheer amount of code you need to write to get it up and running. This library
removes that step, changing the process of learning Vulkan from a typing exercise into a
graphics lesson. It allows the user to begin to understand basic Vulkan concepts without
having to wrangle more complex topics.

This library contains well-documented C++ code that adheres to best principles (C++
Core Guidelines) and style (Google Style Guide). It uses namespacing to prevent name
clashes and uses standard header guards instead of the non-standard #pragma once
directive. Many of the functions are properly marked as const noexcept. The library
is unit tested using Google GTest. It uses C++14, adhering to the C++ requirements set
by the VFX Reference Platform for CY2020.

The source code is available on GitHub (https://github.com/eimearc/masters) and
is easily accessible. The CMake file allows for multiple configurations. For example a
user can simply build and install the library, or they can build and run the examples and
the tests. The library has been statically analyzed using Cppcheck to flag any undefined
behaviour and dangerous coding constructs. No issues were found.

Note not all possible Vulkan features are available with this library. As with any
library, the goal is to make the most common solutions available to the user. If a
developer wants all possible features, they should simply use the Vulkan API.

4.4.1 Things You Don’t Need to Learn About
While this library is intended to help beginners learn some key Vulkan concepts, and how
they interact, many more complex implementation details are purposely hidden from the
user, including command buffers creation and use, synchronization of device and host,

23

and swapchain creation.

While this library is not the way to learn everything about Vulkan, it is a good first
step.

24

Chapter 5

Results

5.1 Efficiency

5.1.1 Time Profile
Using Apple’s Instruments application, the library was profiled using the multipass ex-
ample to check for any bottlenecks. The results are shown below.

%Time Method Library
95% evk::Device::draw() libevulkan.dylib
77.8% vkQueueSubmit libvulkan.1.2.131.dylib
5.8% vkQueueWaitIdle libvulkan.1.2.131.dylib
5.5% vkQueuePresentKHR libvulkan.1.2.131.dylib
3.1% vkAcquireNextImageKHR libvulkan.1.2.131.dylib
1.9% vkWaitForFences libvulkan.1.2.131.dylib
0.5% vkResetFences libvulkan.1.2.131.dylib
0.1% evk::Device::primaryCommandBuffers() const libevulkan.dylib

2.3% glfwPlatformPollEvents libglfw.3.dylib
1.6% evk::DynamicBuffer::update(void const*) libevulkan.dylib

The column % Time refers to what percentage of the overall time was spent ex-
ecuting this command. Grey boxes indicate methods nested within other methods and
their respective times are calculated in relation to the overall time, not the time of the
parent method. For example, 77.8% of the overall program time was spent executing
vkQueueSubmit. The Library column indicates the library from which the method orig-
inates, either the evulkan library, the official Vulkan library, or the GLFW library. The
results are shown in decreasing amount of time spent - if a function is not in the table,
it has a negligible cost.

The results indicate the library adds very little overhead to Vulkan. Considering that
execution speed was not a goal for the project, this is an attractive bonus. Speed was
not greatly affected for ease of use.

5.1.2 Benchmark
In addition to Instruments, a benchmarking program was written. It is located at exam-
ples/bench/main.cpp. It runs the setup and draw phases of the other example programs

25

https://github.com/eimearc/masters/blob/master/examples/bench/main.cpp
https://github.com/eimearc/masters/blob/master/examples/bench/main.cpp

multiple times to gather data on timings. These timings were passed into Python to
generate graphs. The generated graphs for draw and setup times are available in figures
6.4 and 6.5, on pages 43 and 44 respectively.

A test to compare the set up and draw time of a triangle with and without the
evulkan library was also completed. The results are almost identical, with the evulkan
triangle taking a few milliseconds longer than a pure Vulkan triangle. See figure 5.1 for
more details.

(a) Simple triangle. (b) evulkan triangle.

Figure 5.1: Test results for simple triangle and evulkan triangle.

The median (50%) frame draw time for the evulkan triangle is 0.4ms longer than
that for the simple triangle, however the evulkan frame draw time has a shorter tail for
the maximum value. The same is true for the startup time. While the draw and startup
times might be slightly longer, they are much more consistent - the standard deviation
of the simple triangle is 5.289 while that of the evulkan triangle is 0.824.

Note that the data has been stripped of outlier values (z value larger than 3). The
experiment itself was run over 100 times for startup and within a startup another 100
times for drawing, resulting in 100,000 times overall. The Python code used to generate
these results is in Bench.ipynb.

5.2 Usability
This is the main goal of the project. Usability refers to how well a person can use the
library effectively. Usability here is measured in documentation, consistency and lines of
code.

The code is fully documented with class and method comments. The instructions
for how to download, build, install and use the library are available in this document and
on GitHub. The code itself uses consistent naming schemes for methods and variables
and is consistent with other open source projects, as it uses CMake for distribution
and building. The code adheres to the Google Style Guide, has maximum 80 character
length lines and it has const and noexcept methods where possible. Using the triangle
example for comparison, the pure Vulkan implementation uses approximately 914 lines
of code, while the evulkan implementation uses 94, almost a 10x decrease.

26

https://github.com/eimearc/masters/blob/master/examples/bench/Bench.ipynb

5.3 Availability
Availability refers to how easily the code is retrieved. The code is available on GitHub,
and is structured in the standard open-source manner. It has examples, tests and the
full source code available for distributing and building the library using CMake.

27

Chapter 6

Conclusion

This project is a success, resulting in an easy-to-use Vulkan library, removing much of
the redundant and repetitive coding from the user while still allowing them access to
many common Vulkan features.

6.1 What Could Have Been Better

6.1.1 COVID-19
Had COVID-19 not been an issue, given access to the lab machines with Linux and
Windows, the library could have been tested across different configurations. In addition,
it would have been useful to have classmates test the program and see if they could
write a Vulkan program in a limited time frame.

6.1.2 Data-Driven Design
While care was taken to ensure this library was designed in a data-friendly manner, much
of the time spent was ensuring that the library was easy to use and understand. While
these two approaches often are in conflict, ease of use was paramount, leaving some
cases where the solution is less-than optimal in terms of data access and overall speed.
Starting off the project with a better understanding of Vulkan and library development
would have made this step much easier and more fluid.

6.1.3 Mesh Shader
There are some new features that would be interesting to integrate with the library,
specifically mesh shaders. However, the laptop on which the library was developed is
relatively old (2015 MacBook Pro) and, as a result, has a relatively old integrated GPU
(Intel Iris Graphics 6100). Without a machine on which these new features can be tested,
it is impossible to ensure a feature is correctly integrated.

6.2 Future Developments
Possible future developments include exposing more Vulkan features (e.g. compute
pipeline), adding more tests and integrating the library with NGL.

28

6.3 Alternatives Considered

6.3.1 Bazel
There were two options for the build system, Bazel (Google 2015) and CMake. Tests
undertaken at the beginning of the project found that, while Bazel is good for large
codebases and modeling interdependencies within the codebase, CMake is the standard
used for distributing, building and installing open-source code across multiple systems.

6.3.2 Node-Based Graph
Instead of having a C++ library, an option was to create a node-based visual library,
similar to how Houdini works. The advantages of this include an easier interface for
users with limited programming experience.

However, this requires using a library to generate the graphs themselves as this is
not a trivial exercise. Two open-source solutions were found online, but one of them was
failing its build tests. The other (passing) library was an option. However, the author
decided to focus on the full testing, documentation and completion of a stable and
usable C++ library. Graphics programmers are expected to have a solid understanding of
C++ so it is safe to assume that they would be able to set up and use a library such as
this one.

29

Bibliography

AMD, 2016. Anvil. 1.0. [computer program]. USA: AMD.

AMD, 2018. V-EZ. 1.1. [computer program]. USA: AMD.

ARM, , 2020. Vulkan Tutorial [online]. USA. Available from: https://arm-software.
github.io/vulkan-sdk/vulkan intro.html. [Accessed 3 July 2020].

Crotty, E., 2020. Programs for benchmarking multithreaded Vulkan and OpenGL applica-
tions [online]. Bournemouth: GitHub. Available from: https://github.com/eimearc/
vulkan. [Accessed 10 August 2020].

Crytek, 2002. CryEngine. 5.6.6. [computer program]. Frankfurt: Crytek.

Dos Reis, G., Garcia, J., Lakos, J., Meredith, A., Myers, N. and Stroustrup, B.,
2018. Support for contract based programming in C++ [online]. USA. Available
from: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html.
[Accessed 17 August 2020].

Epic Games, 1998. Unreal Engine. 4.25. [computer program]. Cary,NC: Epic Games.

Frykholm, N., 2012. In-depth: Sensible error handling, part 1 [online]. USA: Gamasutra.
Available from: https://www.gamasutra.com/view/news/129438/Indepth Sensible
error handling part 1.php. [Accessed 14 August 2020].

Google, 2015. Bazel. 3.1.0. [computer program]. Mountain View: Google.

Google, , 2020. Google C++ Style Guide [online]. USA: Google. Available from:
https://google.github.io/styleguide/cppguide.html. [Accessed 17 August 2020].

Gregory, J., 2014. Game Engine Architecture, Second Edition. 2nd edition. USA: A. K.
Peters, Ltd.

Karlsson, B., 2018. Brief guide to Vulkan layers [online]. USA: Karlsson,Baldur. Available
from: https://renderdoc.org/vulkan-layer-guide.html. [Accessed 9 August 2020].

Khronos Group, 2016a. MoltenVK. 1.0.38. [computer program]. USA: Khronos Group.

Khronos Group, 2016b. Vulkan. 1.2. [computer program]. USA: Khronos Group.

Khronos Group, , 2016c. Vulkan Guide [online]. USA. Available from: https://github.
com/KhronosGroup/Vulkan-Guide/blob/master/chapters/what is vulkan.md. [Ac-
cessed 20 July 2020].

30

https://arm-software.github.io/vulkan-sdk/vulkan_intro.html
https://arm-software.github.io/vulkan-sdk/vulkan_intro.html
https://github.com/eimearc/vulkan
https://github.com/eimearc/vulkan
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0542r5.html
https://www.gamasutra.com/view/news/129438/Indepth_Sensible_error_handling_part_1.php
https://www.gamasutra.com/view/news/129438/Indepth_Sensible_error_handling_part_1.php
https://google.github.io/styleguide/cppguide.html
https://renderdoc.org/vulkan-layer-guide.html
https://github.com/KhronosGroup/Vulkan-Guide/blob/master/chapters/what_is_vulkan.md
https://github.com/KhronosGroup/Vulkan-Guide/blob/master/chapters/what_is_vulkan.md

Khronos Group, , 2016d. Vulkan Reference Guide [online]. USA. Available from: https:
//www.khronos.org/files/vulkan11-reference-guide.pdf. [Accessed 17 August 2020].

Overvoorde, A., 2020. Vulkan Tutorial [online]. USA. Available from: https:
//vulkan-tutorial.com/. [Accessed 1 August 2020].

Sellers, G., 2016. Vulkan Programming Guide. 1st edition. USA: Addison-Wesley
Professional.

Stroustrup, B. and Sutter, H., 2020. C++ Core Guidelines [online]. USA: isocpp.
Available from: https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines. [Ac-
cessed 17 August 2020].

Think Silicon, 2016. GLOVE. 1.0. [computer program]. USA: Think Silicon.

Unity Technologies, 2005. Unity. 2020.1.2. [computer program]. San Francisco: Unity
Technologies.

Valve, 2004. Source. 1.0. [computer program]. Bellevue: Valve.

Willems, S., 2015. Examples and demos for the new Vulkan API [online]. USA: GitHub.
Available from: https://github.com/SaschaWillems/Vulkan. [Accessed 13 August
2020].

31

https://www.khronos.org/files/vulkan11-reference-guide.pdf
https://www.khronos.org/files/vulkan11-reference-guide.pdf
https://vulkan-tutorial.com/
https://vulkan-tutorial.com/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://github.com/SaschaWillems/Vulkan

Appendices

Figure 6.1: Triangle example in action.

Listing 6.1: Triangle drawing with evulkan library (triangle.cpp).
include " evulkan / evulkan .h"

define GLFW_INCLUDE_VULKAN
include <GLFW/ glfw3.h>

using namespace evk;

int main ()
{

glfwInit ();
glfwWindowHint (GLFW_CLIENT_API , GLFW_NO_API);
glfwWindowHint (GLFW_RESIZABLE , GLFW_TRUE);
GLFWwindow * window = glfwCreateWindow (

800, 600, " Vulkan ", nullptr , nullptr
);

const uint32_t numThreads = 1;
const uint32_t swapchainSize = 2;

32

https://github.com/eimearc/masters/blob/master/examples/triangle/triangle.cpp

Device device = Device (
numThreads , deviceExtensions , swapchainSize ,
validationLayers

);

WindowResize r;
createSurfaceGLFW (device ,window ,r);

std :: vector <Vertex > vertices = setupVerts ();
std :: vector <uint32_t > indices ={0 ,1 ,2};

Attachment framebufferAttachment (
device , 0, Attachment :: Type :: FRAMEBUFFER

);
Attachment depthAttachment (

device , 1, Attachment :: Type :: DEPTH
);

std :: vector < Attachment *> colorAttachments
= {& framebufferAttachment };

std :: vector < Attachment *> depthAttachments
= {& depthAttachment };

std :: vector < Attachment *> inputAttachments ;
std :: vector < Subpass :: Dependency > dependencies ;

Subpass subpass (
0, dependencies , colorAttachments ,
depthAttachments , inputAttachments

);

std :: vector < Subpass *> subpasses = {& subpass };
Renderpass renderpass (device , subpasses);

VertexInput vertexInput (sizeof (Vertex));
vertexInput . setVertexAttributeVec3 (0, offsetof (Vertex ,pos));
vertexInput . setVertexAttributeVec3 (1, offsetof (Vertex ,color));

StaticBuffer indexBuffer (
device , indices .data (), sizeof (indices [0]) ,
indices .size (), Buffer :: Type :: INDEX

);
StaticBuffer vertexBuffer (

device , vertices .data (), sizeof (vertices [0]) ,
vertices .size (), Buffer :: Type :: VERTEX

);

Shader vertexShader (
device , " shader_vert .spv", Shader :: Stage :: VERTEX

);
Shader fragmentShader (

device , " shader_frag .spv", Shader :: Stage :: FRAGMENT
);
std :: vector < Shader *> shaders = {& vertexShader ,& fragmentShader };

Pipeline pipeline (
device , subpass , vertexInput , renderpass , shaders

);
std :: vector < Pipeline *> pipelines = {& pipeline };

33

device . finalize (indexBuffer , vertexBuffer , pipelines);

// Main loop.
while (! glfwWindowShouldClose (window))
{

glfwPollEvents ();
device .draw ();

}
}

34

Figure 6.2: OBJ example in action.

Listing 6.2: OBJ drawing with evulkan library (obj.cpp).
include " evulkan / evulkan .h"

using namespace evk;

struct UniformBufferObject
{

glm :: mat4 model;
glm :: mat4 view;
glm :: mat4 proj;

};

int main(int argc , char ** argv)
{

gflags :: SetUsageMessage (
"A program demonstrating how to use OBJs and
textures in Vulkan ."

);
gflags :: ParseCommandLineFlags (&argc , &argv , true);

glfwInit ();
glfwWindowHint (GLFW_CLIENT_API , GLFW_NO_API);
glfwWindowHint (GLFW_RESIZABLE , GLFW_TRUE);
GLFWwindow * window = glfwCreateWindow (

800, 600, " Vulkan ", nullptr , nullptr
);

const uint32_t numThreads = FLAGS_num_threads ;
const uint32_t swapchainSize = 2;

Device device (
numThreads , deviceExtensions , swapchainSize ,
validationLayers

35

https://github.com/eimearc/masters/blob/master/examples/obj/obj.cpp

);

WindowResize r;
createSurfaceGLFW (device , window , r);

std :: vector <Vertex > v;
std :: vector <uint32_t > in;
evk :: loadOBJ (" viking_room .obj", v, in);

Texture texture (device , " viking_room .png");

Descriptor descriptor (device , swapchainSize);
descriptor . addTextureSampler (

1, texture , Shader :: Stage :: FRAGMENT
);

Attachment framebufferAttachment (
device , 0, Attachment :: Type :: FRAMEBUFFER

);
Attachment depthAttachment (

device , 1, Attachment :: Type :: DEPTH
);

std :: vector < Attachment *> colorAttachments
= {& framebufferAttachment };

std :: vector < Attachment *> depthAttachments
= {& depthAttachment };

std :: vector < Attachment *> inputAttachments ;
std :: vector < Subpass :: Dependency > dependencies ;

Subpass subpass (
0, dependencies , colorAttachments ,
depthAttachments , inputAttachments

);

std :: vector < Subpass *> subpasses = {& subpass };
Renderpass renderpass (device , subpasses);

UniformBufferObject uboUpdate = {};
uboUpdate .model=glm :: mat4 (1.0f);
uboUpdate .model=glm :: rotate (

glm :: mat4 (1.0f), 0.001f * glm :: radians (90.0f)*0,
glm :: vec3 (0.0f ,0.0f ,1.0f)

);
uboUpdate .view = glm :: lookAt (

glm :: vec3 (2.0f, 2.0f, 2.0f),
glm :: vec3 (0.0f, 0.0f, 0.0f),
glm :: vec3 (0.0f, 0.0f, 1.0f)

);
uboUpdate .proj = glm :: perspective (

glm :: radians (45.0f), 800 / (float) 600 , 0.1f, 10.0f
);
uboUpdate .proj [1][1] *= -1;
DynamicBuffer ubo(

device , &uboUpdate , sizeof (uboUpdate),
1, Buffer :: Type :: UBO

);
descriptor . addUniformBuffer (0, ubo , Shader :: Stage :: VERTEX);

36

VertexInput vertexInput (sizeof (Vertex));
vertexInput . setVertexAttributeVec3 (0, offsetof (Vertex ,pos));
vertexInput . setVertexAttributeVec3 (1, offsetof (Vertex ,color));
vertexInput . setVertexAttributeVec2 (2, offsetof (Vertex , texCoord));

StaticBuffer indexBuffer (
device , in.data (), sizeof (in [0]) ,
in.size (), Buffer :: Type :: INDEX

);
StaticBuffer vertexBuffer (

device , v.data (), sizeof (v[0]) ,
v.size (), Buffer :: Type :: VERTEX

);

Shader vertexShader (
device , " shader_vert .spv", Shader :: Stage :: VERTEX

);
Shader fragmentShader (

device , " shader_frag .spv", Shader :: Stage :: FRAGMENT
);
std :: vector < Shader *> shaders = {& vertexShader ,& fragmentShader };

Pipeline pipeline (
device , subpass , descriptor , vertexInput ,
renderpass , shaders

);

std :: vector < Pipeline *> pipelines = {& pipeline };

device . finalize (indexBuffer , vertexBuffer , pipelines);

// Main loop.
size_t counter =0;
while (! glfwWindowShouldClose (window))
{

glfwPollEvents ();

UniformBufferObject uboUpdate = {};
uboUpdate .model=glm :: mat4 (1.0f);
uboUpdate .model=glm :: rotate (

glm :: mat4 (1.0f), 0.001f * glm :: radians (90.0f)* counter ,
glm :: vec3 (0.0f ,0.0f ,1.0f)

);
uboUpdate .view = glm :: lookAt (

glm :: vec3 (2.0f, 2.0f, 2.0f),
glm :: vec3 (0.0f, 0.0f, 0.0f),
glm :: vec3 (0.0f, 0.0f, 1.0f)

);
uboUpdate .proj = glm :: perspective (

glm :: radians (45.0f), 800 / (float) 600 , 0.1f, 10.0f
);
uboUpdate .proj [1][1] *= -1;
ubo. update (& uboUpdate);

device .draw ();

counter ++;

37

}
}

38

Figure 6.3: Multipass example in action.

Listing 6.3: Multipass drawing with evulkan library (multipass.cpp).
include " evulkan / evulkan .h"

using namespace evk;

struct UniformBufferObject
{

glm :: mat4 MVP_model ;
glm :: mat4 MVP_light ;
glm :: mat4 MV;

};

int main(int argc , char ** argv)
{

gflags :: SetUsageMessage (
"A program for using multipass
Vulkan over multiple threads ."

);
gflags :: ParseCommandLineFlags (&argc , &argv , true);

const uint32_t numThreads = FLAGS_num_threads ;
const uint32_t swapchainSize = 2;

glfwInit ();
glfwWindowHint (GLFW_CLIENT_API , GLFW_NO_API);
glfwWindowHint (GLFW_RESIZABLE , GLFW_TRUE);
GLFWwindow * window = glfwCreateWindow (

800, 600, " Vulkan ", nullptr , nullptr
);

std :: vector <Vertex > vertices ;
std :: vector <uint32_t > indices ;
createGrid (FLAGS_num_cubes , vertices , indices);

39

https://github.com/eimearc/masters/blob/master/examples/multipass/multipass.cpp

Device device (
numThreads , deviceExtensions , swapchainSize ,
validationLayers

);

WindowResize r;
createSurfaceGLFW (device , window , r);

Attachment framebufferAttachment (
device , 0, Attachment :: Type :: FRAMEBUFFER

);
Attachment colorAttachment (device , 1, Attachment :: Type :: COLOR);
Attachment depthAttachment (device , 2, Attachment :: Type :: DEPTH);

std :: vector < Attachment *> colorAttachments = {& colorAttachment };
std :: vector < Attachment *> depthAttachments = {& depthAttachment };
std :: vector < Attachment *> inputAttachments ;
std :: vector < Subpass :: Dependency > dependencies ;

Subpass subpass0 (
0, dependencies , colorAttachments , depthAttachments ,
inputAttachments

);

colorAttachments = {& framebufferAttachment };
depthAttachments . resize (0);
inputAttachments = {& colorAttachment , & depthAttachment };
dependencies = {0};

// Require previous subpass to complete before this one.

Subpass subpass1 (
1, dependencies , colorAttachments , depthAttachments ,
inputAttachments

);

std :: vector < Subpass *> subpasses = {& subpass0 , & subpass1 };
Renderpass renderpass (device , subpasses);

DynamicBuffer ubo(
device , sizeof (UniformBufferObject), Buffer :: Type :: UBO

);

Descriptor descriptor0 (device , swapchainSize);
descriptor0 . addUniformBuffer (0, ubo , Shader :: Stage :: VERTEX);

Descriptor descriptor1 (device , swapchainSize);
descriptor1 . addUniformBuffer (0, ubo , Shader :: Stage :: VERTEX);
descriptor1 . addInputAttachment (

0, colorAttachment , Shader :: Stage :: FRAGMENT
);
descriptor1 . addInputAttachment (

1, depthAttachment , Shader :: Stage :: FRAGMENT
);

VertexInput vertexInput0 (sizeof (Vertex));
vertexInput0 . setVertexAttributeVec3 (0, offsetof (Vertex ,pos));
vertexInput0 . setVertexAttributeVec3 (1, offsetof (Vertex , normal));

40

VertexInput vertexInput1 (sizeof (Vertex));
vertexInput1 . setVertexAttributeVec3 (0, offsetof (Vertex ,pos));

StaticBuffer indexBuffer (
device , indices .data (), sizeof (indices [0]) ,
indices .size (), Buffer :: Type :: INDEX

);
StaticBuffer vertexBuffer (

device , vertices .data (), sizeof (vertices [0]) ,
vertices .size (), Buffer :: Type :: VERTEX

);

Shader vertexShader0 (
device , " pass_0_vert .spv", Shader :: Stage :: VERTEX

);
Shader fragmentShader0 (

device , " pass_0_frag .spv", Shader :: Stage :: FRAGMENT
);
std :: vector < Shader *> shaders0 = {

& vertexShader0 , & fragmentShader0
};

Pipeline pipeline0 (
device , subpass0 , descriptor0 ,
vertexInput0 , renderpass , shaders0

);

Shader vertexShader1 (
device , " pass_1_vert .spv", Shader :: Stage :: VERTEX

);
Shader fragmentShader1 (

device , " pass_1_frag .spv", Shader :: Stage :: FRAGMENT
);
std :: vector < Shader *> shaders1 = {

& vertexShader1 , & fragmentShader1
};

Pipeline pipeline1 (
device , subpass1 , descriptor1 , vertexInput1 ,
renderpass , shaders1

);
std :: vector < Pipeline *> pipelines = {& pipeline0 , & pipeline1 };

device . finalize (indexBuffer , vertexBuffer , pipelines);

// Main loop.
size_t counter =0;
glm :: mat4 model (1.0f);
glm :: mat4 view (1.0f);
glm :: mat4 proj (1.0f);
while (! glfwWindowShouldClose (window))
{

glfwPollEvents ();

UniformBufferObject uboUpdate = {};
model = glm :: rotate (

glm :: mat4 (1.0f), 0.005f * glm :: radians (90.0f)* counter ,

41

glm :: vec3 (0.0f ,0.0f ,1.0f)
);
view = glm :: lookAt (

glm :: vec3 (2.0f, 2.0f, 2.0f),
glm :: vec3 (0.0f, 0.0f, 0.0f),
glm :: vec3 (0.0f, 0.0f, 1.0f)

);
proj = glm :: perspective (

glm :: radians (45.0f), 800 / (float) 600 , 0.1f, 10.0f
);
proj [1][1] *= -1;
uboUpdate .MV = view * model;
uboUpdate . MVP_model = proj * view * model;
uboUpdate . MVP_light = proj * view;

ubo. update (& uboUpdate);

device .draw ();

counter ++;
}

// Tidy up.
glfwDestroyWindow (window);
glfwTerminate ();

}

42

Figure 6.4: Draw time for different examples over multiple threads.

43

Figure 6.5: Setup time for different examples over multiple threads.

44

	Introduction
	Previous Work
	V-EZ
	Anvil
	GLOVE
	MoltenVK
	Personal Inquiry

	Technical Background
	Useful Resources
	Comparison with OpenGL
	Vulkan Layers
	Loader
	Dispatch Chains

	Vulkan Components
	VkInstance
	VkPhysicalDevice
	VkDevice
	VkQueue
	VkDeviceMemory
	VkCommandBuffer
	VkSwapchainKHR

	Vulkan Object Model

	The evulkan Library
	How does it work?
	evk::Device
	evk::Texture
	evk::Attachment
	evk::Buffer
	evk::Descriptor
	evk::Subpass
	evk::Renderpass
	evk::Pipeline
	evk::Shader
	evk::VertexInput
	Window System Integration
	Error Handling

	Installation and Use
	Known Problems
	Colo(u)r
	Pointers

	Why Should You Use This Library?
	Things You Don't Need to Learn About

	Results
	Efficiency
	Time Profile
	Benchmark

	Usability
	Availability

	Conclusion
	What Could Have Been Better
	COVID-19
	Data-Driven Design
	Mesh Shader

	Future Developments
	Alternatives Considered
	Bazel
	Node-Based Graph

