
Pathfinding Algorithms in
Multi-Agent Systems

Amitha Arun

Master of Science, Computer Animation and Visual Effects

August, 2014

Contents

Table of contents . i

List of figures . iii

List of tables . v

Abstract . v

1 Introduction 1

2 Background 4

2.1 Pathfinding Algorithms 4

2.2 Geometry in Games . 6

2.3 Artificial Intelligence . 7

3 Theory 10

3.0.1 Agent Brain . 10

3.0.2 Agent Body . 11

3.0.3 Flocking . 12

3.0.4 Collision . 13

4 Pathfinding Algorithms and their Comparison 14

4.0.5 Heuristics . 14

4.0.6 Dijkstra’s Algorithm 15

4.0.7 A* Algorithm . 18

4.0.8 Theta* Algorithm 22

4.0.9 Real-Time A* Algorithm 25

4.0.10 Other Pathfinding Algorithms 27

5 Design and Implementation 29

5.0.11 Crowd . 29

i

5.0.12 Agents . 29

5.0.13 Terrain . 31

5.0.14 Pathfinder . 32

5.0.15 Node . 32

5.0.16 AStar . 33

5.0.17 ThetaStar . 33

5.0.18 Dijkstra . 33

5.0.19 Flock . 34

5.0.20 Collision . 34

6 Applications & results 35

6.0.21 Comparison of the pathfinding algorithms 35

7 Conclusion 40

7.0.22 Summary . 40

7.0.23 Critique and Limitations 41

7.0.24 Future Work . 42

References 42

ii

List of Figures

1.1 In this example, the enemy walks through the obstacle

with ease T (2010). 2

1.2 The algorithm finds a long path rather than a short one

T (2010). 2

2.1 The nodes searched using Dijkstra’s Algorithm Patel (2010). 5

2.2 he nodes searched using A* Algorithm Patel (2010). . . . 6

2.3 The terrain with waypoints T (2010). 6

2.4 The terrain with navigation mesh T (2010). 7

2.5 The gameplay for the game F.E.A.R Productions (2005). 8

2.6 An FSM showing states and transitions Productions (2005). 8

3.1 Separation, Cohesion and Alignment Sebastian (2013). . 12

3.2 Sphere-sphere collision Weisstein (2015). 13

4.1 Pseudocode showing Dijkstra’s Algorithm Sanjoy Dasgupta

(2006) . 16

4.2 Pseudocode showing A* Algorithm Daniel et al. (2010) . 19

4.3 Paths obtained after different post smoothing techniquesDaniel

et al. (2010). 21

4.4 Difference between grid path and shortest pathDaniel et al.

(2010). 22

4.5 Pseudocode showing parts of Theta* Algorithm Daniel

et al. (2010) . 23

4.6 Trace of the Theta* Algorithm Daniel et al. (2010). . . . 24

5.1 Class Diagram for the project. 30

5.2 Crowd Class. 30

iii

5.3 Agent Class . 31

5.4 Terrain Class . 32

5.5 Pathfinder Class . 32

5.6 Node Class . 33

5.7 AStar Class . 33

5.8 ThetaStar Class . 33

5.9 Dijkstra Class . 34

5.10 Flock Class . 34

5.11 Collision Class . 34

6.1 Nodes expanded by A* algorithm. 37

6.2 Nodes expanded by Dijkstra algorithm. 38

6.3 Nodes expanded by Theta* algorithm. 38

6.4 Nodes expanded by LRTA* algorithm. 39

iv

Abstract

Multi agent systems can be used to simulation traffic and pedestrian

activity. The main purpose of such a simulation could be for research

purposes, traffic management as well as for crowd simulations and realism

in games. The multi-agent system for traffic and pedestrian activity

involves two main agents - the vehicles and the pedestrians. These two

agents respond to a traffic signal as well as to each other in the given

environment.

Although many such simulations are existent, many of them don’t

consider the inclusion of realistic pathfinding algorithms. This simulation

also takes into consideration a small amount of errors in the behavior of

agents by using adjustments in the pathfinding algorithm.

Keywords: multi-agent systems, pathfinding

v

Chapter 1

Introduction

Simulation of multi-agent systems find their use in not only the visual

effects and gaming industry but also in other areas such as robotics,

logistics, study of artificial intelligence etc. For visual effects, the use

of multi-agent systems can be seen in the form of crowd simulation and

flocking systems. For Gaming, the same is used for purposes such as

planning the movement and behavior of a programmed enemy. What

is seen as the main purpose for the existence of multi-agent system in

a game environment - is the need for the agents to have human-like

response to stimuli.

One of the concepts that goes hand in hand with multi-agent systems

is pathfinding. Pathfinding is used to determine the shortest path from

the initial node to the destination. They could be used to either control

the enemy to help find its way to you or for you to able to control your

player on a terrain. There could be more elaborate and complex uses of

the pathfinding algorithm in games. The main drawback of using these

pathfinding algorithms is the lack of a realistic navigation along the path

generated by them.

Pathfinding is is still a problem in modern games as it continues to

deliver unbelievable movement in the agents. Some mistakes with respect

to incorrect pathfinding are often quite amusing, for instance, there are

times when the enemy gets stuck in between the waypoints on the terrain.

1

So while the enemy’s animation continues running, he is stuck in collision

with an obstacle. There are instances when the enemy finds a rather

long and unnatural path to you rather than the shortest one. Some

other times, the enemies just walk through solid obstacles! T (2010)

This calls for a not only an efficient pathfinding algorithm, but also one

that appears more life-like and intelligent. At the same time, the path

shouldn’t be too intelligent, but must make room for human errors.

Figure 1.1: In this example, the enemy walks through the obstacle with
ease T (2010).

Figure 1.2: The algorithm finds a long path rather than a short one T
(2010).

There are several pathfinding algorithms existent today. The most

common being - Breadth First Search, Dijkstra’s Algorithm and A* al-

gorithm. Each of these are improvements of each other, having very

similiar techniques for computing the path.

2

Problem statement

The aim of my project is to create simple agents on a grid that respond to

external stimuli as well as use different pathfinding methods to establish

the difference between them and how thay can be improved for better

navigation. Most importantly, I have focussed on the basic implementa-

tion details of each of the pathfinding algorithms to aid in explanation

of these algorithms.

Objectives and contributions

The objective of this thesis is to understand the kind of pathfinding algo-

rithms best suited for a kind of grid or terrain and to aid in understanding

of the implementation of such pathfinding algorithms.

Structure

The chapter Background talks about the previous work related to the

general topics in pathfinding. The Theory chapters goes into the details

of the components of AI programming i.e. the use of agents’ brain and

body. The Algorithms chapter is focussed only on the heuristics and

pathfinding algorithms and goes into details about its runtime complex-

ity and implementation.The design and applications unit discusses the

design of the classes for this project and the actual implementation ex-

amples. Finally, the conclusion elaborates the limitations, future work

and summary of the entire thesis.

3

Chapter 2

Background

Much research has been done and continues to be done in the field of

multi-agent systems and artificial intelligence. A multi-agent system can

be thought of as an intelligent system that is capable of making decisions

and can potentially imitate a human brain. When an environment con-

tains several of these agents interacting with each other, they are known

as multi-agent systems. A lot of information about the multi-agent sys-

tems can be discussed but I will focus this thesis on the pathfinding

specifics.

In a game environment, the players find their way through an area

with the use of pathfinding algorithms. A pathfinding algorithm deter-

mines a route between two or more points in a given graphical represen-

tation of a terrain. In order for a game to come together, we must create

agents and an environment and have them interact with each other. In

the next few sections, we discuss - Pathfinding Algorithms, Geometry in

Games, Artificial Intelligence and Finite State Machines.

2.1 Pathfinding Algorithms

There have been numerous attempts at pathfinding in the past. Although

the concept of pathfinding is almost an instinctive behavior of mobile liv-

ing beings, mathematical research into this area began much later. One

4

of the earliest mentions of pathfinding could be the ’Travelling salesman’

problem which was conceived by William Rowan Hamilton in the 1800s.

This problem, which dealt with finding the shortest route through mul-

tiple cities by visiting them only once, gained interest only in the 1900s

and solutions to this problem were vastly encouraged. One of the earliest

pathfinding solutions was known as the Depth First search, developed

by Charles Pierre Tremaux. Following this, many new pathfinding al-

gorithms such as - Breadth First Search, Bellman-Ford’s, Dijkstra’s and

A* have come into use.

Figure 2.1: The nodes searched using Dijkstra’s Algorithm Patel (2010).

Modern pathfinding methods used in games, are based on the Dijk-

stra’s algorithm, the most popular being the A* algorithm. A* algorithm

is an improvement on Dijkstra as it uses heuristics to ensure better per-

formance of the pathfinding Hart et al. (1972). According to what is

described by the authors of the paper, if the heuristic (n) defined is the

lower bound of the minimal cost from the source node to the destina-

tion, then A* would find the minimum cost path to the goal. There are

many new pathfinding algorithms based off this method, namely - D*,

Theta*, Field D* etc. Theta* is almost identical to the A* algorithm

but it returns consistently straight line paths by considering all possible

paths as successorsNash (2010). D* is an incremental search which con-

tinually improves the search and corrects its information when it receives

the same. Likhachev et al. (2005)

5

Figure 2.2: he nodes searched using A* Algorithm Patel (2010).

2.2 Geometry in Games

For games, the pathfinding algorithms are typically used on a particular

kind of geometry. This geometry could be specified in terms of either -

navigation meshes or waypoints, as explained earlier. All the pathfind-

ing algorithms either use waypoints or navigation meshes to define the

walkable ares on their terrain. For obvious reasons, the use of navigation

meshes are the first step to remove the bugs in the pathfinding algo-

rithms. Navigation meshes are a set of two dimensional polygons used

to define accessible areas in a game environment Snook (2000). Each

polygon represents a node which can be used as input to the pathfinding

algorithms.

Figure 2.3: The terrain with waypoints T (2010).

Navigation meshes require just a few nodes to specify large areas that

6

the agent can walk on - as opposed to the waypoints method which

create a node for every walkable area on the terrain. But the ease of use

of waypoints is far easier and it is simpler to understand. Most of the

games created in the Unity 3D game engine, use the Recast and Detour

library created by Mikko Mononen to generate navigation meshes for

their terrain.

Figure 2.4: The terrain with navigation mesh T (2010).

2.3 Artificial Intelligence

Artificial Intelligence is defined as the study of creating machines that

have to potential to exhibit human intelligence. For games in particular,

Artificial intelligence creates an ’illusion of intelligence’ rather than intel-

ligent processing Buckland (2004). The first attempts at using Game AI

was the computerised version of the game Nims, which was programmed

to win most of of the timeof Play (2015). In the 1950s, a program-

ming computer for playing chess was created immediately followed by

a programmed version of noughts and crosses. With the proliferation

of hardware and software, some of the first few popular video games

came into existence - Mario, Pacman, Donkey Kong, Legend of Zelda

etc. Games today are varied, and the AI used in these games have also

seen a growth. Most of the AI in these games are scripted for NPCs. In

the video game ’Creatures’ Grand (1997), the AI is programmed to talk,

7

eat and protect itself from other characters and was hence considered

a milestone in the Game AI scene. Later games like F.E.A.R and Far

Cry have a more sophisticated AI that takes on multiple tasks at a time

and can respond sufficiently to the environment that it is present in.

In general, AI for games could deal with many topics such as robotics,

pathfinding, graphics and finite state machines.

Figure 2.5: The gameplay for the game F.E.A.R Productions (2005).

Finite State Machines can be used to define the AI of a system which

assumes one of many states at a given time. Based on an action, the

state of the system can change from one to another but also ensuring

that only one state is possible at that time.

Figure 2.6: An FSM showing states and transitions Productions (2005).

Other ways of specifying the intelligence in a system could be the use

of neural networks or fuzzy logic. These are relatively more advanced

8

than a simple finite state machine but a proper Artificial Intelligence

system could be chosen based on the requirement of the game agents.

9

Chapter 3

Theory

An agent is said to be an entity with knowledge, goals and actions Wool-

ridge and Wooldridge (2001). A multi-agent system comprises an envi-

ronment with two or more of these agents interacting with each other

based on the conditions of the environment.

The main topics that need to be addressed to simulate an agent in an

environment are - agent brain, agent body.

3.0.1 Agent Brain

The brain of the agent is the central unit that makes decisions on its

behalf. It reads the state of the environment from the body and makes

decisions as to what action needs to be taken. After this action is exe-

cuted, the agent may be put into a new state or may continue to remain

in the state that it was in. The instructions given by the brain may be

as simple as an if condition, which when satisfied, a statement may be

executed. These instructions may also be very complex, like in video

games, where the agent could be doing several tasks at once.

The instruction itself could be specified in the form of a finite state

machine, which is what I have considered for my project. The environ-

ment that I have created is that of a street that consists of the two agents

- pedestrians and cars along with the presence of a traffic light that goes

10

between red and green at certain time intervals. The agents each assume

two states. The pedestrians could be either in the ’Walking’ state or in

the ’Waiting’ state. The default state of a pedestrian is Walking but

when the signal is green and the pedestrian is at a particular location,

the pedestrian must enter the ’Stopped’ state. The cars could be in the

state ’Driving’ by default and when the signal is red and the cars are at

a particular position, they must enter the ’Stopping’ state. The signal

is just a continuous change between red and green at an interval of a

couple of seconds. A state ’orange’ could also be added to the signal to

prevent risk of collisions.

The brains for the agents is scripted in python using simple if else

statements.

The brain for the pedestrian would appear as shown:

Signal is green and the pedestrian is at the crossing change state to

Waiting State remains as Walking and position to be updated

For the car, the brain would have the following structure: Signal

is green and the car is at the crossing change state to Stopping State

remains as Driving and position to be updated

The signal just switches between red, green and orange every 5 - 10

seconds.

The update script simply checks the current position and increments

it to the next position that is determined by the pathfinding algorithm.

3.0.2 Agent Body

The body of an agent is the point of contact between the brain and

the outside environment. It is synonymous with a sensor that checks

the environment and relays this information to the brain for it to take

some action. When the brain determines the action to be taken, the

body responds to this and then checks the environment again and this

cycle continues. The agent body holds information about the physical

properties of the agent like - position, speed, strength, mass etc. For

11

the purpose of my simulation, the following are the physical properties

assigned to the agents.

Position The important physical property with respect to this simula-

tion is the current position of the agent. Since the pathfinding algorithms

determine the path from the source to the destination, the current po-

sition is continuously updated so that the agent follows the path. The

position is also the result of the forces due to flocking as well as collision

detection.

Velocity The velocity of the agent can also be gathered by using this

change in position. This is also affected by the flocking forces.

Acceleration This determines the rate of change of velocity of the

agents.

3.0.3 Flocking

Figure 3.1: Separation, Cohesion and Alignment Sebastian (2013).

The study of crowds demonstrates the basic rules of flocking - Align-

ment, Separation and Cohesion Reynolds (1987). The rules of flocking

are:

1. Separation: All agents must avoid collisions with its neighbours.

2. Alignment: Each agent must match direction with its neighbours.

3. Cohesion: Each agent attempts to steer towards the center of the

crowd.

12

3.0.4 Collision

Figure 3.2: Sphere-sphere collision Weisstein (2015).

It is important to ensure that none of the agents collide with each

other. One of the simpler methods for collision detection is sphere-sphere

collision detection. The idea is to take the radii of the two spheres

involved in the collision and add them up and compare them to the

distance between the centers of the spheres. If this distance is less than

the radii of the spheres, it means that a collision has occurred. On

detecting the collision, the response is to simply reverse the direction of

the agent. This is also added to the list of forces to compute the final

position.

There is no requirement for collision detection in the pathfinding al-

gorithm since the input to the algorithm itself checks for obstacles. This

results in a path that avoids the obstacles without relying on the collision

detection to do it later on. So, the collision detection is meant only for

the agents colliding among each other.

13

Chapter 4

Pathfinding Algorithms and

their Comparison

4.0.5 Heuristics

Before beginning the section about the pathfinding algorithms it would

be worth mentioning heuristics. A general description of a heuristic

would be a rule of thumb or argument that can be used to solve a com-

putational problem Rouse (2009). It is basically an observational rule

that makes a particular computation tend towards optimality. The type

of heuristic that could be used would completely depend on the type of

problem. So there is no ’one-type fits all’ kind of heuristic that makes the

solution more optimal; It completely problem-dependent. An admissible

heuristic is one that does not overestimate the minimum cost of path

between the source to the goal. But most pathfinding algorithms require

a heuristic that would be consistent or monotonic. A consistent heuristic

is one who’s value does not decrease on traversing down a path web. The

choice of the heuristics have an impact on the way the algorithms arrive

at the solution. For the general A* pathfinding algorithm Patel (2010):

1. if the value of h(n) is 0, the A* algorithm gets converted to the

Dijkstra’s Algorithm where the shortest path is guaranteed to be

found.

14

2. if the value of h(n) is lower than the cost to reach the goal, the

shortest path is guaranteed but the process is slowed down.

3. if h(n) is, the shortest will be found very fast but it is not easy to

determine such an ideal heuristic.

4. if h(n) is greater than the cost from source to goal, the shortest

path is not guaranteed but the program would run faster.

Some of the heuristics that have been used for the implementation of

the pathfinding algorithms are listed below:

Manhattan Distance Manhattan distance is the distance that would

be travelled if the path taken from one point to another is in right angles.

It is simply calculated as:∑n
i=1 |pi − qi|

where, pi− qi is the difference between the two points in the x, y or z

coordinates. This would usually be used if the agent is allowd to move

freely in 4 directions on the grid.

Euclidean Distance This is the length of the line segment connecting

two points. It is usually preferred if any direction of movement can be

considered. It is calculated as:∑n
i=1(qi − pi)

2

Diagonal Distance For diagonal distance, we consider the cost of

moving diagonally which saves you the cost of taking non-diagonal steps.

4.0.6 Dijkstra’s Algorithm

Dijkstra’s algorithm, which is a shortest path finding algorithm, was

invented by Edsger Dijkstra. It finds the shortest path from a node to

all other nodes in the graph. Dijkstra’s algorithm works by adding the

15

closest neighbours of the start node, examining them and then moving

on to its neighbours. The pseudocode is as shown below:

Figure 4.1: Pseudocode showing Dijkstra’s Algorithm Sanjoy Dasgupta
(2006)

Algorithm According to the pseudocode, the algorithm first scans the

source and sets its distance to itself as 0 and its predecessor as undefined.

All the other nodes in the graph are added to a queue. As long as

this queue isnt empty, the algorithm repeatedly checks for a minimum

value for distance in the queue and removes it. For each of this nodes

neighbours, if a shorter path to them has been found, the distance is

updates to this value and its predecessor is set to the current node.

When using this algorithm for games, the same applies with the only

difference being the way that the nodes are represented. We may be

dealing with a grid represented as waypoints or navigation meshes. The

algorithm benefits with the use of a priority queue which provides as a

faster alternative to a queue.

Runtime Complexity If we consider a basic implementation of Di-

jkstra’s Algorithm (where each node finds the shortest distance to every

other node), the algorithm runs the main loop as many times as the

16

number of vertices and each vertex is investigated once in the loop. This

makes the best and the worst case complexity equal to n2 where n is the

number of nodes.

The running time complexity of Dijkstra’s algorithm has a relation

to the kind of queue or heap used in the implementation. There is

one main while loop that executes in a graph G(V,E) using Dijkstra’s

Algorithm which extracts a vertex from a queue. If there are V vertices,

the running time can be equated to O(V). The pop operation in a binary

heap implementation of the priority queue has runtime complexity of

O(log V) which imples that the total time for the main loop is (V log

V). At this point the tested node is discarded and its neighbours are

considered and tested for an improved path. This test is performed with

complexity O(E). The entire algorithm runs with a worst case complexity

of θ((|E|+ |V |)log|V |).

If, however, a fibonacci heap is used, the complexity changes toO((|E|+
|V |)log|V |) which is considered as the best case. The average case is

O(|E|+ |V |log |E||V | log|V |).

Implementation For Dijkstra’s Algorithm, the implementation is fairly

simple. The idea is to read an adjacency matrix which is basically a ma-

trix that describes a graph by denoting the edges and costs assigned to

each of these edges. There is a vector called the distance vector which

is initialized to zero. We could use an priority queue to store the visited

nodes. For as long as the queue is not empty, we must, search the child

nodes for the destination. If not found, it means that a path does not

exist.

Applications Dijkstra’s algorithm can best be used in a situation

where there is a requirement of finding the path from one node to possi-

bly all the other nodes. Dijkstra’s Algorithm would, hence, be suitable

to applications such as communication between routers. If the nodes

that are expanded are considered, Dijkstra’s Algorithm tends to expand

more nodes than its counterparts but is, nevertheless, guaranteed to find

17

the shortest path. The kind of path that may result from the Dijkstra al-

gorithm and A* algorithm may be comparable but the simple difference

lies in the number of nodes expanded by the two algorithms.

1. A value is popped fromm the queue and its neighbours are in-

spected.

2. If a new distance vector is calculated, it is pushed into the queue.

A simpler approach would be to follow the A* pathfinding algorithm

and set the heauristic value to be zero. This means that the next node

to be investigated is not selected based on a pre-determined heuristic.

This ensures that all the neighbouring nodes have an equal chance of

being investigated and the heuristic doesn’t play a role in making that

educated guess.

4.0.7 A* Algorithm

This algorithm is a modified version of the Dijkstra’s Algorithm. Accord-

ing to the paper Hart et al. (1972), there are two approaches to pathfind-

ing called the Mathematical approach and the Heuristic approach. The

mathematical approach involves the orderly testing of nodes in a graph

to ultimately reach the destination. The heuristic approach, on the other

hand, uses special knowledge about the kind of problem to gather infor-

mation about the a more efficient shortest path. This algorithm com-

bines the two approaches - it uses information about the problem to later

determine a mathematical solution to find a path.

Algorithm Most algorithms need to expand the number of nodes they

search and the size this expansion would vary from algorithm to algo-

rithm. The idea would be to expand fewer nodes and this may be possible

by making a very informaed decision about the nodes to be expanded.

The algorithm for A* explains how it chooses the nodes to be expanded.

The algorithm begins with adding the source node to a list of nodes to

be considered - called open list. This is the list of nodes that need to be

18

Figure 4.2: Pseudocode showing A* Algorithm Daniel et al. (2010)

checked out. The neighbours of this nood need to be checked out sub-

sequently, and its parents need to be marked to its predecessor. Drop

the first node from the open list and add it to the closed list - which

contains nodes that needn’t be checked again. From the list of open

nodes, we need to pick one. This can be done by considering the equa-

tion f̂(n) = ĝ(n)+ ĥ(n), which is known as the evaluation function. ĝ(n)

is the movement cost from the source to the given node and ĥ(n) is the

distance from the node being considered to the destination (also known

as the heuristic). The most common way to calculate this heuristic value

is using Manhattan method, although, there are other ways of obtaining

the same value. This is akin to an educated guess in terms of pathfind-

19

ing. Hence we choose the next node to be expanded by considering the

smallest value of f̂(n).

Usually a priority queue (LIFO) would be used to store the checked

out nodes. Also in order to backtrack to find the shortest path, the

parent node could be stored for each of the checked out nodes. When the

destination is reached, the shortest path can be determined by starting

from the destination and tracking it all the way to the source.

Dijkstra’s Algorithm is actually a special case of A* algorithm where

the heuristic value is not considered at all or ĥ(n) = 0.

Post processing of the path returned by A* can make it seemingly

more realistic. However this often results in increased runtime at the cost

of a better and possibly shorter path Daniel et al. (2010). One possible

method would be - after finding the path from source to destination, the

current vertex checks if its has a line of to its successor after the first.

If it does, the post smoothing removes the intermediate path and makes

a direct jump between these vertices. It continues this process for the

subsequent successors to obtain a more direct path. This may calculate

a better path than the A* but is not guaranteed to provide the true short

path or a even a smooth one. Since it only refines an already calculated

A*, the changes are minor but somewhat effective.

Runtime Complexity For a general case, we consider the time com-

plexity of the algorithm to be nlog(n).The runtime of this algorithm

is mainly dependent on the heuristic. In the worst case scenario that

the destination is found in an unbounded area, the complexity is O(bd),

where b is the number of nodes expanded and d is the length of the

shortest path. If the goal isn’t found, however, the algorithm continues

infinitely assuming that the space isn’t confined. If the data structure

for the nodes is a tree, the complexity is found to be |h(x) − h∗(x)| =

O(logh∗(x)), where h∗ is the optimal heuristic.

Implementation Details A lot of materials are available on the al-

gorithm used for the A* algorithm and so, this section is a focus on just

20

Figure 4.3: Paths obtained after different post smoothing tech-
niquesDaniel et al. (2010).

the implementation details of this algorithm. The idea is to get a terrain

that has either waypoints or graph nodes. Some of the implementation

details that can be gathered from the algorithm are listed below:

1. The choice of the data structure to be used was the priority queue

to store the open list of nodes that have been checked out. The

idea is to push the start node into the openlist after initializing the

open list and the closed list to zero.

2. Each node is represented as having a row, column, its f̂(n), ĝ(n)

and ĥ(n) values. A pointer to this node is used to store the element

removed from the priority queue.

3. As the algorithm suggests, the source is pushed into the open list

and the new successors are determined with the help of a heuristic

value. This could be Manhattan distance, Euclidean distance or

Diagonal distance.

Applications The most common pathfinding algorithms to be used is

the A* pathfinding algorithm. Dijkstra’s Algorithm is a special case of

the A* pathfinding algorithm since the heuristic value that is considered

in A* is set as 0 for Dijkstra’s. The main use of A* pathfinding is seen

21

in games to usually control the player or the enemy AI. The number

of nodes expanded of the algorithm is much lesser than the Dijkstra’s

Algorithm.

4.0.8 Theta* Algorithm

There have been many variants of the A* algorithm and one other inter-

esting one is the Theta* algorithm. Although there has been conclusive

proof that a better or shorter path than what comes out of the A*

algorithm is practically impossible to obtain, the need for alternate algo-

rithms exist. The shortest path returned by A* is blocky and unrealistic

and any agent that follows this path looks unreal. The problem with

A* is that the shortest path on the grid doesn’t actually mean the same

thing as a continuous short path. So, the idea behind the conception of

theta* was to not constrain the path to graph edges but to allow the

parent edges to be from any angle. For the most part, this algorithm is

just a few statements different from A* but it is an effective way to make

sure that our path is the shortest.

Figure 4.4: Difference between grid path and shortest pathDaniel et al.
(2010).

Algorithm The only difference in the algorithm is that when the par-

ent of the selected node is set, we may consider any of the nodes to the

parent as long as the length is equivalent to the original as well as the

parent has a line of sight from the current node as well as to the desti-

nation. As seen in the figure, the actual change in path produced by the

two algorithms may be subtle but when it comes to the actual movement

of the agent, this makes all the difference.

22

Figure 4.5: Pseudocode showing parts of Theta* Algorithm Daniel et al.
(2010)

The Line of Sight simply draws a straight line between two points on

the display without it being interrupted by the presence of a node in

between. This line is possible only if there is no node in between that

would cut off the connection between these two nodes.

Runtime Complexity Since the algorithm for Theta* is more or less

exactly same as A*, the runtime complexity would reflect similiar results.

The only difference is that Theta* may be slightly slower but with the

use of post smoothing, this can be improved. Also if visibility graphs are

used over grid graphs, theta* is significantly faster than its counterpart.

The basic version of Theta* is not optimal and there alternatives

possible for this algorithm based on requirement - Angle-Propagation

Theta*, Field D* etc. The Field D* algorithm is again, very similiar

to the A*, but when checking for neighbour, it finds a value on the

perimeter that is at the same distance from the concerned node. Angle-

Propagation Theta* propagates ranges of angles to check if they have

line of sight. This ensures that the actual runtime is much less than the

basic Theta*.

Implementation The open list can be represented using a priority

queue just like in case of the A* algorithm. For all of the successors, a

child node is created who’s parent is set as the predecessor. The algo-

23

Figure 4.6: Trace of the Theta* Algorithm Daniel et al. (2010).

rithm is fairly straightforward in terms of the implementation.

Applications Theta* was introduced for the prime purpose of creating

true short paths which are also realistic. It could be most suited for game

AI or realistic crowd simulations for the most part. It doesn’t necessarily

improve the performance or arrive at an optimal solution. It achieves a

smoother and believeable path for the agents.

24

4.0.9 Real-Time A* Algorithm

If we are considering a truly intelligent agent, we must definitely take into

account the errors he would make in navigation. For instance, If there is

a pedestrian who doesn’t know the way to the exit, he would probably

walk a few yards, pause, look around, move in the wrong direction and

then proceed in the right direction after obtaining more information. For

a realistic pathfinding, the agent may not be aware of all his surround-

ings but would rather just be aware of a part around him and the general

direction of the destination. A normal implementation of the pathfind-

ing algorithms may not have the capacity to deal with such a scenario

because this would involve revisiting older nodes and that would mean

an increased cost. This problem, however, does not have a solution as

research is still being conducted in this area. A real time approach to

would have the following characteristics Korf (1990):

1. Consideration of a limited search horizon because there is a limit

to how far ahead the vision system can see.

2. Actions must be committed before their ultimate consequences are

known

3. Finding a more realistic path comes at the cost of forgoing the

shortest path and time.

In the minimin lookahead search Korf (1990), we make decisions based

on the information we can gather by making a move. Information about

the predecessors of the node are made before the actual move and after

moving, this process is repeated. The decision of a move can be made by

the best option available but after the move, it is possible to backtrack

to the previous state. We can still use the A* algorithm having the

calculation f̂(n) = ĝ(n) + ĥ(n) but we must ensure to keep the value

ĝ(n) constant as the cost should be the actual number of moves instead

of their cost of execution. There is use for the open stack and closed list

like in A* algorithm except that when all moves lead to a closed state,

the agent can backtrack until it finds one that hasn’t been closed. But

the Real-Time A* Algorithm is explained below:

25

Algorithm Real-Time A* Algorithm doesn’t only backtrack when a

dead-end is encountered but also when is believes that a better solution

may be available due to it. This can be possible by using a normal A*

with an additional conjecture that the cost of backtracking and finding

the solution would be less than going forward. The main difference would

be in the calculation of ĝ(n) which would now be the distance of the node

from current state and not from the source as before. It basically stores

the ĥ(n) values (calculated by the minimin lookahead) of previous states

on a stack and then updates the ĝ(n) value to their actual distance from

the current state and then moves to the new node having leastĝ(n)+ĥ(n)

value. The functionality of an open and closed list can be created by a

single list with all of the predecessor nodes.

Runtime Complexity The Real-Time A* Algorithm is sure to find

the goal state in graph with non-negative edge costs and finite heuristics

values, if the goal is ultimately reachable from the other states. The

solution cannot be checked for efficiency as it defeats its purpose but

it can be compared for accuracy and this is dependent on its heuristic

function. The quality of the solution in using this algorithm increases

with the increase in the search area. As specified in the paper Korf

(1990), the computation for every move increases exponentially with the

increase in the size of the area to be searched but the length of the search

asymptotically reaches the optimal value at greater horizon values.

Implementation The main data structure used to store the nodes

along with their values is a hash table. This hash table is indexed by

the value of f̂(n). As the algorithm suggests, the source is initialized

and is added to the hash table. On adding the successors into the hash

table, the first f̂(n) value is chosen as the hash table would be sorted in

ascending order. The current node’s heuristic is updated to the second

lowest value of f̂(n) in the hash table.

Application Another realistic behavior of agents would be the errors

that could be introduced in the simulation. The best use of the LRTA*

26

algorithm may be to simulate human errors in navigation and for this

reason, it could be used in gaming or simulations to imitate an agent

with a very small or limited view of the terrain or grid that it is walking

on.

4.0.10 Other Pathfinding Algorithms

There are numerous other pathfinding algorithms that have come into

the picture and each one has its specific use.

D* D* or Dynamic A* was conceived mainly for the purpose of robotics

in order to dynamically obtain the path to destination Stentz (1995). It

can modify paths optimally in case the mobile robot (with a sensor at-

tached) makes a move and realises it needs to recompute the path. The

algorithm is very similiar to the A* algorithm having the open and closed

lists. The D* algorithm denotes the presence of an obstacle by giving a

high value to its OBSTACLE variable. The presence of empty spaces is

given by the variable EMPTY. The main difference is in the fact that the

paths are computed locally keeping in mind that the sensors have a very

limited range of vision. Also, the robotic agent would make a close-to-

monotonic progress towards the goal. There are also two more variables

- RAISE and LOWER which denote the increased or decreased cost of

node which are added to the closed list. This increase or descrease of cost

is brought about by the presence of GATE, which computes additional

cost of possibly opening a gate and then walking through it. The algo-

rithm first computes an initial path from the start to the destination and

then modifies it based on certain costs during the travel. It produces an

optimal path ensuring that at every state, the robot travels an optimal

path to the destination.

Focussed D* This is an enhanced version of D* that combines the A*

heuristics with the D* algorithm Stentz (1995). The performance of the

focussed D* is better than the original D*. A* can be considered as a

27

special case of the focussed D* where the arc costs are constant and the

pathfinding is not dynamic.

Lifelong Planning A* Lifelong Planning A* is an incremental search

version of A* pathfinding Koenig et al. (2004). For initialization, it

contains a value g(s) for all the values which correspond to the same for

A*. This keeps track of the distance of the node from the source. There

is also an rhs(s) value that is a one step lookahead based on the g(s)

values. Each vertex is investigated twice at most. The main idea of the

algorithm is that it uses the basic A* pathfinding on the first iteration

of the algorithm and saves each state of its search for faster subsequent

searches. Incremental search algorithms are said to find optimal solutions

which are faster than solving each of the problems from scratch.

D* Lite The main purpose of the dynamic algorithms is to compute

paths in unknown terrains. The D* Lite is an incremental search algo-

rithm which uses the information it obtains from previous searches to

aid in computing new paths (like in LPA*). This D* Lite is very close

to the D* algorithm but is shorter and just as efficient.

28

Chapter 5

Design and Implementation

The class diagram for the entire project implementation is shown in the

figure below. The description of the classes are elaborated in this section.

5.0.11 Crowd

This class is responsible for the creation and management of the agents.

The class has a method that is responsible for creation of an agent at

a random position concentrated at the particular area on the grid. It

also has a method for checking and storing the neighbours of each of

the agents and calculates the same on several threads at the same time.

The class also makes sure so destroy the agents that have reached their

destination.

5.0.12 Agents

This class represents each agent in the system and is perhaps the most

indispensible of the classes. It contains the script for the brains of each

of the agents. Based on the options read from the user interface, the

appropriate pathfinding algorithm is chosen and the path from source to

destination is returned to the object. There is a method that updates

the position of the agents after a time interval. The update class calls

the python script for the calculations and change in position and reads

29

Figure 5.1: Class Diagram for the project.

Figure 5.2: Crowd Class.

30

Figure 5.3: Agent Class

the new position for the next iteration. This class also has a method to

draw the agent at the position returned by the python script. It also has

separate methods to find the dynamic path.

5.0.13 Terrain

The Terrain class holds the information about the grid for the pathfinding

algorithms. There are some abstract methods present in this class that

are common to all the derived classes of this class. This class has the

attributes and methods that describe the terrain and the waypoints. This

class also takes care of defining the walkable areas and the obstacles on

the grid before the pathfinding is called.

31

Figure 5.4: Terrain Class

Figure 5.5: Pathfinder Class

5.0.14 Pathfinder

The derived classes are the different pathfinding algotihms (AStar, ThetaS-

tar, Dijkstra) which overload the virtual methods according to their spec-

ification. It consists of the line of sight algorithm which is an integral

part of the Theta* algorithm and post smoothing for the A*.

5.0.15 Node

The Node class is the foundation for the pathfinding to function. The

Node class helps to create objects that can store the value of row number,

column number, pointer to parent node and values such as distance, G

value and F value (for A*). An object of Node class can collectively store

all this information and creates a better representation of a node in a

graph. It uses a structure location to keep track of the row and column

of the node.

32

Figure 5.6: Node Class

Figure 5.7: AStar Class

5.0.16 AStar

This is derived class of the Terrain class. It specifically deals with the

A* pathfinding algorithm as specified in the ’Pathfinding Algorithms and

their Comparison’ section.

5.0.17 ThetaStar

This class implements the Theta* algorithm as specified in one of the

previous sections. It uses the line of sight method of its base class as per

the specifications of the algorithm.

5.0.18 Dijkstra

This is another derived class of the Terrain class which implements Di-

jkstra’s shortest path algorithm.

Figure 5.8: ThetaStar Class

33

Figure 5.9: Dijkstra Class

Figure 5.10: Flock Class

5.0.19 Flock

Flock class takes care of adding all the forces due to flocking and returns

it to the agent class for the calculation.

5.0.20 Collision

The collision class takes care of adding collision detection among agents.

This just checks whether a sphere-sphere collision is happening and ap-

plies a force in the opposite direction.

Figure 5.11: Collision Class

34

Chapter 6

Applications & results

The applications, observations and results are presented in this section.

6.0.21 Comparison of the pathfinding algorithms

The comparison of the algorithms is described in the table below. Each

of the algorithms is contrasted on the basis of certain criteria as seen in

the table.

Pathfinding Algorithm Dijkstra

General Time Complexity n2

Running time for Best Case |E|+ |V |)log|V |
Running time for Worst Case θ((|E|+ |V |)log|V |)
Running time for average case |E|+ |V |log |E||V | log|V |

Average Nodes expanded(per 400) 292

Data Structures Used adjacency list,binary/fibonacci heap

Heuristics no heuristics

Applications For destination that is unknown or sparse graphs
The features of Dijkstra’s Algorithm.

35

Pathfinding Algorithm A*

General Time Complexity nlog(n)

Running time for Best Case |h(x)− h∗(x)| = O(logh∗(x))

Running time for Worst Case infinity if path to goal can’t be found/ dn

Running time for average case |h(x)− h∗(x)| = O(logh∗(x))

Average Nodes expanded(per 400) 64

Data Structures Used priority queue

Heuristics Manhattan/Euclidean

Applications Simple efficient pathfinding

The features of A* Algorithm.

Pathfinding Algorithm Theta*

General Time Complexity nlog(n)

Running time for Best Case same as A*

Running time for Worst Case infinity if path can’t be found

Running time for average case same as A*

Average Nodes expanded(per 400) 291

Data Structures Used queue

Heuristics Manhattan/Euclidean

Applications Realistic movement of agent

The features of Theta* Algorithm.

Pathfinding Algorithm Real-Time A*

General Time Complexity -

Running time for Best Case same as A*

Running time for Worst Case infinity

Running time for average case 2n

Average Nodes expanded(per 400) 104

Data Structures Used hash table

Heuristics Minimin lookahead

Applications For terrain that is unknown

36

The features of LRTA* Algorithm.

In the table n is the number of nodes, E is number of edges and V is

the number of vertices and d is the length of shortest path.

Implementation Since the path found by the algorithms are roughly

the same, there would more relevance in discussing the execution times

of the algorithms.

Number of Agents 5 8 10

A* 9.101 346.6578 588.2921

Dijkstra 587.401 1245.8744 1443.951

Theta* 588.121 1355.7654 1628.491

The executing time in units of the algorithms with respect to the

number of agents.

Expanded nodes Expansion of nodes is done in order to reach the

goal state. One of the performance measures of an algorithm would be

the least number of nodes expanded by the algorithm. The following

diagrams show the number of nodes expanded by each of the algorithms.

Figure 6.1: Nodes expanded by A* algorithm.

As seen in the histograms, the A* algorithm expands the least num-

ber of nodes. Since Dijkstra is a basic algorithm, it probably expands

the most number of nodes. The LRPA* expansion might vary based on

37

Figure 6.2: Nodes expanded by Dijkstra algorithm.

Figure 6.3: Nodes expanded by Theta* algorithm.

the scenario since its a dynamic algorithm. This is also why this algo-

rithm has the greatest range. Based on the results, it can be seen that

the theta* algorithm actually expands more nodes than expected. The

algorithm doesn’t focus too much on its efficiency; It rather looks at the

realistic path it delivers.

38

Figure 6.4: Nodes expanded by LRTA* algorithm.

39

Chapter 7

Conclusion

This thesis was directed at studying various pathfinding algorithms and

comparing them with respect to their efficiency, realism and accuracy.

There is no winning pathfinding algorithm and the deciding factor for

the best algorithm depends completely on the scenario of the implemen-

tation. If the goal is to simulate the behavior of agents in a particular

situation (disaster evacuation, traffic simulation), the realistic approach

for pathfinding would be a better choice i.e. Real-time pathfinding with

A*. However, if the idea is to obtain the actual shortest path at min-

imum cost, the approach would be the A* algorithm or Theta* Algo-

rithm. If what we want is more realistic movement of the agents, the

post smoothing with A* would work the best. There may be a better

suited pathfinding algorithm for all the different requirements and the

challenge is to make the coorect choice.

There is much improvement possible in the area of real-time pathfind-

ing and there is no such thing as a solution that has emerged from the

ample research that has been done.

7.0.22 Summary

I have implemented the following pathfinding algorithms - BFS, Dijk-

stra’s Algorithm, A* Algorithm, A* with post smoothing, Theta* Algo-

rithm and the real-time A* algorithm. The complexities and the accu-

40

racy od these algorithms have also been compared. The simulation also

demonstrates the behavior of two agents with different brains respond-

ing to the environment it is present in along with collision detection and

flocking.

7.0.23 Critique and Limitations

The major areas of concern, in this project, were in the large number

of modules to be integrated. Firstly, there was a requirement of a ba-

sic agent which was controlled by python scripts. The other module

was the description of the walkable areas and blocked off areas on the

terrain. Finally, there was the implementation of the pathfinding algo-

rithms itself. The biggest challenge was to bring these modules together

because although they seemed to work by themselves, they had trouble

after integration.

Initially, it seemed difficult to actually put down the algorithms as

code. But eventually, the method of actually going through a scientific

paper got much easier.

The implementation mainly focussed on the comparison of already im-

plemented algorithms based on criteria such as - efficiency, performance

and time complexities.

There are some bugs in the code - especially in areas where the python

script is embedded into the C++ code. Also, the Learning Real Time

A* has an issue with the backtracking. These issues are minor and

do not have a direct consequence on the purpose of the project. Some

small errors with A* post smoothing and some GUI components weren’t

behaving as expected. There were some problems with the collision and

flocking behavior but they are rather unimportant.

The main learning I have achieved from this project is a good un-

derstanding of design and the use of C++ libraries that I had no pre-

vious knowledge of. The implementation is exactly as suggested in the

algorithm and the mistakes could only be in the misinterpretation of

the algorithms and not the coding. I have become more accustomed to

41

the coding standards and the use of OpenGL in graphics programming

thanks to this project.

This project could be very useful for the understanding of which

pathfinding to use under what circumstances.

7.0.24 Future Work

Since the main focus of my project was on the pathfinding algorithms,

there needs to be a lot of improvement in the agents brain since they are

currently a basic implementation. I would hope to add more complex

brains with more states and transitions. An introduction of steering

behaviors would have been interesting for the interaction of agents.

There could be more improvement in the speed of the simulation since

the multi-threading works only for small bits of the code; It would be

more useful to parallelize the entire agent behavior to make the simula-

tion faster.

The entire pathfinding was done using waypoints and a future addition

could be the same using navigation meshes.

The improvement could be boundless but the research may lead to

more interesting discoveries.

42

Bibliography

http://www.cs.colostate.edu/~anderson/cs440/index.html/

doku.php?id=notes:week4c.

Buckland M., September 2004. Programming Game AI By Example

(Wordware Game Developers Library). Jones & Bartlett Learning,

1 edition.

Daniel K., Nash A., Koenig S. and Felner A., 2010. Theta*: Any-angle

path planning on grids. J. Artif. Intell. Res. (JAIR), 533–579.

Grand S., 1997. Creatures. CD-ROM.

Hart P. E., Nilsson N. J. and Raphael B., December 1972. ucorrection/u

to ”a formal basis for the heuristic determination of minimum cost

paths”. SIGART Bull., (37), 28–29.

Koenig S., Likhachev M. and Furcy D., May 2004. Lifelong planning a*.

Artif. Intell., 155(1-2), 93–146.

Korf R. E., March 1990. Real-time heuristic search. Artif. Intell., 42

(2-3), 189–211.

Likhachev M., Ferguson D., Gordon G., Stentz A. T. and Thrun S.,

June 2005. Anytime dynamic a*: An anytime, replanning algorithm.

In Proceedings of the International Conference on Automated Planning

and Scheduling (ICAPS).

Nash A., 2010. Theta* any angle paths. http://aigamedev.com/open/

tutorials/theta-star-any-angle-paths/.

of Play N. M., 2015. Video game history timeline. http://www.

museumofplay.org/icheg-game-history/timeline/.

43

http://www.cs.colostate.edu/~anderson/cs440/index.html/doku.php?id=notes:week4c
http://www.cs.colostate.edu/~anderson/cs440/index.html/doku.php?id=notes:week4c
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://aigamedev.com/open/tutorials/theta-star-any-angle-paths/
http://www.museumofplay.org/icheg-game-history/timeline/
http://www.museumofplay.org/icheg-game-history/timeline/

Patel A., 2010. Introduction to a*. http://theory.stanford.edu/

~amitp/GameProgramming/.

Productions M., 2005. F.e.a.r. CD-ROM.

Reynolds C. W., 1987. Flocks, herds and schools: A distributed be-

havioral model. In Proceedings of the 14th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’87, New

York, NY, USA. ACM, 25–34.

Rouse M., 2009. Flocking like it’s 1999. http://whatis.techtarget.

com/definition/heuristic.

Sanjoy Dasgupta U. V., Christos Papadimitriou, 2006. Algorithms.

http://rosalind.info/glossary/algo-dijkstras-algorithm/.

Sebastian , 2013. Flocking like it’s 1999. http://

coffeepoweredmachine.com/flocking-like-its-1999/.

Snook G. 2000. 288–304. Simplified 3d movement and pathfinding using

navigation meshes. In DeLoura M., editor, Game Programming Gems,

Charles River Media.

Stentz A., 1995. The focussed d* algorithm for real-time replanning. In

Proceedings of the 14th International Joint Conference on Artificial

Intelligence - Volume 2, IJCAI’95, San Francisco, CA, USA. Morgan

Kaufmann Publishers Inc., 1652–1659.

T P., 2010. Pathfinding once and for all. http://www.ai-blog.net/

archives/000152.html.

Weisstein E. W., 2015. Sphere-sphere intersection. http://mathworld.

wolfram.com/Sphere-SphereIntersection.html.

Woolridge M. and Wooldridge M. J., 2001. Introduction to Multiagent

Systems. John Wiley & Sons, Inc., New York, NY, USA.

44

http://theory.stanford.edu/~amitp/GameProgramming/
http://theory.stanford.edu/~amitp/GameProgramming/
http://whatis.techtarget.com/definition/heuristic
http://whatis.techtarget.com/definition/heuristic
http://rosalind.info/glossary/algo-dijkstras-algorithm/
http://coffeepoweredmachine.com/flocking-like-its-1999/
http://coffeepoweredmachine.com/flocking-like-its-1999/
http://www.ai-blog.net/archives/000152.html
http://www.ai-blog.net/archives/000152.html
http://mathworld.wolfram.com/Sphere-SphereIntersection.html
http://mathworld.wolfram.com/Sphere-SphereIntersection.html

	Table of contents
	List of figures
	List of tables
	Abstract
	Introduction
	Background
	Pathfinding Algorithms
	Geometry in Games
	Artificial Intelligence

	Theory
	Agent Brain
	Agent Body
	Flocking
	Collision

	Pathfinding Algorithms and their Comparison
	Heuristics
	Dijkstra's Algorithm
	A* Algorithm
	Theta* Algorithm
	Real-Time A* Algorithm
	Other Pathfinding Algorithms

	Design and Implementation
	Crowd
	Agents
	Terrain
	Pathfinder
	Node
	AStar
	ThetaStar
	Dijkstra
	Flock
	Collision

	Applications & results
	Comparison of the pathfinding algorithms

	Conclusion
	Summary
	Critique and Limitations
	Future Work

	References

