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Abstract

Boundary descriptions of solid shapes are used throughout computer

graphics and are often represented using polygonal meshes. For such

meshes, the ability to determine if a point is inside or outside the mesh

is of great importance in both computer graphics and the fabrication

industry. For instance it is necessary for 3D printing, collision detection,

rendering and voxelisation. Existing techniques either compromise on

efficiency or robustness, often resulting in the misclassification of points

with the most time efficient methods. This thesis presents a new algo-

rithm to classify a point as inside or outside a mesh. This is done through

the careful combination of existing techniques and the introduction of an

original algorithm. In this way we are able to produce a classification

method robust to the usual mesh defects of self intersections and holes

without the usual large time implications.
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Chapter 1

Introduction

The Point in Polyhedron (PIP) test is one of the fundamental problems

in both computer graphics and fabrication. Necessary for procedures as

elementary as boolean operations to more complex collision detection,

rendering and voxelization, it is a test that is frequently applied. For

instance, in an animated sequence it may be necessary to determine if

the tip of an object has penetrated the surface of another in each frame.

This means an efficient and robust algorithm to classify points is often

required.

The three most commonly used methods for the PIP test are ray

casting (Requicha and Voelcker 1985), using the Angle Weighted Pseudo

Normal (AWPN) (Baerentzen and Aanaes 2005) and a method utilising

the GWN (Jacobson et al. 2013). Whilst it is clearly important that the

techniques work for ideal cases, namely clean watertight meshes, consid-

eration also needs to be taken for meshes that do not conform to such

strict requirements. Holes, duplicate faces, non-manifold attachments

and self-intersections often appear in meshes, and ideally classification

methods should be able to cope with such situations.

This thesis presents an algorithm for the PIP test which combines the

AWPN method with the GWN method through the introduction of a new

unique algorithm. The aim is to produce a classification algorithm which

is robust to the usual mesh defects, whilst being more time efficient than
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the GWN method. To achieve this the GWN technique is only utilised in

ambiguous areas of the mesh and the AWPN elsewhere. In this way we

aim to combine the time efficiencies of the AWPN with the robustness

of the GWN.

In Chapter 2, we present an overview of existing methods to conduct

the PIP test and the benefits and drawbacks of each. Particular attention

is paid to their ability to deal with mesh defects.

In Chapter 3, the theory behind the GWN and AWPN methods is

explained before the different types of mesh defects are outlined. The

theory behind the key steps in the proposed algorithm is then explained.

In Chapter 4, the implementation details of the techniques used are

presented. Pseudo code for the main algorithms is included, as well as

explanations of the difficulties which arose during their implementation

and the solutions used to overcome them.

In Chapter 5, we present the results of the algorithm. These are

compared to the other main PIP algorithms.

In Chapter 6, we summarise the method presented and discuss its

advantages and disadvantages. Potential future work is also outlined.
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Chapter 2

Background

There are three key methods used to carry out the PIP test: ray casting,

pseudo normals and the generalised winding number. In this section

an overview of each method will be given, along with the situations in

which each can be used, before outlining another alternative method of

classification.

Ray Casting is the oldest and most widely used method to determine

a point’s location as inside or outside a polyhedra in computer graphics.

At the most basic level, a ray is fired in a random direction from the

point of interest to infinity and the number of intersections with the

mesh are counted. An odd number of intersections denotes that the

point is outside the mesh and an even number inside (Requicha and

Voelcker 1985), as shown in Figure 2.1.

Figure 2.1: Ray Casting Point Classification (Requicha and Voelcker
1985)
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Unfortunately if the cast ray hits the mesh at a vertex, edge or is

collinear to an edge this method comes across difficulties (Requicha and

Voelcker 1985). Similarly, if the ray passes through a hole in the mesh,

or is itself within numerical precision of the boundary of the mesh, it

may result in the incorrect classification of the point. However as the

vast majority of rays will not hit any ambiguities, a simple solution to

overcome this is to simply discard any rays that hit degeneracies (J.

1998). Alternatively multiple rays can be fired in different directions for

each point, and the value that occurs most often used.

Another solution is to only take note of intersections that change the

inside or outside parity. To establish the type of edge intersections,

neighbourhoods can be introduced (Requicha and Voelcker 1985). Such

neighbourhoods essentially highlight the areas containing material and

can be represented by the signs of the normals and tangents at the edge

and the edges that bound it, as shown in figure 2.2. For edges which are

not 2-manifold, lists of neighbourhoods can be stored as opposed to just

the one.

Figure 2.2: 3D Edge neigbourhoods denoting on which side of each edge
the geometry lies (Requicha and Voelcker 1985)

With these neighbourhoods established, the direction of the ray can

be compared with the 3D edge neighbourhood, as shown in figure 2.3

to establish whether or not the ray enters, leaves or simply touches the

mesh.

To resolve ambiguous intersections with vertices Requicha and Voel-
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Figure 2.3: Classification with edge neighbourhoods to a ray has entered
the geometry or not (Requicha and Voelcker 1985)

cker (1985) highlight a method in which they need not be directly taken

into consideration. Instead, at any vertex singularity, the midpoint of

the line segment either side of the point is found, and classified. These

two classifications can then be used to determine the nature of the in-

tersection, as shown in figure 2.4.

Figure 2.4: Classifying vertices through the classification of the mid
point of the ray either side of the vertex (Requicha and Voelcker 1985)

If an acceleration structure is used, the time implications of this

method are O(log N), where N denotes the number of faces and oth-

erwise it is linear. Whilst there are methods to reduce the classification

ambiguity if the cast ray hits the mesh at a vertex, edge or is collinear

to an edge, as highlighted above, the classification from such rays may

still be incorrect. Similarly if a ray passes through a hole in the mesh, or

is itself within numerical precision of the boundary of the mesh, it may

result in a missclassification of the point.

Pseudo Normals on the other hand are a natural extension to face

normals which have long been used to determine the inside and outside

of closed, orientable and smooth surfaces. Unlike face normals though,
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pseudo normals are defined at edges and vertices where there is a lack of

C1 continuity (Baerentzen and Aanaes 2005).

Many pseudo normals have been proposed, however Andreas Bærentzen

and Henrik Aanæs suggest that the AWPN presented independently by

both Thürmer and Wüthrich [1998] and Sequin [1986] is best suited for

the inside or outside classification of points. As the name suggests, the

AWPN for a vertex is defined as the weighted average of the face normals

of the surrounding triangles, where the weighting comes from the size of

the incident angle for that triangle, as shown in figure 2.5.

Figure 2.5: Incident Angles α1, α2 and α3 for vertex x (Baerentzen and
Aanaes 2005)

With the AWPN defined, the classification principle is then simple.

For an arbitrary point p, and closest point c on the mesh, the inner

product is taken between the the vector (p - c) and the pseudo normal

at c. The sign of this inner product is then used to determine if p

is inside or outside the mesh, with a negative sign denoting the latter

and a positive the former. As the closest point on the mesh is required

for this method, it has a complexity of O(N) without an acceleration

structure, where N is the number of triangles in the mesh. However if

the closest point is already known this reduces the complexity to O(1).

As with ray casting, the AWPN classification can only be used with

closed, 2-manifold meshes. As a mesh comes within numerical precision

of being non-manifold, or the distance between the point of interest and

the mesh is with the numerical precision, numerical instabilities occur.
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This method is also not able to close all meshes. Take for example a

mesh shaped like a trumpet. Pseudo normals will create a discontinuity

across the plane created by the end of the cone.

The Generalised Winding Number is a more recent approach

to the PIP test. First proposed in two dimensions by Meister (1769),

the winding number is a signed integer representing the total number of

times a given curve travels anti clockwise around a point, as shown in

Figure 2.6. A value of 1 signifies that the point is inside and 0 outside

whilst 2 denotes a point which is doubly inside and -1 a point on a flipped

face.

Figure 2.6: Winding Number Segmentations (Jacobson et al. 2013)

By generalising this idea to three dimensions, so that the GWN anal-

ogously represents the signed number of times a surface wraps around a

point, Jacobson et al. (2013) propose a method to segment meshes based

on this value in a similar manner to the two dimensional case. This

method allows for the classification of points within meshes containing

non-manifold geometry or holes. However it is considerably slower than

the previous two methods, with a time complexity of O(N) which can-

not be improved with an acceleration structure. It also struggles to

classify areas which contain thin, almost two dimensional features, such

as clothing on figures, or the leaves on trees. Similarly, if a duplicate face

encloses a region, it may cause a misclassification of the interior points

as outside, as shown in figure 2.7. Whist Jacobson et al. propose tagging

such sections prior to the winding number calculation so that they are

not included, there is currently no algorithm to automate this process

(Jacobson et al. 2013).
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Figure 2.7: Thin sheets cause (b) and (c) to have different in-
side/outside classifications (Jacobson et al. 2013)

Liu et al. have also proposed a method somewhat similar in nature

to pseudo normals, however theirs contains an interesting preprocessing

step (J. et al. 2010). First an octree is constructed using the bounding

box of the polyhedra as the root before each vertex is inserted into the

tree. If the pre-decided maximum number of vertices in a leaf node is

reached, the tree is split. After this each cell is labelled as either black,

if it is entirely outside the polyhedron, white if it is entirely inside and

grey otherwise. In this way those points in unambiguous areas can be

quickly classified without the need for further tests. For those in grey

cells further tests are carried out similar to pseudo normals.
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Chapter 3

Theory

When considering techniques for the PIP test it is important to take

into account the robustness, complexity and behaviour for different types

of input meshes, be it perfectly closed and watertight meshes, or non-

manifold meshs with many holes and self intersections. This is particu-

larly crucial due to the high prevalence of meshes containing defects such

as holes, duplicate faces, flipped normals and self intersections which of-

ten go unnoticed in the design process. Similarly, computer aided design

models often comprise multiple connected components which regularly

lead to multiple holes and self intersections.

As outlined above for closed manifold meshes, the AWPN, GWN and

ray casting methods are all able to correctly classify points, however as

artefacts begin to appear in a mesh the reliability of each method varies

considerably. It is clear from the previous chapter that the GWN is by far

the most robust of the three algorithms, however the time implications

of this method render it far from ideal on input geometry with a large

number of faces. Instead a method combining the AWPN and GWN is

proposed as follows. By identifying holes and self intersections within the

input mesh, areas of potential classification ambiguity can be found. The

GWN can then be utilised in these areas whilst the AWPN algorithm

can be used on the rest of the mesh. In this way the robust nature

of the generalised winding number algorithm can be utilised in areas of

potential classification instability without a large time overhead when
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using it for the entire mesh.

In order to explain this new proposed method in more detail, the

theory behind the AWPN and GWN PIP methods will now be presented.

After this the usual defects in meshes will be covered as well as ways

to overcome them before a more concrete explanation of the proposed

algorithm is given.

3.1 Angle Weighted Pseudo Normals

As explained previously, the AWPN method classifies points by taking

the inner product between the AWPN at the closest point on the mesh

to the point p being classified, and the vector from this closest point to

p. Specifically, for a point x on a closed, orientable 2-manifold meshM
in R3 Euclidean space the AWPN nα is defied as follows:

nα =

∑
αinα

||
∑
αinα||

(3.1)

where i runs over all the incident faces to x and αi are the incident

angles, as shown in figure 2.5.

With this definition of the AWPN Andreas Bærentzen and Henrik

Aanæs propose it is then possible to classify points as inside or outside

a mesh using the following equations:

nα · (p− c) > 0 if p is outside the surface (3.2)

nα · (p− c) < 0 if p is inside the surface (3.3)

nα · (p− c) = 0 if p is on the surface (3.4)

where p is the point of interest and c the closest point on a closed,

orientable 2-manifold mesh M in R3 Euclidean space (Baerentzen and

Aanaes 2005).

To avoid a linear time complexity when implementing this algorithm

a spacial partitioning is required. Andreas Bærentzen and Henrik Aanæs
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suggest using a hierarchy of oriented bounding boxes (OBB) as an ad-

equate compromise between the time and accuracy implications. To

access the hierarchy a priority queue is stored, with the lower bound of

the shortest distance to the mesh as the key.

This method however requires the meshes to be both 2-manifold and

closed and thus cannot be used with non watertight or self intersecting

meshes. Its robustness heavily relies on the manifold assumption too. If

the mesh comes within numerical precision of becoming non-manifold,

then it is possible for all the normals to be perpendicular to r and all

the αi to be small, both of which would cause the method to become

numerically unstable. We can see this by considering the equation used

to categorise points:

∑
r · niαi + ε > 0 (3.5)

For any values of epsilon which are of similar magnitude to
∑

r · niαi,

such as in the previous two cases, numerical instabilities will occur. Sim-

ilarly, if the length of r is similar to that of the numerical precision, then

p is essentially on the surface of the mesh, and thus the sign becomes

irrelevant.

3.2 Generalised Winding Number

As outlined in the previous section, an alternative more recent approach

is to generalise the winding number to three dimensions to create inside-

outside mesh segmentations. As explained above, for a closed, self-

crossing Lipschitz curve C in R2, around a point p, the winding number,

Ω(p), is a signed integer representing the total number of times the curve

travels anti clockwise around p (Rossignac et al. 2013). Without loss of

generality if p = 0, and C is parameterised using polar coordinates then:

w(p) =
1

2π

∮
c

dθ (3.6)
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where the result of 0 denotes that the point p is outside C and 1

inside.

In order to generalise this to R3 we require the notion of a solid angle.

For a point p in R3 and a Lipschitz surface S is defined in spherical

coordinates the solid angle Ω is defined as:

Ω(p) =

∫ ∫
S

sin(φ)dθdφ (3.7)

where without loss of generality we let p = 0 (Jacobson et al. 2013).

Thus it measures the signed surface area of S, when projected onto a

unit sphere centred at p, as shown in figure 3.1. With this definition the

winding number ω(p) in R3 of a point p and a closed surface S is defined

to be:

w(p) :=
Ω(p)

4π
(3.8)

Hence the winding number measures the signed number of times a

surface wraps around a point [Baerentzen 2005].

1

0

½

-½

Figure 6: Left to right: winding number field with respect to an
open, partial circle converging to a closed circle. Note the ±1 jump
discontinuity across the curve. Otherwise the function is harmonic:
smooth with minimal oscillation.

Let a = ci � p and b = ci+1 � p, then:

tan (✓i(p)) =
det([ab])

a · b =
axby � aybx,

axbx + ayby
(3)

4.1 Generalization to R3

The winding number immediately generalizes to R3 by replacing
angle with solid angle. The solid angle ⌦ of a Lipschitz surface S
with respect to a point p 2 R3 (w.l.o.g. let p = 0) is defined using
spherical coordinates to be:

⌦(p) =

ZZ

S

sin (�) d✓d�. (4)

It is the signed surface area of the projection of S onto the unit
sphere centered at p.

Let the winding number of a closed surface S at point p be defined
as w(p) := ⌦(p)/4⇡. The same classification properties apply
as in R2. The notion of “winding”, now counts the (signed) total
number of times the surface wraps around a point.

vk
vi

p

⌦f

vj

And again, if we have a triangulated,
piecewise-linear surface, there is an
immediate and exact discretization
of Equation (4):

w(p) =

mX

f=1

1

4⇡
⌦f (p), (5)

where ⌦f is the solid angle of the
oriented triangle {vi,vj ,vk} with
respect to p. Let a = vi � p, b =
vj � p, c = vk � p and a =
kak, b = kbk, c = kck; then following [van Oosterom and Strac-
kee 1983]:

tan

✓
⌦(p)

2

◆
=

det([ab c])

abc + (a · b)c + (b · c)a + (c · a)b
(6)

4.2 Open, non-manifold and beyond

The simplicity of the discrete formulae in Equations (2) and (5)
begs the question, what will happen if the input is open? Or non-
manifold? Or otherwise ambiguous?

We first consider open curves in R2. Instead of an indicator, step
function, Equation (2) is now an otherwise smooth function that
jumps by ±1 across the curve (see Figure 6). In fact, the smooth-
ness and fairness of this generalized winding number may be well

# define Laplacian operator in 2d
Laplacian2 := (f,x,y) -> diff(f,x,x) + diff(f,y,y);
# arbitrary position for vi, a := vi - p
a_x := vi_x-px; a_y := vi_y-py;
# arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py;
# determinant of (a,b)
detab := a_x*b_y - b_x*a_y;
# a dot b
adotb := a_x*b_x + a_y*b_y;
quotient := detab / adotb;
sab := 2*arctan(simplify(quotient));
simplify(Laplacian2(sab,px,py),symbolic);
# result is 0

# define Laplacian operator in 3d
Laplacian3 := (f,x,y,z) -> diff(f,x,x) + diff(f,y,y) + diff(f,z,z);
# vi := (0,0,0), a := vi - p
a_x :=    0-px; a_y :=    0-py; a_z :=    0-pz;
# arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py; b_z := vj_z-pz;
# arbitrary position for vk, c := vk - p
c_x := vk_x-px; c_y := vk_y-py; c_z := vk_z-pz;
# determinant of (a,b,c)
detabc := a_x*b_y*c_z + b_x*c_y*a_z + c_x*a_y*b_z - 
  a_x*c_y*b_z - b_x*a_y*c_z - c_x*b_y*a_z;
a := sqrt(a_x*a_x+a_y*a_y+a_z*a_z);
b := sqrt(b_x*b_x+b_y*b_y+b_z*b_z);
c := sqrt(c_x*c_x+c_y*c_y+c_z*c_z);
# divisor in atan
divisor := a*b*c + (a_x*b_x+a_y*b_y+a_z*b_z)*c +
  (b_x*c_x+b_y*c_y+b_z*c_z)*a + (c_x*a_x+c_y*a_y+c_z*a_z)*b;
sabc := 2*arctan(detabc / divisor);
simplify(Laplacian3(sabc,px,py,pz),symbolic);
# result is 0

Figure 7: MAPLE code proving that signed angle inR2, solid angle
R3, and, by extension, the winding number are harmonic.
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Figure 8: Winding number gracefully handles holes (in grey curve,
left), non-manifold attachments (middle), and exactly or nearly
duplicate facets (right).

understood. Except on the curve, it is harmonic! This implies C1

smoothness and minimal oscillations – highly desirable properties.

The sum of harmonic functions is harmonic, so it suffices to show
that all ✓i and ⌦i are harmonic. This is easy to do using symbolic
differentiation and simplification using Maple [Char et al. 1983]
(see Figure 7). In R3 treating all triangle vertices vi,vj ,vk as
symbolic variables makes Maple run out of memory, therefore we
take advantage of invariance to translation and fix vi = (0, 0, 0).

The winding number is not simply the unique harmonic function
determined by setting one side of the boundary to 0 and the other to
1, as if by a diffusion curve of [Orzan et al. 2008] (also cf. [Davis
et al. 2002]). This is true if and only if the input is watertight. Rather,
the winding number is the sum of harmonic functions corresponding
to each input facet, setting one side to �1/2 and the other to 1/2
(see Figure 9). We do not explicitly control the boundary conditions
— they are implicitly defined by the boundary winding number itself.
This allows graceful shift from a perfect segmentation function to
a smooth confidence measure as artifacts appear in the boundary.
Unlike [Orzan et al. 2008] who solve a variational problem, we have
a closed-form expression to evaluate the winding number.

Equation (5) may be interpreted as an instance of the boundary
element method (BEM) for evaluating the solution to the Laplace
equation. If we define Dirichlet boundary conditions on each side

Figure 3.1: Winding Number Generalisation to Three Dimen-
sions(Jacobson et al. 2013)

If the original mesh is entirely free of ambiguities, then the generalised

winding number produces an exact segmentation. That is, it will evalu-

ate to integers which unambiguously classify points. However for meshes

with duplicate faces, the winding number is locally shifted. Similarly, as

ambiguities begin to appear, the generalised winding function smoothly
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shifts to a confidence measure, as shown in figure 3.2. In this way Jacob-

son et al. claim it correctly handles duplicate, or close to being duplicate,

faces, holes and non-manifold attachments. For this reason however, if a

simple threshold is used to classify points as inside or outside based on

the integral average of the winding number for each element, incorrect

classifications may be seen.

1

0

½

-½

Figure 6: Left to right: winding number field with respect to an
open, partial circle converging to a closed circle. Note the ±1 jump
discontinuity across the curve. Otherwise the function is harmonic:
smooth with minimal oscillation.

Let a = ci � p and b = ci+1 � p, then:

tan (✓i(p)) =
det([ab])

a · b =
axby � aybx,

axbx + ayby
(3)

4.1 Generalization to R3

The winding number immediately generalizes to R3 by replacing
angle with solid angle. The solid angle ⌦ of a Lipschitz surface S
with respect to a point p 2 R3 (w.l.o.g. let p = 0) is defined using
spherical coordinates to be:

⌦(p) =

ZZ

S

sin (�) d✓d�. (4)

It is the signed surface area of the projection of S onto the unit
sphere centered at p.

Let the winding number of a closed surface S at point p be defined
as w(p) := ⌦(p)/4⇡. The same classification properties apply
as in R2. The notion of “winding”, now counts the (signed) total
number of times the surface wraps around a point.

vk
vi

p

⌦f

vj

And again, if we have a triangulated,
piecewise-linear surface, there is an
immediate and exact discretization
of Equation (4):

w(p) =

mX

f=1

1

4⇡
⌦f (p), (5)

where ⌦f is the solid angle of the
oriented triangle {vi,vj ,vk} with
respect to p. Let a = vi � p, b =
vj � p, c = vk � p and a =
kak, b = kbk, c = kck; then following [van Oosterom and Strac-
kee 1983]:

tan

✓
⌦(p)

2

◆
=

det([ab c])

abc + (a · b)c + (b · c)a + (c · a)b
(6)

4.2 Open, non-manifold and beyond

The simplicity of the discrete formulae in Equations (2) and (5)
begs the question, what will happen if the input is open? Or non-
manifold? Or otherwise ambiguous?

We first consider open curves in R2. Instead of an indicator, step
function, Equation (2) is now an otherwise smooth function that
jumps by ±1 across the curve (see Figure 6). In fact, the smooth-
ness and fairness of this generalized winding number may be well

# define Laplacian operator in 2d
Laplacian2 := (f,x,y) -> diff(f,x,x) + diff(f,y,y);
# arbitrary position for vi, a := vi - p
a_x := vi_x-px; a_y := vi_y-py;
# arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py;
# determinant of (a,b)
detab := a_x*b_y - b_x*a_y;
# a dot b
adotb := a_x*b_x + a_y*b_y;
quotient := detab / adotb;
sab := 2*arctan(simplify(quotient));
simplify(Laplacian2(sab,px,py),symbolic);
# result is 0

# define Laplacian operator in 3d
Laplacian3 := (f,x,y,z) -> diff(f,x,x) + diff(f,y,y) + diff(f,z,z);
# vi := (0,0,0), a := vi - p
a_x :=    0-px; a_y :=    0-py; a_z :=    0-pz;
# arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py; b_z := vj_z-pz;
# arbitrary position for vk, c := vk - p
c_x := vk_x-px; c_y := vk_y-py; c_z := vk_z-pz;
# determinant of (a,b,c)
detabc := a_x*b_y*c_z + b_x*c_y*a_z + c_x*a_y*b_z - 
  a_x*c_y*b_z - b_x*a_y*c_z - c_x*b_y*a_z;
a := sqrt(a_x*a_x+a_y*a_y+a_z*a_z);
b := sqrt(b_x*b_x+b_y*b_y+b_z*b_z);
c := sqrt(c_x*c_x+c_y*c_y+c_z*c_z);
# divisor in atan
divisor := a*b*c + (a_x*b_x+a_y*b_y+a_z*b_z)*c +
  (b_x*c_x+b_y*c_y+b_z*c_z)*a + (c_x*a_x+c_y*a_y+c_z*a_z)*b;
sabc := 2*arctan(detabc / divisor);
simplify(Laplacian3(sabc,px,py,pz),symbolic);
# result is 0

Figure 7: MAPLE code proving that signed angle inR2, solid angle
R3, and, by extension, the winding number are harmonic.
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Figure 8: Winding number gracefully handles holes (in grey curve,
left), non-manifold attachments (middle), and exactly or nearly
duplicate facets (right).

understood. Except on the curve, it is harmonic! This implies C1

smoothness and minimal oscillations – highly desirable properties.

The sum of harmonic functions is harmonic, so it suffices to show
that all ✓i and ⌦i are harmonic. This is easy to do using symbolic
differentiation and simplification using Maple [Char et al. 1983]
(see Figure 7). In R3 treating all triangle vertices vi,vj ,vk as
symbolic variables makes Maple run out of memory, therefore we
take advantage of invariance to translation and fix vi = (0, 0, 0).

The winding number is not simply the unique harmonic function
determined by setting one side of the boundary to 0 and the other to
1, as if by a diffusion curve of [Orzan et al. 2008] (also cf. [Davis
et al. 2002]). This is true if and only if the input is watertight. Rather,
the winding number is the sum of harmonic functions corresponding
to each input facet, setting one side to �1/2 and the other to 1/2
(see Figure 9). We do not explicitly control the boundary conditions
— they are implicitly defined by the boundary winding number itself.
This allows graceful shift from a perfect segmentation function to
a smooth confidence measure as artifacts appear in the boundary.
Unlike [Orzan et al. 2008] who solve a variational problem, we have
a closed-form expression to evaluate the winding number.

Equation (5) may be interpreted as an instance of the boundary
element method (BEM) for evaluating the solution to the Laplace
equation. If we define Dirichlet boundary conditions on each side

Figure 3.2: The GWN evaluated over meshes with self intersections,
non-manifold attachments and duplicate faces (Jacobson et al. 2013)

Instead Jacobson, A. et al. present an energy functional with enforced

smoothness, and hence better behaviour, with a minimum respecting the

winding number. This is defined as follows:

E =
m∑
i=1

[u(xi) + γ
1

2

∑
j∈N(i)

v(xi, xj)] (3.9)

where N(i) is the set of all elements who share a facet with the el-

ement ei, xi is the unknown binary segmentation function at ei and γ

is a parameter to control the balance between the data and smoothness

terms.

The data term is defined as:

u(xi) =

{
max(w(ei)− 0, 0) if xi = outside

max(1− w(ei), 0) otherwise

Whilst the smoothness term is defined as:

v(xi, xj) =

{
0 ifxi = xj

aijexp(−|w(ei)−w(ej)|2
2σ2 otherwise
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This method does however assume that a mesh “intuitively represents

or loosely approximates the surface of some solid” (Jacobson et al. 2013),

an assumption Jacobson et al. justify by proposing that most meshes

are designed to represent the surface of a solid when lit from one side.

3.3 Mesh Defects

Mesh defects are a very common problem in the computer graphics and

fabrication industry. The 3D printing company Shapeways estimates

that 90% of meshes they received for printing contain defects. The result

of most defects is the lack of a well defined normal which causes many

further algorithms to fail, or unexpected behaviour, notably with the

AWPN. Such defects can be split into the following categories: flipped

faces, degenerate triangles, duplicate faces, self intersections and holes,

all of which will now be explained along with methods to potentially

overcome them.

3.3.1 Flipped Faces

The most obvious cause of an incorrect normal is when a face on the mesh

is flipped, as shown in figure 3.3. That is, the direction of its normal is

opposite to the majority of the surrounding faces. More precisely if two

triangles have the same start and end vertex then they must have normals

which point in opposite directions. In order to resolve this, a correct

normal direction must be chosen, after which this direction is essentially

propagated through the mesh. To do so every triangle excluding the seed

one is marked as having an undefined orientation. The orientation of the

faces sharing a vertex with the seed vertex are then checked, and if they

don’t match that of the seed they are flipped, otherwise their orientation

is stored.The same process is then carried out on the newly flipped faces,

continuing until all faces have been assigned a normal direction. If the

mesh contains disjoint geometry then it is necessary to define multiple

seed faces for each disjoint section of geometry. This process is known
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as unifying normals (Sanchez 2011).

Figure 3.3: A flipped normal on the triangle with the thick edges

There is however one type of geometry this method will not work for.

These are known as non-orientable surfaces. This is because all faces are

simultaneously correctly orientated and in need of flipping. The Klein

bottle is possibly the best known of these, as shown in figure 3.4. As

the name suggests however such surfaces have no correct orientation and

thus are rejected by the algorithm.

Figure 3.4: Klein Bottle: A Non-Orientable Surface (Bourke 1996)

3.3.2 Degenerate Triangles

Similarly, degenerate triangles in a mesh cause anomalies in many al-

gorithms carried out on it due to their lack of well defined normals.
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Degenerate triangles are those with a very close to zero area. These tend

to fall into two categories, those with an angle close to 180◦ and those

whose longest edge is significantly longer than its shortest edge. Botsch

and Kobbelt (2001) name the former type caps and the latter needles.

They suggest that for needles we need only collapse the shortest edge

to resolve the degenerate triangle. Caps, on the other hand, must be

treated with greater care as simply collapsing one of their relatively long

edges may cause the neighbouring triangles to become degenerate. In-

stead they suggest splitting them into further faces with smaller angles.

To maintain continuity the neighbouring triangles must also be split after

this operation.

Figure 2: Two different quality measures: the same
model optimized for smooth appearance, leading
to stretched triangles (top), and for triangle shape,
leading to surface shading artifacts (bottom).

est to the longest edge (aspect ratio) is a commonly
used measure. In the mesh generation context the
ratio of the shortest edge to the radius of the trian-
gle’s circumcircle is used to express the quality of a
face [14].
Degenerate triangles have their shortest edge

much shorter than their circumradius. These skinny
triangles can be classified as

Caps: triangles with an angle close to .
Needles: triangles, whose longest edge is
much longer than the shortest one.

The definitions of caps and needles are not mutu-
ally exclusive (cf. Fig. 3). We will refer to caps as
“pure caps”, i.e. caps that are no needles.

Figure 3: Classifications of skinny triangles: Caps
have an angle close to (top), needles a bad
shortest to longest edge ratio (middle). A triangle
can be both a cap and a needle (bottom).

Both types of degeneracies do not carry any
relevant geometric information since their surface
area is close to zero. It turns out that caps are
much harder to eliminate than needles: While nee-
dles can usually be removed by simply collapsing
their shortest edge, the situation for caps is more
complicated, since collapsing their relatively long
edges can cause neighboring triangles to degener-
ate. Hence an alternative operation is needed for
the elimination of the caps. Once we manage to do
this, a suitable mesh decimation algorithm will be
capable of removing the remaining needles.

3 Caps Removal

Caps are defined as having their maximum angle
close to , leading to a relatively long edge on
the opposite side of the triangle. As mentioned they
cannot be removed by collapsing one of their edges.
Therefore new points have to be inserted to split up
faces resulting in smaller angles. In order to keep
the mesh consistent also the neighboring triangle
has to be split and must be taken into consideration
(cf. Fig. 4).

B

A

C

D

Figure 4: The two neighboring caps at the top can
neither be eliminated by subdiving the base at its
midpoint nor by splitting the edge at the orthogo-
nal projection of the upper vertex, because this may
lead to new caps, marked in grey. The only way is
cutting the whole mesh at every cap vertex having a
large angle, like A and D.

666

Figure 3.5: Resolving caps by cutting the mesh at vertices with a large
angle, such as A and D. Alternative methods may results in further caps,
as highlighted in grey (Botsch and Kobbelt 2001)

3.3.3 Duplicate Vertices

Duplicate vertices occur when there are multiple vertices at close to, if

not identical, positions. There are common on meshes made up from

multiple components. For instance there Utah Teapot contains many

duplicate vertices. These cause problems with detecting holes and self

intersecting triangles, often resulting in false classifications of both, as

shown in figure 3.6. To resolve such issues vertex welding can be applied.

This process combines all vertices within a set threshold of each other,
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thereby eliminating the problem.

Figure 3.6: Duplicate vertices cause incorrect classification of boundary
edges, marked with thicker lines

3.3.4 Self Intersections

Self intersections also occur frequently in meshes, often simply as a re-

sult of an artist’s creativity. For instance, when modelling animals it is

common to simply intersect each whisker with the face geometry. Unfor-

tunately however, self intersecting geometry causes anomalies with many

algorithms and some to fail completely and thus detecting such triangles

is incredibly useful.

There are many algorithms in existence to isolate self intersecting tri-

angles. The most intuitive of these relies on the fact that when two

triangles intersect, either one or two edges of the first triangle normally

protrude the interior of the other, as shown in figure 3.7. Then by check-

ing each triangle edge in turn for intersection with the other triangle,

triangle triangle intersections can be found. On the other hand if all

six such tests for each triangle pair are false, there is no intersection be-

tween them.The algorithm unfortunately fails if the two triangles being

tested are coplanar and due to the large number of checks is also slow to

implement.

An alternative method is known as the separating axis test. As the
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Figure 5.19 In the general case, two triangles intersect (a) when two edges of one triangle
pierce the interior of the other or (b) when one edge from each pierces the interior of the
other.

A triangle-triangle test can therefore be implemented in terms of (up to) six edge-
triangle tests. If an edge of one triangle intersects the other triangle, the triangles
intersect. If all six tests fail, they are not intersecting.

The case in which the triangles are coplanar, or one or both triangles are degenerate
(with two or more coincident vertices, turning the triangles into lines or points), is not
handled correctly by this test. In fact, none of the suggested algorithms for triangle-
triangle intersectionhandle these casesbydefault: theyall relyon theirs beinghandled
as special cases.

A second approach is to apply the separating-axis test. For intersecting two trian-
gles, 11 separating axes must be tested: one axis parallel to the face normal for each of
the two triangles, plus nine combinations of edges, with one edge from each triangle.
For each axis, the triangles are projected onto the axis and the projection intervals
are tested for overlap. If the projection intervals are found disjoint on any axis, the
triangles are nonintersecting and the test can immediately exit. However, when the
projection intervals overlap on all 11 axes the triangles must be intersecting.

A test similar in spirit to the separating-axis test is the interval overlap method
suggested by [Möller97b]. However, it is much less expensive than the previous two
tests. As a first step, it tests if the two face normals act as separating axes. This is done
by testing, for both triangles, whether the vertices of one triangle lie fully on one side
of the plane of the other triangle. If so, the triangles are nonintersecting. If not, at this
point, the planes of the triangles must be intersecting in a line L, L(t) = P+ t d, where
d = n1 × n2 is the cross product of the two triangle normals n1 and n2. Furthermore,
this line must also be intersecting both triangles. The scalar intersection intervals
between each triangle and L are now computed (these correspond to the intersection
points marked with black dots in Figure 5.19). Now, only if these scalar intervals
intersect do the triangles intersect. As an optimization, instead of directly computing
the triangle intersection intervals with L the intervals are computed and intersected on

Figure 3.7: Triangle Triangle Intersection Possibilities (Ericson 2004)

name suggests, a series of tests are carried out to determine whether

one of eleven axes separate the two triangles being tested. These are

the nine edge combinations taking one from each triangle, and the two

axis parallel to the normal of each triangle. For each axis in turn the

vertices are projected onto it and the interval of each triangle’s projection

is tested against the interval of the other to see if there is an overlap.

Two triangles only intersect if they have overlapping intervals on all

eleven intervals. This allows the test to end early if any axis has two

disjoint projection intervals, thereby cutting down the computation time.

Nonetheless this method still requires a large number of checks and is

unable to correctly classify coplanar triangles.

An alternative algorithm similar in vein to the separating axis test

but less computationally expensive is presented by Möller (1997). The

algorithm essentially splits into two key steps. First a check is carried

out to see whether either triangle intersects the plane the other lies on.

If no intersection occurs the triangles are marked as not intersecting. In

this way more complicated checks can be eliminated for many triangles

early on. This is done as follows. For triangle (v10, v
1
1, v

1
2) the distances

between each vertex and the plane π2 which the second triangle lies in

are found. By checking whether all the distances have the same sign or

not, we are able to determine whether or not the two overlap. The same

calculations are then done for the second triangle with vertices (v20, v
2
1, v

2
2)

and the plane π1 which the first triangle lies on.

If any two distances for each triangle have a different sign, the two

planes containing each triangle must intersect along a line with direction
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Figure 3.8: Triangle Line Intersection Possibilities (Möller 1997)

N1×N2 where N1 is the normal of the first triangle, and N2 is the normal

of the second. This is because at least one vertex of the first triangle

must lie on the opposite side of the plane in which the other triangle lies

to the other two triangle vertices. If this overlap is found there are then

two possible cases of intersection along this line, as shown in figure 3.8.

Namely, either the two planes intersect but the triangles do not, or both

the planes and the triangles intersect.

In a similar manner to the separating axis test, the projection interval

of each triangle vertex onto this line of intersection is then found to

establish which of these two cases we are in. For each vertex its projection

onto the line of intersection is given by:

Pv1i = (N1 ×N2) · (V 1
i −O) (3.10)

as shown in figure 3.9 where O is a point on the line of intersection.

However as translating the interval does not affect the classification re-

sult, this can be simplified to:

Pv1i = (N1 ×N2) · (V 1
i ) (3.11)

As with all the methods outlined above though, if the distance to

the plane for any one of the six vertices is 0 then the two triangles

are coplanar the test will fail. For this reason a second check must

be carried out to ensure intersecting coplanar triangles are also marked
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Figure 2: The geometrical situation: are the vertices of , & are the
planes in which and lie; are the signed distances from to ; are
the projections of onto ; and are the projections of onto , which is
the line of intersection.

Otherwise, we must test if is totally contained in or vice versa. This can be
done by performing a point-in-triangle test [Haines94] for one vertex of against
and vice versa.

2.1 Optimizations
Since the intervals can be translated without altering the result of the interval overlap
test, equation (3) can be simplified into:

(5)

Therefore does not need to be computed.
Also, the result of the overlap test does not change if we project onto the

coordinate axis with which it is most closely aligned. Therefore equation (5) can be
simplified further:

(6)

Here, means the -component of and so on. The same principle was used by
Mirtich [Mirtich96] in order to get a numerically stable simplification of an integral
over a polygon’s area.

3

Figure 3.9: Projecting the vectors of triangle 1 onto the plane of triangle
2 (Möller 1997)

as self intersecting. This can be done through the use of Barycentric

coordinates. For a triangle Barycentric coordinates allow us to express

any point in the same plane as the triangle as a linear combination of

its vertices. So for a triangle with vertices A,B and C we can express

a point p as p = uA + vB + wC where (u, v, w) are the Barycentric

coordinates and u + v + w = 1. With such a representation we can

then very easily test whether a point lies within the triangle by checking

whether 0 < u, v, w < 1 (Ericson 2004).

3.3.5 Holes

Holes in meshes cause significant problems with many algorithms, par-

ticularly ray casting and classifying points using the AWPN. There are

many hole patching algorithms in existence for triangular meshes. For

instance Carr et al. (2001) use polyharmonic Radial Basis Functions to

build an implicit surface to fill a given hole. This results in smooth

hole filling and extrapolation of the surface around the hole. Whilst this

method works well for complex holes and convex geometry, for more com-

plex surfaces it becomes difficult to describe them using a single-value

function and thus problems arise. Another approach which is able to deal

with more complex holes is proposed by Jun (2005). It works by split-
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ting complex holes into more simple sub holes before individually filling

each. To do so the sub holes are projected onto a projection plane, before

being patched using two dimensional Delaunay triangulation. Unfortu-

nately though, if a hole contains a large number of overlapping sections

or twists the process becomes incredibly slow. Perhaps a more intuitive

approach is known as ear cutting. This makes use of Meister’s Two Ears

Theorem which states that for any simple closed polygonal plane curve

other than a triangle with a finite number of sides there exists at least

two non overlapping ears (Meisters 1975). This allows us to take the

two consecutive hole edges with the smallest angle between them and

form a triangle between them, known as an ear. By applying this step

repeatedly we are able to close a hole through the repeated creation of

ears. Unfortunately however this method often leads to multiple self

intersections and counterintuitive geometry.

An alternative similar but more robust method is known as the ad-

vancing front mesh technique. This works by creating an initial front

consisting of all the edges surrounding the hole, known as boundary

edges. Starting with the two consecutive edges with the smallest angle

between them, either one, two or three triangles are inserted in the plane

created by the two edges. The number of triangles inserted is dependant

on the size of the angle between the edges. The front is then updated

with the new front created by the addition of these triangles before the

process starts again. This allows for a robust method to fill holes, whilst

remaining fairly intuitive and efficient.

3.4 Polygon Soups

A polygon soup is the name given a series of polygons with no particular

relationships, as seen in figure 3.11. In this particular case the polygon

soup is created by rotating each triangle on the original cat mesh (figure

3.10) by a random amount in an arbitrary direction (Jacobson et al.

2013). Whilst polygon soups do not intuitively represent a solid, they

could be meshed using the marching cubes algorithm (Lorensen and Cline
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1987) based on the value of the GWN. Such a process would produce a

watertight mesh which could then be used with aPIP algorithm.

2

0

1

-1

Figure 14: Each triangle of the Cat (originally with open bottom) is
ripped off and slowly rotated in a random direction. The winding
number gracefully degrades.

The Ballet Woman contains a very detailed mouth (see also Ballet
Woman’s Head in the supplemental video). Our meshing preserves
these features while still correctly segmenting out the mouth cavity.

We report statistics in Table 1. Our timings were obtained on an
iMac Intel Core i7 3.4GHz computer with 16GB memory. Our
implementation is serial except for computing the winding number,
which uses an OPENMP parallel for loop over the evaluation points.
We tested the performance of our hierarchical evaluation versus
a naive one with two experiments. First, we measured average
computation time of a single evaluation in the bounding box of
the Dino mesh under increasing subdivision levels (see Figure 10).
Next we considered 700 (target) models of the SHREC dataset
[Bronstein et al. 2010] (see Figure 11). For both experiments we
average the computation time of 1000 random samples in the test
shape’s bounding box. Both experiments show that in general our
hierarchical evaluation performs asymptotically better.

We stress tested our generalization of the winding number by con-
sidering how the function responds to degenerating input. The Cat
in Figure 14 has an open base, and its winding number is a smooth
(harmonic) field in ⇡[0, 1]. We separate each triangle of the mesh
and slowly rotate it in an arbitrary direction, evaluating the effect
on the winding number. The winding number field maintains the
image of cat until the triangles have rotated by ⇡, when the mesh as
a whole clearly breaks our consistent orientation assumption.

We compare our method to first repairing the input as a surface
using [Attene 2010] and meshing the result (see Figure 15). The
Elephant’s ear flips inside-outside making volume determination
badly ill-posed there: our method deletes the region creating a
topological handle. Attene’s MESHFIX deletes the region and then
fills the hole with a different topology, but other parts of the mesh
suffer: the tusks and eyes are also deleted. In Figure 18, [Attene
2010] fills the holes in the Holey Cow with the same topology as
our method, but deletes the entire tail, which self-intersects its udder.
Because our method avoids such drastic surface changes, we may
compute a volumetric texturing using [Takayama et al. 2008] that
meets the original surface (see Figure 16). One may then simply
render the original surface and only show the inner texture when the
Tree is cut.

In lieu of computing a volume discretization, many geometry pro-
cessing tasks may be instead conducted on the surface. For example,
the self-intersections in the Beast might have previously discouraged
the use of a volumetric deformation technique due to the manual
cleanup involved in preparing the model for tet meshing. Bending
with surface-based technique reveals shell-like collapses when com-
pared to a volumetric technique using a our volume discretization
(see Figure 17). Some techniques like computing skinning weights
automatically with [Jacobson et al. 2011] are designed specifically
for volumes (see Figure 20). Without our method, this algorithm
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Figure 15: The ears of the Elephant Head overlap and flip inside-
out (bright green) creating a negative volume. The result of [At-
tene 2010] creates a watertight surface, but the tusks and eyes are
conspicuously missing. Our winding number identifies this region
(w < 0), but our segmentation removes the region creating a hole
(actually topological handle, blue).

Figure 16: The Tree contains many intersections and open bound-
aries (left). Our method is robust to these, producing a compatible
mesh for applying volumetric texturing (right).
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Figure 17: Self-intersections in the otherwise clean Beast prevent
volume-meshing with previous methods. Surface-based deformation
is one option, but bending causes shell-like collapses not present in
a volume deformation enabled by our method.

has a limited set of inputs or requires tedious user preparation of
input (defeating its automation gains). State of the art physically-
based elasticity simulation techniques also require tetrahedral vol-
ume meshes. Our method accordingly expands the domain of inputs
for these methods (see Rubber Hippo and Rubber Chihuahua in
supplemental video).

7 Limitations and future work

The winding number and our generalization rely heavily on the ori-
entation of input facets. Triangle soups with unknown or erroneous
orientations would need further preprocessing (e.g. with [Borodin
et al. 2004]). Since a single facet has a drastically different effect on
the total winding number when its orientation agrees with its neigh-
bors, it would be interesting to use the notion of our generalized
winding number to verify or correct triangle orientations.

The number of connected components in our output is not controlled
even when manifoldness is constrained. It would be interesting to ex-
tend the work of [Chen et al. 2011] to 3D, enabling such topological
constraints in our graphcut segmentation.

Figure 3.10: The original cat
model (Jacobson et al. 2013)
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Figure 14: Each triangle of the Cat (originally with open bottom) is
ripped off and slowly rotated in a random direction. The winding
number gracefully degrades.

The Ballet Woman contains a very detailed mouth (see also Ballet
Woman’s Head in the supplemental video). Our meshing preserves
these features while still correctly segmenting out the mouth cavity.

We report statistics in Table 1. Our timings were obtained on an
iMac Intel Core i7 3.4GHz computer with 16GB memory. Our
implementation is serial except for computing the winding number,
which uses an OPENMP parallel for loop over the evaluation points.
We tested the performance of our hierarchical evaluation versus
a naive one with two experiments. First, we measured average
computation time of a single evaluation in the bounding box of
the Dino mesh under increasing subdivision levels (see Figure 10).
Next we considered 700 (target) models of the SHREC dataset
[Bronstein et al. 2010] (see Figure 11). For both experiments we
average the computation time of 1000 random samples in the test
shape’s bounding box. Both experiments show that in general our
hierarchical evaluation performs asymptotically better.

We stress tested our generalization of the winding number by con-
sidering how the function responds to degenerating input. The Cat
in Figure 14 has an open base, and its winding number is a smooth
(harmonic) field in ⇡[0, 1]. We separate each triangle of the mesh
and slowly rotate it in an arbitrary direction, evaluating the effect
on the winding number. The winding number field maintains the
image of cat until the triangles have rotated by ⇡, when the mesh as
a whole clearly breaks our consistent orientation assumption.

We compare our method to first repairing the input as a surface
using [Attene 2010] and meshing the result (see Figure 15). The
Elephant’s ear flips inside-outside making volume determination
badly ill-posed there: our method deletes the region creating a
topological handle. Attene’s MESHFIX deletes the region and then
fills the hole with a different topology, but other parts of the mesh
suffer: the tusks and eyes are also deleted. In Figure 18, [Attene
2010] fills the holes in the Holey Cow with the same topology as
our method, but deletes the entire tail, which self-intersects its udder.
Because our method avoids such drastic surface changes, we may
compute a volumetric texturing using [Takayama et al. 2008] that
meets the original surface (see Figure 16). One may then simply
render the original surface and only show the inner texture when the
Tree is cut.

In lieu of computing a volume discretization, many geometry pro-
cessing tasks may be instead conducted on the surface. For example,
the self-intersections in the Beast might have previously discouraged
the use of a volumetric deformation technique due to the manual
cleanup involved in preparing the model for tet meshing. Bending
with surface-based technique reveals shell-like collapses when com-
pared to a volumetric technique using a our volume discretization
(see Figure 17). Some techniques like computing skinning weights
automatically with [Jacobson et al. 2011] are designed specifically
for volumes (see Figure 20). Without our method, this algorithm
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Figure 15: The ears of the Elephant Head overlap and flip inside-
out (bright green) creating a negative volume. The result of [At-
tene 2010] creates a watertight surface, but the tusks and eyes are
conspicuously missing. Our winding number identifies this region
(w < 0), but our segmentation removes the region creating a hole
(actually topological handle, blue).

Figure 16: The Tree contains many intersections and open bound-
aries (left). Our method is robust to these, producing a compatible
mesh for applying volumetric texturing (right).
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Figure 17: Self-intersections in the otherwise clean Beast prevent
volume-meshing with previous methods. Surface-based deformation
is one option, but bending causes shell-like collapses not present in
a volume deformation enabled by our method.

has a limited set of inputs or requires tedious user preparation of
input (defeating its automation gains). State of the art physically-
based elasticity simulation techniques also require tetrahedral vol-
ume meshes. Our method accordingly expands the domain of inputs
for these methods (see Rubber Hippo and Rubber Chihuahua in
supplemental video).

7 Limitations and future work

The winding number and our generalization rely heavily on the ori-
entation of input facets. Triangle soups with unknown or erroneous
orientations would need further preprocessing (e.g. with [Borodin
et al. 2004]). Since a single facet has a drastically different effect on
the total winding number when its orientation agrees with its neigh-
bors, it would be interesting to use the notion of our generalized
winding number to verify or correct triangle orientations.

The number of connected components in our output is not controlled
even when manifoldness is constrained. It would be interesting to ex-
tend the work of [Chen et al. 2011] to 3D, enabling such topological
constraints in our graphcut segmentation.

Figure 3.11: A polygon soup
based on the cat model (Jacobson
et al. 2013)

3.5 Proposed Algorithm Overview

As explained at the start of the chapter, the proposed algorithm com-

prises a combination of the GWN and the AWPN PIP methods. For this

reason it is important to consider the limitations of each method prior to

combining them. As previously noted the AWPN algorithm is not able

to correctly classify points if the input mesh is not a closed 2-manifold.

This could be the case for instance if the input mesh contains holes or

self intersections. Thus in both scenarios further attention is needed.

Considering first the case where the input mesh contains self inter-

secting geometry we note the following. As the AWPN algorithm uses

the closest triangle on the mesh to classify each point, only the points

for which this triangle is either inside the geometry or intersected by

another triangle will be incorrectly classified. For this reason we propose

excluding the triangles inside the mesh from the AWPN algorithm. To
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do so a new algorithm utilising the GWN is presented below to estab-

lish whether a triangle lies fully inside the geometry. In this way we are

able to prevent such triangles from incorrect classifying points using the

AWPN algorithm.

For the second case in which the triangles themselves are intersected,

it is clear these cannot be excluded from the algorithm as they form the

edge of the mesh. Instead once such triangles have been identified using

the triangle triangle intersection algorithm proposed by Möller (1997),

we use the GWN algorithm to classify all points for which their closest

triangle is one of these self intersected ones. This prevents the AWPN

algorithm being used for such points, as it may incorrectly classify them.

On the other hand, areas which contain holes must be treated with a

different approach. Whilst the GWN method can be used in such areas,

the affect of such a hole on the GWN field can be far reaching, as shown

in Figure 3.12. This proposes the question of how to identify the areas

affected by any given hole. One approach considered was to construct an

octree for the input mesh, using the bounding box of the mesh as the root.

The GWN was then evaluated using interval arithmetic for each cell, and

cells containing an interval crossing +0.5 were split. In this way the areas

affected by the holes could be identified and evaluated using the GWN

and the rest classified using the AWPN method. Unfortunately though,

the large overestimations often seen with interval arithmetic resulted in

this being unusable. To see such overerstimations consider the equation

x2 +
x

4
(3.12)

for x in the range [−1, 1]\{0}. Using interval arithmetics the output

range would be [0,1] for the x2 term and [−1
4

, 1
4
] for the x

4
term which

sums to [−1
4

, 5
4
]. However we need only consider the equation briefly to

see that as the first term must always be positive and as zero is excluded

from our range it is impossible to ever achieve a value of −1
4

and thus

interval arithmetics has overestimated the possible output values.

Instead the approach used is to calculate a patch for any holes on the
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Figure 3.12: The GWN Field for Open Curves (Jacobson et al. 2013)

mesh. This is done as a two step process. First the edges surrounding

each hole are identified, before a patch is calculated for each using the

Advancing Front Mesh (AFM) algorithm, as presented by Zhao et al.

(2007). Provided all self intersecting geometry has already been consid-

ered in the manner outlined above, the AWPN algorithm can then be

utilised with these additional triangles which form a valid closing of the

mesh. This allows the AWPN to correctly classify points closest to a

hole.

In this way we can use a combination of both algorithms at differ-

ent parts of the mesh to classify points without the time implications

of using the GWN everywhere but still gaining robustness through its

targeted use. As the algorithm uses either the AWPN or GWN for the

classification of each point, it has a best case complexity of O(log(N))

where N is the number of triangles and an acceleration structure is used

to calculate the AWPN and a worst case complexity of O(N).
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Chapter 4

Engineering &

Implementation

We will now give implementation details for each step of our proposed

PIP algorithm which has been implemented in C++ as a Maya plugin.

The plugin inherits from the MPxNode which is Maya’s base node for

custom dependency nodes. It allows the user to input the mesh they

wish to classify points on and easily create and orientate a plane for

which they would like to visualise the results. The plugin then creates a

new mesh to show the patches used to fill holes, and which triangles have

been removed. In order to determine the world coordinates for each point

a SamplerInfo node is used, and the classification value of each is then

passed to a blender node to visualise the result. For ease of comparison

the plugin also has the option to use just the AWPN or GWN methods.

4.1 Hole Patching

The first step in the algorithm is to patch any holes on the input mesh.

This is done as a two part process. First the edges surrounding each

hole are found before a patch is calculated to close the hole using the

advancing front method outlined by Zhao et al. (2007). It is worth noting

however that this patch is simply for classification purposes, the input
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mesh is not altered in any way. Instead a copy is made which is patched

and used for calculations.

4.1.1 Hole Identification

In order to calculate patches to close holes in the mesh it is necessary

to identify all the edges which enclose each hole, known as border edges.

Furthermore for use in later algorithms these need to be stored in order.

To do so all the edges in the mesh are iterated through until the first

border edge is found, or until all edges have been considered and found

not to be border edges, in which case there are no holes within the mesh.

Assuming a border edge is found, all edges connected to this border edge

are tested until another border edge is found. This process is repeated

until the next border edge found is the same as the first border edge

established. In this way all the edges around the hole are found in order.

The iteration through all the edges then continues until either another

border edge not already accounted for is reached and the process starts

again, or until all edges have been checked as shown in algorithm 1.

When implementing this in Maya it is necessary to get the edge in-

formation from Maya’s own iterator using the MitMeshEdge class. This

returns both vertices of each edge, however the orientations of these ver-

tices are inconsistent. This necessitates an extra step whereby the vertex

positions of the ends of two adjoining edges are compared to establish

which vertex is shared between them. In this way we are able to store all

the hole vertices in the correct order for later use as we traverse around

the hole.

4.1.2 Advancing Front Mesh Patch Creation

The advancing front mesh (AFM) technique explained in 3.3.5 was cho-

sen to patch holes in the input mesh. To recap, the idea is as follows.

Given the boundary edges of a hole, the angle between every two adja-

cent edges is calculated. For the two edges with the smallest angle either
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Input: Edges : the edges of the input mesh
Output: holeEdges : the edges around each hole in order
holeInfo: the number of edge in each hole, and the index into
holeEdges of the first edge for each
foreach Edge i do

if i is a boundary edge then
boundaryEdges← i

end

end
while holeEdges.size() 6= boundaryEdges.size() do

foreach Boundary Edge j do
currentEdge← j ;
holeEdges[0]← j ;
while currentEdge 6= holeEdges[0] do

get edges connected to currentEdge ;
foreach connectedEdge k do

if k ∈ boundaryEdge and k /∈ holeEdges then
holeEdges← k ;
currentEdge = k ;
count+ = 1 ; break ;

end

end

end
holeEdges← count ;
holeEdges← holeEdges.size();

end

end
return holeEdges, holeInfo ;

Algorithm 1: Finding all holes in the mesh

one, two or three triangles are then created in the plane formed by the

two edges to fill the gap. The decision as to the number of triangles used

to close the hole is dependant on the angle between the two edges, theta.

For θ ≤ 75◦ one additional triangle is created, if 75 < θ ≤ 135◦ the two

are added and for θ > 135◦ three are. This can be seen in Figure 4.1

where vnew denotes the new vertices created to form each additional tri-

angle. To prevent the additional triangles becoming significantly smaller

than the original triangles on the mesh, a check is made as to whether

any new vertex is within a set threshold of an existing one. If so, the

original vertex is used rather than creating a new one. In essence this

means that ear clipping is carried out in such scenarios, as shown in
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algorithm 2. Such a threshold is calculated as a fraction of the average

length of the edges in the original advancing front.

Figure 4.1: Triangle Creation Rules
left to right: θ ≤ 75◦, 75 < θ ≤ 135◦, θ > 135◦

When implementing this algorithm there were a few extra considera-

tions which will be explained now. Firstly the paper doesn’t explicitly

say how to determine the location of the additional vertices beyond that

the new triangle must be on the same plane as the two adjacent bound-

ary edges. For this reason a decision was made to calculate the location

of each new vertex by ensuring that the length of the new edge was a

weighted average of either boundary edge, and the direction a weighted

average of each edge vector. For the case where 75 < θ ≤ 135◦ the

weighting of the additional edge is simply an average of the two existing

boundary edges. However when θ > 135◦ and thus two new edges must

be added each is weighted 1
3

and 2
3

with the greater fraction correspond-

ing to the closest border edge.

Secondly extra consideration has to be taken into the order in which

the indices of each new triangle are stored. This is because this or-

der determines the direction of the triangle’s normal. Thus special care

must be given to ensure the normal direction of any additional triangles

matches those already on the mesh. This order can be seen in figure

4.2. This is done by establishing the face id of the triangle connected to

the first boundary edge found. The MitMeshPolygon class is then used

which provides an iterator to each face on the mesh, with which we can

establish the faces vertex indices. As these must be orientated correctly

for the mesh, we can use this order to store the direction of the boundary

edge and thus the new triangle indices.
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Input: holeBoundaryV erts : the vertices around the hole in order
Output: triangleIndices : the indices of the patch triangles
triangleV ertices : the vertex positions of the patch triangles
while holeBoundaryV erts.size() > 2 do

θ ← the smallest angle between two consecutive hole edges;
i← the index of the first edge corresponding to θ;
if θ ≤ 75◦ then

add a single new triangle with vertices (Vi−1, Vi+1 , Vi)
end
if 75 < θ ≤ 135◦ then

add two new triangles with vertices (Vi−1, Vnew, Vi) and
(Vnew, Vi+1 and Vi)

end
if θ > 135◦ then

add three new triangles with vertices (Vi−1, Vnew1 , Vi) and
(Vnew1 , Vnew2 and Vi) and (Vnew2 , Vi+1 and Vi)

end
remove vertex Vi from holeBoundaryV erts ;
foreach new vertex do

foreach related vertex do
d← the distance to each related vertex ;
if d < threshold then

merge the new vertex with the existing one ;
end

end

end
triangleIndices← the new triangle indices ;
triangleV ertices : the new triangle vertices ;

end
return triangleIndices, triangleV erticds ;

Algorithm 2: AFM patch calculation to close a given hole

Finally, difficulties arose in calculating the smallest internal angle be-

tween two consecutive border edges at the start of the algorithm. This is

because formulas such as the well known θ = acos(a,b), where θ is the

angle between vectors a and b return the smallest angle between the two.

However there may well be cases where the angle we wish to calculate

is the larger of the two. Unfortunately the same problem occurred using

the more robust formula

θ = atan

(
||a× b||

a · b

)
(4.1)
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Figure 4.2: Correct Edge Directions for additional triangles

and hence a further check was implemented. After finding the angle

between two adjacent edges using equation 4.1 this is checked by taking

the sum of the angles in all the existing triangles with a vertex at that

position. In two dimensions this can be seen in figure 4.3. By taking

the sum φ1 + φ2 + φ3 we can compare this angle with φ. If the two are

equal, then we know the angle required is the greater of the two so we

set θ to equal 2π − φ.

Figure 4.3: Checking where the angle required is the reflex one by taking
the sum of φ1, φ2and φ3 and comparing with the angle already calculated

There is one slight complication however when translating this to three

dimensions. As it is not necessary for the triangles on the mesh to lie

on the plane created by the two border edges, and indeed they normally

do not, we cannot simply measure the angle between each edge. Instead

each edge must be projected into the plane created by the border edges,
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before the angles between each can be measured. This is done using the

following equation:

eproj = n× (e× n) (4.2)

where e is the edge to be projected, n is the normal to the plane

created by the two border edges either side of it and eproj is the projection

of e into this plane.

Once projected however we can measure and compare the angles as

previously described and take a comparison between that and the pre-

viously found angle to check if we have measured the correct side. The

result of the AFM hole patching with these extra steps can be seen in

figure 4.4.

Stanford bunny containing a hole Patched using the AFM technique

Figure 4.4: Patching a Stanford bunny using the AFM technique

It is worth noting there are few requirements for this algorithm which

have implications for the applicability of our method. Firstly, the input

geometry must be manifold, as well as connected and orientated and

secondly it must not contain any islands. These are areas of geometry

which are part of the mesh, but entirely separated by a surrounding hole,

thus forming an island.

4.2 Internal Triangle Exclusion

As noted in 3.1 the AWPN classifies points using the closest triangle

on the mesh. However, it not able to correctly classify points close to
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self intersecting triangles. Thus, by removing any triangles fully inside a

mesh we are able to increase the number of points for which the AWPN

can be used, thereby reducing the computation time for our algorithm.

To do so an original algorithm is presented which utilises the GWN.

As explained previously the GWN represents the signed number of times

a surface wraps around a point (Jacobson et al. 2013). To evaluate the

winding number for a point on the mesh, we take the sum of the signed

projections of each triangle onto the unit sphere centred at that point,

before dividing by 4π, as explained further in section 4.4. In this way

each triangle on the mesh affects the overall winding number. It is this

fact we use to establish whether triangles lie fully inside the mesh as

follows.

Figure 4.5: Selecting the triangles fully inside the geometry

Each triangle in turn is removed from the mesh, and the GWN eval-

uated at the centroid of the removed triangle. The value of the GWN

evaluation at that point is then used to establish whether the triangle

being tested lies on the edge of the mesh or not. This is because the pro-

jection of the triangle onto the unit sphere will contribute either +0.5 or

-0.5 to the overall GWN. As we know for watertight meshes the GWN

evaluates to exactly 1 inside the mesh and 0 outside, any point evaluated

in the way described above that results in a GWN of less than or equal

to 0.75 must lie on the exterior of the mesh as it’s inclusion would either

take the GWN below or above to 0 or 1, thereby being outside or inside.

This can be seen in Figure 4.6 and is summarised in Algorithm 3. As
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the GWN only evaluates exactly for watertight meshes this check must

be carried out after any holes have had patches calculated for them. It

is also necessary to leave those triangles which themselves are self inter-

sected as these form the boundary of the shape and are therefore required

for the AWPN algorithm to be able to evaluate points correctly. For this

reason such triangles are dealt with later. The result of this algorithm

can be seen in figure 4.5.

     1

2 1

0 0 0

1 1

     1      1      1
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Figure 4.6: Evaluating the GWN at the Centre of Removed Triangles

Input: indices : the vertex indices of the input mesh
vertices : the vertices of the input mesh
Output: externalTriangles : the triangle indies of all triangles not

fully inside the mesh
foreach Triangle i on the patched mesh with vertices (x1, y1, z1),
(x2, y2, z2), (z1, z2, z3) do

Centroid← (x1+x2+x3
3

,y1+y2+y3
3

, z1+z2+z3
3

) ;
GWN ← GWN evaluated at the centroid of triangle i over all
triangles excluding i itself ;
if GWN < 0.75 then

externalTriangles← i
end

end
return externalTriangles ;

Algorithm 3: Removing Fully Inside Self Intersecting Triangles

4.3 Self Intersecting Triangle Identification

The final problematic triangles to identify are those which are themselves

intersected by another triangle. As previously noted these cannot be

removed from the mesh as they form the boundary of the object. Instead
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they are marked as self intersecting so that the GWN technique can

be used to classify all points closest to a self intersecting triangle. To

do so we have implemented the triangle triangle intersection algorithm

presented by Möller (1997).

Figure 4.7: Selecting the self intersecting triangles on a mesh

As explained in 3.3.4 this algorithm works by first checking if the

planes containing any two triangles intersect anywhere. If so, then eleven

axis checks are carried out by projecting the vertices of each triangle

onto the axis and comparing the intervals for each. This is summarised

in algorithm 4 and can be seen applied to two intersecting Stanford

bunnies in figure 4.7.

4.4 Generalised Winding Number

In order to evaluate the GWN for a given point we use the following

two observations. If C is piecewise linear, then we immediately have

an analogous discrete equation for the two dimensional winding number

given in equation 3.6 as follows:

w(p) =
1

2π

n∑
i=1

θi (4.3)

where θi is the angle between the vectors from p to two consecutive
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Input: indices : the indices of the input mesh
vertices : the vertices of the input mesh
Output: intersectingTri: the indices of all intersected triangles
foreach triangle i with vertices (v1, v2, v3) do

foreach other triangle j on the mesh with vertices (u1, u2, u3) do
distToJ ← calculate the distances from v1, v2 and v3 to the
plane triangle j lies in ;
distToI ← calculate the distances fromfrom u1, u2 andu3 to the
plane triangle i lies in ;
if all distToJ and distToI have the same sign, and none are
equal to 0 then

break;
end
else

L← the line of intersection between the planes each triangle
lies in ;
intV ← the interval of the projection of v1, v2 and v3 onto L ;
intU ← the interval of the projection of u1, u2 and u3 onto L
;
if intV and intU overlap then

intersectingTri← i
end
else

break;
end

end

end

end
return intersectingTri ;

Algorithm 4: Finding triangle triangle intersections

vertices ci and ci+1 on C, see figure 4.8.

Similarly the three diminutional generalised winding number given in

equation 3.8 can be directly discretised for piecewise-linear triangulated

surfaces as follows:

ω(p) =
m∑
f=1

1

4π
Ωf (p) (4.4)

where Ωf is the solid angle of the oriented triangle (vi,vj ,vk) with

respect to p as previously explained and shown in figure 3.1. Thus,
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only modifying the mesh along the overlap, but this approach is only
suitable for well-aligned range images. A host of reconstruction
methods, starting with [Hoppe et al. 1992], fit an implicit function to
the input surface geometry and extract a level set, which is guaran-
teed to be watertight for well-behaved functions; recent methods are
quite robust to noisy data [Kazhdan et al. 2006; Mullen et al. 2010]
and even unoriented data [Alliez et al. 2007]. However, the original
input mesh is generally lost during contouring. Shen et al. [2004]
design level-sets using moving least squares to perfectly interpolate
input facets, but contouring loses any premeditated discretization
distribution. Due to the oscillatory nature of their function, the exact
interpolation constraint may need to be relaxed when components
overlap (see our Figure 3 and their Figure 5).

Surface reconstruction of point clouds has been achieved with graph-
cut segmentation on voxel-grids [Hornung and Kobbelt 2006] and on
Delaunay meshes [Wan et al. 2011]. Wan et al. [2012] tackled open
surfaces via graphcut on a level-set of an intersection of approxi-
mating “crusts”. Our method, as many previous ones, segments a
volume from a constrained Delaunay tessellation of the input convex
hull. The peeling procedure of [Dey and Goswami 2003] fills surface
holes, ensuring a watertight result, though possibly non-manifold. It
requires a fine enough initial discretization to prevent a degenerate
solution. The spectral method of [Kolluri et al. 2004] improves upon
this. They provide similar post-processing heuristics to ours for
ensuring manifoldness. However, extending their spectral analysis
to interpolate input facets is not obvious.

Unstructured tetrahedral mesh generation. Efficient creation
of Delaunay tessellations is well studied; [Shewchuk 2012] is an
excellent survey. Methods can be subdivided into those that exactly
conform to input vertices and faces [George et al. 1990; Shewchuk
1996; Joshi and Ourselin 2003; Si 2003; Geuzaine and Remacle
2009] and those that approximate watertight input surfaces [Shi-
mada and Gossard 1995; Alliez et al. 2005; Bridson et al. 2005;
Labelle and Shewchuk 2007]. We heavily rely on the former to
mesh the convex hull of our input. Additionally, as our method
outputs a minimal tetrahedral mesh, we may post-process with mesh
refinement tools [Schöberl 1997; Si 2003; Klingner and Shewchuk
2007; Geuzaine and Remacle 2009] to achieve element quality.

Winding number, inside-outside tests. The winding number of
closed curves is an old concept [Meister 1769/70]. To the best of
our knowledge, no previous work has generalized “winding num-
bers” computed as integrals on open curves or surfaces, but many
related functions exist. Mean value coordinates use a similar pro-
jection integral [Floater 2003; Ju et al. 2005], but lack the jump
discontinuity across the boundary that gives the winding number its
unique segmentation property. They are also notably not harmonic,
and may oscillate and not satisfy the maximum principle. In the
terminology presented by [Zhou et al. 2008], our winding number
adheres to an “object-based” definition of inside-outside. Thus we
are a complement to their “view-based” definition. Their method
uses ray-shooting combined with graphcut to achieve a different set
of applications, more suitable to computer vision.

3 Method

Our goal is a tet mesh conforming to an input shape. We achieve this
by computing a constrained Delaunay tessellation (CDT) containing
the input vertices and facets; by evaluating a generalization of the
winding number for each element, we segment inside and outside
elements of the CDT, resulting in the final tet mesh.

Let the input shape in Rd be described by a list of n vertices V =
{v1,v2, . . . ,vn} , vi 2 Rd and a list of m simplicial facets F =

{f1, . . . , fm} where fi 2 {1, 2, . . . , n}d (we only consider d =

1

0

0

0

1

-1

0

0

1 2

1

0

Figure 5: Winding number exactly segments inside and outside for
concave, high-genus, inverted and overlapping curves. Multiple
components are also naturally handled: consider this entire figure.

2 and d = 3). The goal is then to find a set of elements E ⇢
{1, . . . , k}d+1 defined over a set of vertices VE which represent the
area (if d = 2) or volume (if d = 3) of (V, F). In the ideal case, we
achieve exact interpolation: VE = V and all facets in F appear as
subfacets of elements in E . Note, facets and elements correspond to
triangles and tetrahedra inR3 and edges and triangles inR2.

Although F forms a graph or mesh over V , the input is not assumed
to be (d�1)-manifold, orientable or closed. We do assume the mesh
intuitively represents or loosely approximates the surface of some
solid and has reasonably consistent orientation. This is motivated
by the observation that most practical input meshes were created in
such a way that they appear to be the surface of some solid when
rendered with single-sided lighting.

We first construct an inside-outside confidence function which gener-
alizes the winding number. We then evaluate the integral average of
this function at each element in a CDT containing (V, F). Finally,
we select a subset E of the CDT elements via graphcut energy opti-
mization with optional constraints to enforce strict facet interpolation
and manifoldness.

4 Winding number

The traditional winding number w(p) is a signed, integer-valued
property of a point p with respect to a closed Lipschitz curve C
in R2. Intuitively, if we imagine there is an observer located at p
tracking a moving point along C, the winding number tells us the
number of full revolutions the observer took. Full counter-clockwise
revolutions increase the count by one, while clockwise turns subtract
one. In other words, w(p) is the number of times C wraps around
p in the counter-clockwise direction. Without loss of generality let
p = 0, parameterize C using polar coordinates and define

w(p) =
1

2⇡

I

C
d✓. (1)

It is the signed length of the projection of C onto the unit circle
around p divided by 2⇡ (see Figure 4). A value of 0 or 1 means p lies
outside or inside C, respectively. The winding number distinguishes
outside and inside for curves enclosing regions of arbitrary genus,
and also identifies regions of overlap (see Figure 5).

✓i

ci+1

cip

The integral in Equation (1) provides an im-
mediate and exact discretization if C is piece-
wise linear:

w(p) =
1

2⇡

nX

i=1

✓i, (2)

where ✓i is the signed angle between vectors
from two consecutive vertices ci and ci+1 on C to p.Figure 4.8: Winding Number Discretization in Two Dimensions (Ja-

cobson et al. 2013)

utilising the work of Van Oosterom and Strackee (1983), we have the

following discrete formula for the solid angle, Ωf

Ω(p) = 2arctan(
det([abc])

abc+ (a · b)c+ (b · c)a+ (c · a)b)
(4.5)

where a = vi - p, b = vj - p, c = vk - p and a = || a||, b = || b|| and

c = || c||.

With equations 4.5 and 4.4 we are able to calculate the winding num-

ber for any given point as highlighted in algorithm 5.

Input: p: the point to evaluate the GWN for
indices : the indices of the input mesh
vertices : the veracities of the input mesh
Output: wn: the winding number for point p
wn← 0
foreach Triangle in triangleVerts with corners vi,vj ,vk do

A← vi - p ;
B ← vj - p ;
C ← vk - p ;
a← length of A ;
b← length of B ;
c← length of C ;
det← determinant of matrix [ABC ] ;

val← 2 ∗ arctan( det
abc+(A·B)c+(B·C)a+(C·A)b)

wn+ = val;

end
return wn ;

Algorithm 5: GWN Evaluation in Three Dimensions
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4.5 Point Classification

With the preprocessing in place, the actual PIP test is fairly simple. As

the copy of the input mesh now contains patches to close all holes, and

has all the fully internal triangles removed we are able to use the AWPN

to evaluate most points. However self intersecting triangles will still

cause misclassifications with this method, and thus any point closest

to a triangle marked as self intersecting is evaluated using the GWN

technique. In this way we are able to evaluate unambiguous cases using

the AWPN and the time efficiencies that come with the method, whilst

reserving the GWN for areas of potential ambiguity. This is shown in

Algorithm 6.

Input: p: the coordinates of the point being classified
i : the index of the closest triangle
Output: result : The inside (1) or outside (0) classification of point p
if i is self intersected then

WN ← the GWN evaluated at p ;
if WN > 0.5 then

result = 1 ;
end
else

result = 0 ;
end

end
else

PN ← AWPN evaluated at p on a mesh (excluding all self
intersecting triangles entirely inside the input mesh and include all
hole patches previously calculated)
if PN > 0 then

result = 1 ;
end
else

result = 0 ;
end

end
return result ;

Algorithm 6: Point Classification Algorithm
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Chapter 5

Results

The algorithm has been tested on a series of different meshes as shown in

figures 5.1 to 5.5. To visualise the classifications a plane has been placed

through each mesh and red assigned to those points classified as inside

and blue to those outside. Additionally a breakdown of our method

is shown detailing where each technique is used. For such images red

denotes the GWN and blue the AWPN. As the techniques for resolving

flipped faces, degenerate triangles, degenerate vertices and triangulating

meshes are well know and outside the scope of this project all meshes have

had such operations applied to them prior to being classified. Results

for classifications using the AWPN and GWN methods are also shown

to help evaluate the performance of our algorithm.

The computation times for each mesh and technique can be seen in

table 5. For each mesh the computation time for our method is at least

2.5 times faster than that of the GWN. As expected this computation

time increases relative to the AWPN computation time as the number of

self intersecting triangles on the mesh increase, due to the increased use

of the GWN. The precomputation times for our method were measured

on a Linux Workstation with twelve Intel Xeon E5-1650 3.20GHz CPU

with 32GB of memory by calculating the difference in seconds between

the time at the start and end of the function call. Whilst not negligible,

these are at most 25 percent of the computation time required for the

GWN. Including the pre calculation time our algorithm it is still at least
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2.4 times faster than the GWN and up to 31 times faster, as in the case

of the Dragon.

Computation Times
Mesh Name NF NV NH NSIT PN GWN OM POM
Telephone 83998 42003 0 1780 0:0:10 3:09:14 0:1:07 0:46:16
Dragon 12500 6250 0 8 0:0:11 0:34:54 0:0:20 0:1:1
Apollo Soyuz 4642 4829 977 2585 0:0:07 0:22:14 0:8:48 0:0:27
Double Bunny 2130 1088 2 110 0:0:05 0:5:39 0:0:12 0:0:2
Utah Teapot 6376 3231 4 309 0:0:09 0:16:37 0:2:35 0:0:19

Table 5.1: Computation time comparisons

NF is the number of faces, NV the number of vertices, NH the number
of holes and NSIT the number of self intersecting triangles found by the
triangle triangle intersection algorithm presented by Möller (1997). OM
denotes our method and POM the pre calculation times for our method
in hours, minutes and seconds

As seen in figures 5.1 to 5.5, unlike the AWPN method, our technique

is able to correctly classify points on meshes containing holes and self

intersections. This is done in at most 40 percent of the computation

time required for the GWN algorithm, but has a considerably greater

accuracy than the AWPN technique. Additionally, as manifold meshes

without any holes or self intersections are always classifiably by both

the AWPN and GWN methods, it is evident that our method is able to

unambiguously classify such points too. Whilst there is a small increase

in calculation time compared with simply using the AWPN method in

such cases, it is still considerably quicker than the GWN. This means in

scenarios where it is not known at the outset whether the mesh for which

the classifications are desired contains defects, our method will obtain the

correct results within a time scale similar to that of the AWPN method

without the user having to specify whether there are self intersections or

holes within the mesh. This is particularly useful as such defects are both

difficult to detect and often go unnoticed during the modelling process.

The Apollo Soyuz model provides a good example of the type of meshes

often found in industry containing many holes and self intersections, as

well as large variations in triangle sizes.
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Our Method 0:01:07

The telephone mesh

OM breakdown AWPN 0:00:10 GWN 3:09:14

Figure 5.1: Classification of a plane through a telephone model con-
taining 83998 faces and 1780 self intersecting triangles. Model available
from Jacobson et al. (2013) supplementary material

Careful observation of the classifications of points on the this mesh

and the Utah Teapot in figures 5.3 and 5.5 show small areas where our

algorithm incorrectly classifies points, for instance around the handle on

the teapot. This is due to the triangle triangle intersection algorithm

used not marking all intersecting triangles as such. In the case of the

Utah Teapot, this can be seen in figure 5.6 where none of the triangles

on the upper side of the handle are marked as intersecting, despite being

partially inside the teapot. Similarly those triangles on the surface of

the pot itself which are interested by the handle are not highlighted.

As a consequence our algorithm will classify all points for which one of

the unmarked self intersecting triangles is the closest to the point being

classified using the AWPN technique. As this method is not able to deal

with self intersecting geometry this causes the incorrect classification of

points in this area. This means our method is as reliable as the triangle

triangle intersection algorithm.

Robust triangle triangle intersection detection however is still a cur-

rent open area of research (Sabharwal and Leopold (2013), Elsheikh
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Our Method 0:20

The Stanford Dragon mesh

OM breakdown AWPN 0:11 GWN 34:54

Figure 5.2: Classification of a plane through the Stanford Dragon con-
taining 12500 faces and 8 self intersecting triangles. Model available
from the Stanford University Computer Graphics Laboratory (2013)

and Elsheikh (2014) and Wei (2013)) and thus outside the scope of this

project. However as work in this area improves, our technique will see

direct improvements too. This is highlighted in figure 5.7 where all trian-

gle triangle intersections have been found by placing oriented bounding

boxes around each triangle and checking for intersections between each

using the separating axis theorem. However this method is still not per-

fect as any two self intersecting triangles which share a vertex will still

not be marked as intersecting, hence the thin line of misclassified points

by the handle on the left hand side of the teapot. Nonetheless we can

already see improvements to the method and this confirms that once the

robust triangle triangle intersection problem is solved, our method will

be robust.
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Our Method 8:48

The Apollo Soyuz mesh

OM breakdown AWPN 0:07 GWN 22:14

Figure 5.3: Classification of a plane through an Apollo Soyuz Model
containing 4642 faces, 2585 self intersecting triangles and 977 holes.
Model available from NASA

Our Method 0:12

The intersecting bunnies
mesh

OM breakdown AWPN 0:05 GWN 5:39

Figure 5.4: Intersection of two Stanford bunnies containing 2130 faces,
2 holes in the base and 110 self intersecting triangles. Original model
available from the Stanford University Computer Graphics Laboratory
(2013)
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Our Method 2:35

The Utah Teapot mesh

OM breakdown AWPN 0:09 GWN 16:37

Figure 5.5: Classification of a plane through the Utah teapot containing
6376 faces, 4 holes and 309 self intersecting triangles. Model available
from Martin Newell

Figure 5.6: Triangle Triangle
Intersection Detection Error using
the algorithm by Möller (1997)

Figure 5.7: Our method of classi-
fication using an alternative trian-
gle triangle algorithm
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Chapter 6

Conclusion

6.1 Summary

In this thesis we have presented a new point membership algorithm for

triangulated meshes which combines two existing techniques, the AWPN

and the GWN. It has been highlighted that the computation time for

classifications with this method is faster than the GWN method and

certainly more robust than the AWPN technique. This is because unlike

the AWPN technique it is able to deal with meshes containing both

holes and self intersections. This is of particular significance as the vast

majority of meshes used in industry contain such defects. For instance

CAD models are often made up of multiple connected components which

makes them particularly susceptible to holes and self intersections.

The implementation of this technique as a Maya plugin allows for

both an intuitive visualisation of classification results, and the ability for

users to classify different models with ease.

6.2 Future work

There are two key areas for improvement with the proposed method.

Firstly, as previously mentioned there are cases in which the Möller
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(1997) triangle triangle intersection algorithm fails to mark all intersect-

ing triangles, and thus misclassifications occur at any point for which

a missed self intersecting triangle is the closest on the mesh. As this

is an open area of research, when a robust triangle triangle intersection

algorithm is found this will result in our method being able to correctly

classify all points on meshes with self intersecting geometry.

Our method could also benefit from an improved hole filling algo-

rithm. Not only does the current algorithm restrict the method both to

manifold geometry and geometry which does not contain islands, but as

is highlighted in fig 4.4, the advancing front mesh method implemented

often flattens concave shapes. Whilst this still forms a valid closing of the

mesh, it is often somewhat unintuitive. An possible solution would be

to snap each new vertex to a radial basis function, thereby maintaining

a more intuitive shape (Carr et al. 2001). Another possibility presented

by Zhao et al. (2007) is to compute the desired normals for each new

triangle added using the AFM technique. By solving the Poisson equa-

tion based on the hole vertices and desired normals the new vertices can

then be repositioned so that they more appropriately fill the hole. The

calculation of the desired normals however is dependant on whether the

hole is closer to being planar or curved and thus the user must specify

this for each hole.

The project could also benefit from further optimisations, particu-

larly to reduce the precomputation time as at present no acceleration

structures are used and many of the algorithms employ a brute force

method.
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