
 

 

 

Hair Simulation Based on Mass Spring System 

 

Yao Lyu 

 

Master Thesis  

MSc Computer Animation and Visual Effects  

Bournemouth University  

NCCA 

 

 

 

 
August 2016 



Abstract 

 

In this paper, we present a method for stably simulating stylized hair that 

addresses artistic needs and performance demands. The paper makes an 

overview of the mathematical and physical knowledge of basic mass-spring 

model as well as the techniques to eliminate artefacts. This paper also 

addresses performance concerns associated with handling hair-hair contact 

and hair-object collision. Several scenarios are implemented in Houdini using 

VEX language with the method we described. Finally, the implementation is 

proven to be robust and suitable for simulating hairs with both regular and 

irregular objects. 

 

Key words: hair simulation, mass-spring model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Content 
1. Introduction ................................................................................................ 4 

2. Related Work ............................................................................................. 5 

3. Constitutive Model ..................................................................................... 6 

3.1 Stretch Spring .................................................................................. 7 

3.2 Bending and Torsion spring .............................................................. 7 

3.3 Smooth function ............................................................................... 9 

3.4 Improved Mass-Spring Model ........................................................ 10 

4. Time integration ....................................................................................... 12 

5. Strain limiting ........................................................................................... 13 

6. Collision Detection ................................................................................... 14 

6.1 Hair-hair interaction ........................................................................ 14 

6.2 Hair-Object Collision....................................................................... 16 

7. Implementation ........................................................................................ 17 

7.1 Modelling ........................................................................................ 18 

7.2 Hair Dynamic .................................................................................. 20 

7.2.1 Hair pre-solver in rest pose ...................................................... 20 

7.2.2 Hair dynamic solver .................................................................. 21 

8. Results and Discussion ........................................................................... 24 

9. Conclusion and Future work .................................................................... 27 

Reference ...................................................................................................... 28 

 

  



1. Introduction 

Creating virtual hair has been a prominent topic within the realm of computer 

graphics. Hair simulation usually includes three parts: hair styling, hair 

dynamics and rendering. Especially, the hair dynamic has important 

applications for visual effects, animated features, virtual hair styling and online 

stores. However, hair dynamic is one of the most challenging phenomena to 

simulate because of the sheer number of hairs on the head and the complex 

motion of different hair styles. 

 

Nowadays, researchers focus on the two parts of hair dynamics: single hair 

dynamic and collective hair dynamic. Single hair dynamic is based on details 

and intricate parts of hair. But simulating hair separately is complex and 

tedious. Some authors suggest researching the collective hair behaviour for 

high efficiency of simulation and rendering. They use clumped models and 

aggregate hair simulation techniques. These algorithms also have drawbacks. 

Simulating hairs with irregular geometries can produce hair-hair or hair-body 

interpenetration sometimes. Additionally, subtle details such as stray hairs, 

clump separation are not handled by aggregate models. Different algorithms 

are designed for keeping the specific visual look of the dynamic hair. For 

example, the helical shape hair, which is a popular feature in animation, is a 

challenge for developers because it would naturally straighten under stretching. 

To address the above drawbacks and requirements, we propose using a 

non-clumped simulation technique in this paper. Though this requires more 

computation, this allows us to achieve intricate hair behaviour.  

 

This paper attempts to implement one hair solver which could give dependable 

results with as many individual hairs as possible by using a constitutive model. 

To do this, this paper uses mass-spring system with point representation which 



is computationally inexpensive and adept at detecting object collisions. 

Unfortunately, mass-spring models have difficulty modelling twist. This paper 

introduces another two springs to keep the curliness of hair. This paper also 

provides strain limiting approach for avoiding severe deformation and smooth 

function for stabilizing the hair shape. To handle the interaction of hair and 

object, this paper uses volume data to detect interpenetration and create 

friction spring to imitate fiction. This hair simulation system is demonstrated in 

several examples in Houdini using VEX language. 

 

2. Related Work 

Dynamic traditionally involves in working with forces. When it comes to hair, 

the forces are usually defined as two classes: internal forces which work inside 

the hair curve and the external forces to represent the interactions with object 

in the environment. Many previous works have applied mass-spring system to 

calculate the internal forces with point presentation.  

 

The first approach was came up by [Rosenblum et al. 1991], which used a 

linear spring for stretching and an angular spring between hair segemtns for 

bending. [Petrovic et al. 2005] simulated mass-spring hairs as guide hairs, 

rasterising them onto a level set grid to model interaction and volume, 

producing uniform hair. [Gupta et al. 2006] used a simplified mass-spring 

model with lattice point presentation to define a deformation field for 

embedded rendering hairs. These two algorithms are efficient at modelling 

bulk behaviour, but they have difficulty modelling discontinuous effects like hair 

separation, and the highly intricate interacting geometry like curly hair, or 

individual hair twist. [Selle et al. 2008] introduced a mass-spring model for 

simulating individual hair as much as possible. He used stretch, bend, twist 



and altitude springs to form an implied tetrahedron between points, through 

keeping no-zero altitude spring to prevent volume collapse. 

 

A variety of methods also have been proposed to handle the external forces, 

like collision impulsion and fiction. [Choe et al. 2005] combined basic 

mass-spring model with rigid multi-body chain structure to model wisps, and 

detected collisions by testing the cylinders’ volume. Mass-spring models have 

also been improved with a lattice for hair styling by [gupta et al.2006]. Later the 

model was modified with an Eulerian fluid solver to keep hair volume and 

provide a better initial position for the point contacts by [mcadams et al.2009].  

Recently hair-body and hair-hair contacts have been more accurately 

implemented by using a non-smooth Newton solver for Coulomb friction law by 

[bertails-descoubes et al.2011].  [Daviet et al. 2011] used an analytic solver to 

solve for Coulomb friction with a hybrid Gauss-Seidel algorithm to ensure 

convergence. 

 

Similar to prior work, this paper combines [Selle et al. 2008] and [Hayley Iben 

et al.2013] to build a basic mass-spring model with three springs, including a 

linear spring for stretch and two springs to keep the curliness and twist. We 

add perturbed points and construct new springs with additional points to keep 

the stability of hair structure. For hair interaction, we chose to detect contacts 

by representing object collision geometry as volume data, which is good at 

handling irregular geometry efficiently. 

 

3. Constitutive Model 

To create the desired hair style, especially the helical shape, this model needs 

explain two properties of hair at first:  



1. Curly hair is similar to spring so the simulation should meet some 

properties of springs, like it should keep initial curly shape during simulation. 

While straight hair is similar to string, it should be flexed with motion and 

wind.   

2. Hair could have extension but have maximum length limitation. 

 

To meet the requirements above, this paper introduces three kinds of springs: 

stretch spring, bending spring and torsion spring. This spring model can work 

for both straight and curly hair. 

3.1 Stretch Spring 

We define our hair model using a set of points which are connected by edge 

springs. These edge springs represent the structure of hair. Let each hair 

consists of a set of current point positions P = {p0, . . . , pN-1 } and a set of point 

velocities V = {v0, . . . , vN-1}.The segment connecting every two points is     

ei = pi+1 –pi and the length is l. Initial length of each segment at rest pose 

positions is stored len0. We compute a standard damped linear spring force on 

the edge ei, as shown in Eq.1. 

F = K𝑠 ∗ (l − len0) ∗ normalize(e𝑖) + C𝑠 ∗ (v𝑖+1 − v𝑖) ∗ normalize(e𝑖)     (1) 

K𝑠 is the spring coefficient and C𝑠 is the damping coefficient. Because springs 

in our model are connecting two points, each of our spring forces is applied 

equally to both points in opposite directions on same segment. 

 

3.2 Bending and Torsion spring 

Stretch springs could transfer forces from one endpoint to another endpoint 

through points’ movement. However, once force is applied to drag the end of 

hair, the stretch spring can’t help hold the original shape of hair so some 

segments will be dragged to be straight. Especially the curly hair will be 



straight in the simulation process. Finally, the hair keeps straight whatever its 

initial shape is because the stretch forces on every point could keep balanced 

in the direction of this external force. Therefore, this paper introduces bending 

spring to stably control the bend between every two points.  

 

During initialization, we construct bending spring between every other point 

which means every point has at least one bending spring to constrain its 

curliness. The initial length of each bending spring is recorded at rest pose. 

The force on every bending is calculated similar to Eq.2.  

F = K𝑏 ∗ (l − len0) ∗ normalize(e𝑖) + C𝑏 ∗ (v𝑖+1 − v𝑖) ∗ normalize(e𝑖)     (2) 

K𝑏 is the bending spring coefficient and C𝑏 is the damping coefficient. Usually, 

these two coefficients are smaller than according coefficients of stretch spring.  

Using only stretch and bending spring are insufficient for actual animation 

when simulating curly hair with a variety of motions. We add the torsion spring 

to our hair model which connects each point to a point three points away from 

it so that twist can be modelled. The calculation of torsion spring force is 

similar to bending spring, while it uses different spring and damping 

coefficients, Kt and Ct.  

 

These three springs works well on constraining the curliness of every point on 

hair. The whole spring construction is shown in Fig 3.1. 

  

Fig 3.1 Mass-Spring Model 



3.3 Smooth function 

During the motion of hair, especially curly hair, the helical frequency will be 

increased like additional rotation of hair is introduced. [Hayley al et.2013] 

called this artefact as walk cycle, as shown in Fig 3.2. This rotation is 

physically accurate but presents as artefact in our visual effect which is not 

desired. Hayley introduces a method to stably generate the material frame by 

parallel transporting the root frame of the hair along a smoothed piecewise 

linear curve.  

 

Fig 3.2 This elastic rod model introduces rotation around the helix, apparent in the 

orientation of the end of the curl. 

 

This smoothing function is defined with an infinite impulse response (IIR) 

Bessel filter which can produce new result by combining the input and prior 

values using recursive functions. In this case, we use a set of point position as 

the input of filter, as shown in Eq.3. Let 𝛽 = min(1, exp(𝑙𝑒𝑛0/𝛼)) where len0 is 

the average rest length per segment of the hair being smoothed, which is 

stored before dynamic starts. d𝑖 is the vector to modify point i for smoothing 

function. And it is obtained by recursively computing from the points closer to 

the root to the endpoint.  

d𝑖 = 2(1 − 𝛽)d𝑖−1 − (1 − 𝛽)2d𝑖−2 + 𝛽2(𝑝𝑖+1 − 𝑝𝑖)        (3) 

p𝑖
′ = p𝑖−1

′ + d𝑖−1                     (4) 

For each point, the first step is to calculate the transformation vector d𝑖 in 

Eq.3. Usually, d−2 = d−1 = p1 − p0 , which means d0 = p1 − p0 at i = 0. 

Subsequent d𝑖 is weighted towards this initial direction. The second step is to 

modify the position, as shown in Eq.4. p𝑖
′ is obtained by last updated points 



p𝑖−1
′ and its transformation vector d𝑖−1. p0 is the root of the hair curve which 

is usually glued to the head scalp. Finally, the hair curve is smooth by 

recursively updating points’ position from the locked root position.  

 

Fig 3.3 Example of a stylized curly hair (far left) and the smoothed curves (blue) 

computed with α at 2, 4, 6, and ∞ [Hayley al et.2013]. 

 

As we can see, the output behaviour is relative to input parameter α. If α= 0, 𝛽 

is set to 1 manually, meaning that d𝑖 = d𝑖+1  and no smoothing effect occurs. 

When α → ∞, then 𝛽 → ∞ and d𝑖 = d𝑖−1 = ⋯ = p1 − p0.The effect of smooth 

function is straight and in the direction of the top segment, regardless of how 

kinked the input curve is. [Hayley al et.2013] shows how α affects the smooth 

function in Fig 3.3. 

3.4 Improved Mass-Spring Model 

Another artefact in hair dynamic is when one endpoint of hair is dragged by the 

huge force, the hair will go straight, which means that the bending and torsion 

spring will overlap stretch spring, becoming useless for holding the helical 

shape. At this situation, additional spring need to be added with points outside 

the hair curves, which avoids the same problem met by bending and torsion 

springs.  



 

Fig 3.4 Perturb points(below) from two neighbour segments in improved 

mass-spring system. 

[Andrew al et.2008] proposed to perturb middle points for two con-linear hair 

segments. He creates two new points at the midpoints of the two neighbour 

segments and perturbs them to form two triangles as shown in Fig 3.4. These 

triangles should be fairly rigid so they are given springs on their edges that are 

as strong as the hair stretch springs. From these triangles we can add updated 

bending and torsion springs to form a full hair model as shown in Fig 3.5. Extra 

stretch spring and updated torsion spring with perturbed points ensure that 

there are at least some stretch springs and torsion springs are not parallel to 

force direction during simulation. Thus instead of using an explicit coordinate 

system we model an implicit one by using offset points together with extra 

springs, causing a marginally higher simulation cost, but still fitting into a 

simple mass-spring framework.  

 

Fig 3.5 Improved mass-spring system with perturbed points 

Thus our algorithm prepares a hair curve for simulation by first sampling 

discrete points p0 , . . ., pi equally in arclength. We perturb new points off of the 

original curve such that the edge lengths of the newly created triangles are 

equal to the length of the parent segment. In addition, if there are many 

consecutive segments with perturbed particles, we rotate the perturbed points 



about the hair axis to ensure good direction sampling. The improved spring 

structure is shown in Fig 3.6. 

 

Fig 3.6 Improved mass-spring structure 

4. Time integration 

Given our hair model, time integration from time tn to tn+1 proceeds as follows: 

 Step1: vn=vn-1+a*Δt 

 Step2: modify vn with strain limiting 

 Step3: xn=xn-1+v*Δt 

 Step4: Body collision modify vn and xn 

 Step5: Self-collision modify vn and xn 

 

The acceleration in Step1 is calculated using explicit time integration after 

spring model. The velocity computed in step 1 is processed with strain limiting 

method(in Chapter 5) before being used to predict position. After position 

update, collisions are applied which discussed in Chapter 6. The velocity 

before step 4 is discarded and is evolved in last two steps. 

 



5. Strain limiting 

Complex head motions can cause severe stretching especially in springs 

which have one of their two endpoints constrained to a character’s head.  

[Caramana et al.1998] said that a triangle edge should not change length by 

more than 10% in a single time. Hayley introduced the core spring that controls 

the longitudinal stretch of the curls without stiffening the bending springs. It 

works as normal spring but the spring coefficient is set from 0 to full value to 

avoid adding unnecessary constraints. [Bridson et al. 2002] used strain limiting 

approaches to alleviate high strain in cloth, that apply momentum conserving 

velocity impulses to points attached by springs that exceed 10% deformation. 

This can be enforced by either adaptively decreasing the time step or 

decreasing the strain rate.  

 

In this paper, we correct the position and velocity to protect the spring under 

large acceleration. Since correcting one spring potentially damages another, 

iteration is typically used. In our case, hair is relatively light compared to the 

head so that the acceleration usually comes from the head’s movement. 

Therefore, a biased strain limiting approach usually is employed that marches 

from the root of the hair and projects the length by moving only the point further 

from the root in the direction formed by the two point.    

 

During implementation, we obtain the prediction of current position and 

velocity since the internal forces are already knew. Then we handle the strain 

limiting operation based on the predicted position. In any step, the maximum 

length of two points is 1.1 times initial spring length. If the predicted length of 

two points is greater than the maximum, we project the points backward. Then 

we update the velocity on the basis of last position and modified position. Note 

that the strain limiting in step 2 above only affects the velocity used to update 



the positions and has no direct effect on the velocity used for evolution in later 

steps. 

6. Collision Detection 

This chapter deals with the difficult problems of hair interactions, which play a 

major role in the motion of a full head of hair. Hair interaction includes hair-hair 

interaction and hair-object collision. 

6.1 Hair-hair interaction 

Considered the special property of hair, hair-hair interaction is not the simple 

repulsion of collision, which also includes friction and static charge adhesion 

which cause hair to stick together.  

 

To detect hair collision and contact, the distance of each segment on 

neighbour hair is compared. If consecutive points x1 and x2 lie on hair strand 

h1, and consecutive points x3 and x4 lie on hair strand h2, the smallest 

distance between the hair segments x21 and x43 (where x21 = x2 - x1, x43 = 

x4 - x4) need to be calculated. This distance is the line mutually orthogonal to 

the two segments. If the endpoints of this line are p1 and p2 on h1 and h2 

respectively, the equations are shown below:  

𝑥21 = 𝑥2 − 𝑥1                            (5) 

𝑥43 = 𝑥4 − 𝑥3                            (6) 

𝑝1 = 𝑥1 + 𝑎𝑥21                            (7) 

𝑝2 = 𝑥3 + 𝑎𝑥43                            (8) 

                           0 ≤ 𝑎, 𝑏 ≤ 1 

Where a and b refer to the relative positions of p1 and p2 on h1 and h2 

respectively.  

 



If the distance between p1 and p2 is within the collision distance, the impulsion 

is applied to the relative segments on h1 and h2, calculated as below.  

𝐼 =
2𝐼

𝑎2+(1−𝑎2)+𝑏2+(1−𝑏2)
                         (9) 

𝑣1 = 𝑣1 + (1 − 𝑎)(
𝐼

𝑚
)𝑛𝑜𝑟𝑚𝑎𝑙(𝑛)                    (10) 

𝑣2 = 𝑣2 + 𝑎(
𝐼

𝑚
)𝑛𝑜𝑟𝑚𝑎𝑙(𝑛)                    (11) 

𝑣3 = 𝑣3 − (1 − 𝑏)(
𝐼

𝑚
)𝑛𝑜𝑟𝑚𝑎𝑙(𝑛)                    (12) 

𝑣4 = 𝑣4 − 𝑏(
𝐼

𝑚
)𝑛𝑜𝑟𝑚𝑎𝑙(𝑛)                    (13) 

If the distance between p1 and p2 is within the contact distance, then a stiction 

spring is created between the two points. [Jimenez and Luciani 1993] said that 

springs can be useful for making and breaking dynamic constraints. Therefore 

this spring works like normal sprins this paper described in Chapter 3 so that it 

can be stretched and compressed until the length of the spring exceeds a 

separation threshold. Connections will be broken as hairs separate beyond the 

distance threshold.  

 

Handling stiction spring is quiet intractable. Firstly, the two endpoints of stiction 

spring should be added on the segments so that they change the structure of 

the hair strand and affect the structural stretch springs. The whole stretch 

spring model should be modified. Secondly, the computation for all stiction 

springs can get really complicated and cause the hair to blow up if there are as 

well as too many stiction springs on the whole hair strand. Thirdly, when the 

connection between two edges break, it is also necessary to remove the 

stiction spring. This requires removing the temporary points we created, 

removing the edge springs connecting those temporary points, and adding 

back the old stretch springs. Taken the situation above into consideration, this 

project doesn’t implement the stiction spring when one hair contacts with 

another hair. 



6.2 Hair-Object Collision 

The collision objects are usually head or body. To detect the collision, the 

geometry is usually represented as a level set signed distance function which 

aims to discriminate whether one point is inside the geometry. Most projects 

use a simple sphere to represent the head, which means only measuring the 

distance from any position to sphere centre could make sure whether this point 

goes inside the geometry. Using sphere is simple for collision detection but 

raises the problem of irregular geometries. This paper is looking for one 

efficient method to represent the irregular collision geometry as distance data, 

especially during the motion. 

 

Openvdb provides a hierarchical data structure to describe sparse, 

time-varying, volumetric data discretized on three-dimensional grids. It could 

generate volume data from geometry robustly and effectively. The volume 

density differs from the distance between points and the centre of geometry, 

which is 1 on the geometry centre, 0 on the geometry skin and 0 outside the 

skin.  

 

We adapt the techniques from the volume density through Openvdb library. At 

Step 4 in time integration, we obtain the density value of position xn. If the 

density value is greater than 0, this point is going to collide the geometry, 

otherwise it will to stay outside the geometry.  

 

As mentioned hair is a soft and light material compared to body and head, the 

impulse affects hair’s velocity which will be set to 0 when collision happens, 

however, it doesn’t affect the movement of head or body. At the same time, 

due to contact between hair and collision object, hair experience static friction, 

so a friction force is need to be applied. Similar to hair-hair stiction spring, the 

stiction spring could be created to imitate the friction effects. If the point has 



already penetrated the object, stiction spring applies a penalty force to push 

the point out of the object. Otherwise, after collision when point still stays within 

the small distance, the stiction works by using this spring to drag the point back 

to skin. This force is calculated as below: 

F𝑟 = −1 ∗ 𝐾𝑠 ∗ (𝑝𝑖 − 𝑜𝑗) ∗ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑝𝑖 − 𝑜𝑗)                   (14) 

F𝑟 is the friction spring force. 𝐾𝑠 is the spring constant of the penalty spring, 

𝑝𝑖 is the point going to collide the object and 𝑜𝑗 is the point on object skin 

collided by 𝑝𝑖. The normal represents the direction of the contact.  

7. Implementation 

This chapter covers how the techniques explained in the previous are 

implemented. The implementation of this project is done in Houdini based 

mainly on the use of DOPs, and VEX language. The main task of 

implementation is to add one hair solver in Houdini then use simple hair model 

to testify the stability and efficiency of the solver.  

 

              

                        Fig 7.1 Implementation steps 

We divide the whole implementation into three steps, as shown above in Fig 

7.1:  

In the first step, we create at least two geometries: hair and object for collision. 

The hair is attached to the chosen scalp of the object.  

In the second step, one DOP network is implemented inside the system of hair 

simulation which calculates the internal and external forces for hair. The 

collision and strain limiting will be detected in each time step.  

Finally, in line with our goal to simulate the full head of hair, all hairs are 

visualised and rendered inside Houdini without new hair generation. 

Modellin Hair Dynamic Rendering 



7.1 Modelling 

 

Fig 7.2 Modelling Houdini network 

As shown in Fig 7.2, we start from modelling single curly hair by using circle 

node(basic_circle) for the basic circles and point node(modify_length) to 

stretch circles in y axis. In order to process the spring model and collision 

operation, the single hair psolyline is divided into segments with point 

presentation. More points are, more complex the dynamics will be. In this 

project, we set the hair segments with same length. The segment length and 

total points’ number of single hair are recorded at rest position.  

 

For the improved spring model proposed in Chapter 3, additional points need 

to be created around the original hair. We perturb one point for each hair 

segment which could form an equilateral triangle with two hair points. In 

addition, we rotate the perturbed points about the hair axis to ensure good 

direction sampling. Fig7.3 shows the structure with perturbed points.  

 

 

 



  

Fig 7.3 Left pic shows the perturbed points. Right pic shows the additional 

stretch springs constructed with perturbed points. 

 

Improved spring structure introduces two more edge springs for each point 

which could help to hold smoother hair shape in hair dynamics, while it leads to 

extra computation and difficulty to process the forces. Therefore, we 

implement the normal spring model in Section 3.1 and Section 3.2 for whole 

body hair simulation and the improved spring model in Section 3.4 for single 

hair simulation. The last step of modelling is to glue multiple hairs to scalp 

inside Houdini hair tool. As shown below, hairs are applied in different collision 

objects.  

   

Fig 7.4 Hair models 

 



7.2 Hair Dynamic 

Houdini has hair system which doesn’t have dynamic solver inside. We 

implement our algorithms described in section xxx and section in Houdini’s hair 

system. The whole hair system is shown in Fig 7.5. We divide the whole 

dynamic work into two parts: pre-solver on rest pose and dynamic solver which 

are implemented in guides node and guide_dynamics node respectively. 

This paper aims at simulating a full head of hair so we regard the guide hair in 

network as our full head hair without rendering new hairs. 

 

Fig 7.5 Hair Dynamic Network 

7.2.1 Hair pre-solver in rest pose 

Before the real dynamic starts, several parameters which represent the initial 

situation of springs need to be calculated, as shown in Fig 7.6. In node 

Initialize_length, three kinds of initial length (for stretch spring, bending spring 

and torsion spring) are computed for spring model using VEX language. The 

local number of each point on its hair is recorded by node 

Calculate_local_number for simply building the spring network. Now, the 

curve is ready to be used for the calculation of the dynamics of the hair.   



 

Fig 7.6 Hair pre-solver in rest pose 

7.2.2 Hair dynamic solver  

All dynamic steps are implemented inside guide_dynamics node with one 

DOP network, as shown in Fig 7.7. The DOP network consists of two parts: 

internal forces calculation and external forces calculation. Fig 7.8 shows the 

DOP network. All forces are applied to points which are not glued on the scalp. 

We follow the time integration explained in Chapter4.   



 

 Fig 7.7 Guide_dynamics node network  

 

Fig 7.8 DOP network 

Internal forces of each point include three kinds of spring forces and gravity. 

Spring forces are calculated in calculate_spring_force_for_each_point 

node by mainly using SpringForce() function. The calculation process is 

shown in Fig 7.9.  Since stretch spring, bending spring and torsion spring use 

same equation in spring model, they can be computed in SpringForce() at the 



same time with different spring and damping coefficients. We list these 

coefficients in the figure. Then add gravity to points in 

add_gravity_for_hair_not_on_scalp node. Finally, use a popsolver to 

integrate internal forces and update the velocity.  

 

 

 

 

 

External forces include the force to drag points backward when severe 

deformation happens in strain limiting and the friction force during collision. In 

strain_limiting node, we check the length of each segment and adjust the 

position of point which is farther from the root if current length exceeds 10% 

deformity. Strain limiting operation doesn’t introduce new force indeed and 

uses position update directly. Modifying point's position reduces the 

unnecessary computation brought by force and velocity integration. Both of 

them are useless for next step, as explained in Chapter 4.  

 

Collision detection should be handled after strain limiting operation. Any object 

could be used for collision in the environment due to our effective Openvdb 

library. First, we generate the volume density for collision object outside DOP 

network and import this volume data into DOP network. In each time step, we 

check the corresponding density of each hair point in body_collision node. If 

it is greater than 0, this point is going to collide the object.  We set the velocity 

of this point to zero and create the friction spring which connects the object 

skin and the hair point in stiction_friction node. Finally one popsolver is 

used to merge the external forces and internal forces. Final velocity and 

position are updated by the popsolver.  

For each point: 

For each spring it connected: 

get another endpoints’ position 

get another endpoints’ velocity 

use SpringForce() to calculate spring force 

decide force direction 

    Add all spring forces 



8. Results and Discussion 

In this chapter we analyse the results generated in this project. We discuss the 

efficiency, performance and parameters used for several scenarios: single hair, 

single movement, human head and horse.   

 

The first effect is the single hair. We hang two hairs at the same height and 

simulate them with normal spring model and improved spring model 

respectively. We toot screenshot at frame 50 to show the result in Fig 8.1. The 

left is normal spring model and the right is improved spring model. We could 

clearly see that normal model can easily get deformed and can’t keep the initial 

helical shape. The improved model acts more realistic than normal model. 

 

Fig 8.1 Single Hair Simulation 

The second effect is simple object movement. We have three different 

scenarios. Firstly, we simulate a simple sphere with 1000 hairs with 30 points 

each. As shown in Fig 8.2, hair could handle collision with simple still object. 

Secondly, we compare two models which one has strain limiting and another 

doesn’t. We could see strain limiting controls the unlimited hair deformation.  

Thirdly, we apply transformation and rotation to sphere head. The hairs’ 

movement and interaction are very precise, even with eyeballs, shown in Fig 

8.4. 



 

Fig8.2 Collision Detection 

 

Fig 8.3 Strain Limiting Method 

 Fig 8.4 Simple Object Movement 

The third effect is irregular object movement. We have two different scenarios 

also. Firstly, we import a male head as collision object to observe the effect 

when hair falls down, as shown in Fig 8.5. 1500 hairs with 30 points each are 

simulated. After the collision, hair will stick to the head accurately. However, 

the artefact happens around the ears sometimes. That is because our voxel 



size is not small enough which leads to some volume data around object skin 

is inaccurate. However we can’t obtain efficiency and accuracy at the same 

time. Therefore, at this case, we neglect the artefact around ears. Finally, we 

model a horse as collision object and glue hair as its tail and to its back. Hairs 

with non-uniformed length are applied in this case, which also could be 

simulated well. The result is shown below.  

 

Fig 8.5 Human Head Application 

 

Fig 8.6 Non-uniform Hair Application 

 



9. Conclusion and Future work 

This paper mainly implements one hair solver which could give dependable 

results with as many individual hairs as possible by using the mass spring 

model. Several techniques are used to eliminate the artefacts in simulation as 

well. Volume data is introduced in collision detection part. This hair simulation 

system is demonstrated in several examples in Houdini using VEX language. 

At the end of this project, it is meaningful to evaluate this project and analyse 

what we could do to improve it in future.  

Firstly, due to time limitation and complexity, this project doesn’t implement the 

hair-hair interaction described in Chapter 6, which leads to hair volume 

collapse in our effect, where hair behaves like strings and couldn’t keep 

specific hair style after falling on the scalp. Several methods can be used to fix 

this problem in future, including the theory we mentioned in Section6.1 and 

Position Based Dynamics which works on position directly. Secondly, to save 

simulation time, we set the voxel size as 0.1 to compute volume data which is 

not accurate enough to represent the boundary of inside and outside geometry, 

and also easy to create artefacts around small details, like eyes, ears and nose. 

Thirdly, we should adjust the spring coefficients for different applications. As 

we can see in the final video, the hair in “human head” scenario is a little soft 

compared to real hair, while the hair in “horse” scenario is realistic. All these 

works need to be done in future to improve the performance and efficiency of 

hair simulation. 

 

 

 

 

 

 



Reference 

Andrew Selle, Michael Lentine, and Ronald Fedkiw, 2008. A Mass Spring Model for Hair 

Simulation. ACM Transactions on Graphics SIGGRAPH 2008, ACM TOG, 27, 

64.1-64.11. 

BERTAILS-DESCOUBES, F., CADOUX, F., DAVIET, G., AND ACARY, V. 2011. A 

nonsmooth newton solver for capturing exact coulomb friction in fiber assemblies. 

ACM Trans. Graph. 30 (February), 6:1–6:14. 

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust treatment of collisions, 

contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594–603. 

CARAMANA, E., BURTON, D., SHASHKOV, M., AND WHALEN, P. 1998. The 

construction of compatible hydrodynamics algorithms utilizing conservation of total 

energy. Journal of Computational Physics 146, 227–262. 

CHOE, B., AND KO, H.-S. 2005. A statistical wisp model and pseudophysical approaches 

for interactive hairstyle generation. IEEE Trans. on Vis. and Comput. Graph. 11, 2, 

160–S170. 

DAVIET, G., BERTAILS-DESCOUBES, F., AND BOISSIEUX, L. 2011. A hybrid iterative 

solver for robustly capturing coulomb friction in hair dynamics. In Proc. of the 2011 

SIGGRAPH Asia Conference, 139:1–139:12. 

GUPTA, R., MONTAGNOO, M., VOLINO, P., AND MAGNENATTHALMANN, N. 2006. 

Optimized framework for real time hair simulation. In CGI Proc. 2006, 702–710. 

Hayley Iben, Mark Meyer, Lena Petrovic, Olivier Soares, John Anderson, and Andrew 

Witkin, 2013. Artistic simulation of curly hair. In Proceedings of the 12th ACM 

SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’13, 63–71. 

JIMENEZ, S., AND LUCIANI, A. 1993. Animation of interacting objects with collisions and 

prolonged contacts. In Modeling in computer graphics—methods and applications, 

Springer-Verlag, B. Falcidieno and T. L. Kunii, Eds., Proc. of the IFIP WG 5.10 Working 

Conf., 129–141. 

MCADAMS, A., SELLE, A., WARD, K., SIFAKIS, E., AND TERAN, J. 2009. Detail 

preserving continuum simulation of straight hair. In ACM SIGGRAPH 2009 Papers, 

62:1–62:6. 

PETROVIC, L., HENNE, M., AND ANDERSON, J., 2005. Volumetric methods for 

simulation and rendering of hair.. Tech. Rep., 06-08. 

ROSENBLUM, R. E., CARLSON, W. E., 1991. Simulating the structure and dynamics of 

human hair: modelling, rendering and animation. J. Vis. and Comput. Anim., 2, 4, 141–

148. 

 

 


