
Interactive Tool for Procedural City Generation

in Houdini

Master Thesis

Soham Ramteke

NCCA, Bournemouth University

August 19, 2011

Contents

1 Introduction 1

2 Previous Work 3

3 Technical Background 6

3.1 Fractals . 6
3.2 L-Systems . 6
3.3 Perlin Noise . 7
3.4 Voronoi Diagram . 7
3.5 Point Selection . 7

4 Implementation 8

4.1 Approach . 8
4.2 City Generation Tool . 8

4.2.1 Overview . 8
4.2.2 Creation Type: User De�ned 9
4.2.3 Year . 9
4.2.4 Use Dummy Geometry . 9
4.2.5 City Size . 9

4.3 Road Creation . 10
4.4 Paint Buildings . 11
4.5 Map based . 11

5 Conclusion 13

6 References 15

1

List of Figures

2.1 SpeedTree Cinema . 4
2.2 CityEngine in CARS 2 . 4
2.3 Cities in Motion . 5

5.1 With Dummy Geometries . 14
5.2 With Original Geometries . 14

2

Abstract

In this thesis an interactive tool for procedural city creation is presented which
involves di�erent procedural content creation techniques used to generate var-
ious aspects of a city like terrain, roads, buildings, etc. separately which com-
plement and a�ect one another for the �nal creation of the city which is further
customizable by the user with the help of an interactive interface that lets the
user have total control over the look and development of the city.

Chapter 1

Introduction

Now a days procedural content has been used extensively in the �lms, com-
mercials, animation and games industry which arose the need to �nd more and
more ways to recreate the natural phenomenon procedurally yet making it look
realistic and convincingly believable. There is no doubt that something that is
created procedurally may not have the same level of detail as something that
is created manually by the artists but it is also true that creating something
procedurally is a much more e�cient way for content generation and as the
complexity of the content increases the creation time and the cost of creation
increases as well. In such situations, adopting the procedural content creation
approach will allow the artists to use the time in polishing and improving the
areas of higher important and the areas of lower importance can be created
procedurally which eventually results to be more cost e�ective as well. This can
be further optimized by giving high level of artistic control to the user for all
the content that is generated procedurally minimising the need for the artists
to create anything manually and so increasing the productivity of procedural
content creation as well.

In this project Houdini Object Model (HOM), an application program in-
terface (API) that allows the user get information from and control Houdini
using Python scripting language is used along with many di�erent powerful
nodes available in Houdini. Houdini was chosen to create the tool because of
its easy and user-friendly node-based interface and the availability of numerous
powerful nodes which can be explained as node-based representation of most of
the real-life calculation and computations which can be networked together to
represent an algorithm and to extend the control for further complexity each
node can be edited and embedded with Python or Hsrcipt scripting language
which gives the user much higher control for procedural content creation and
also debugging the errors in the system is fairly easy due to the network based
view of all the nodes which re�ects a warning or error on the node if there is a
possibility of mismatch of attributes to go on to the further nodes or if the user
may have incorrectly typed in any part of script in the expressions and this helps
to know where exactly in the network is the bug and can be debugged. Houdini

1

also has a powerful feature that allows the user to compress everything in the
network into one single node (Houdini Digital Asset) that can have a Graphical
User Interface (GUI) which gives you the control to access the features of the
HDA without the need to go inside the network. The HDA can then be passed
on to anyone to recreate one or more instances of the tool for developing or
improvement.

2

Chapter 2

Previous Work

Procedural generation can be explained in simple words as to automate the pro-
cess of creating geometries and textures using a set of computer instructions.
This phenomenon is not new to computer graphics. It has been used for over 2
decades now for creating the textures of a more natural appearance by a com-
bination of di�erent levels of Perlin Noise [Perlin 1985]. For a cellular patterns
like cracked or dry ground or skin cells Voronoi Diagrams were used. Fractals
and Lindenmayer-Systems (L-Systems) were most commonly used for generat-
ing objects like trees and foliage. In 1990 A. Lindenmayer and P. Prusinkiewicz
had released a book titled �Algorithmic Beauty of plants� which introduced a
system of generating plants based on rewriting system which basically accepted
a rule or grammar for initial modelling and the iterating over the grammar for
further modeling of the tree. L-System later on became very common to be used
for many di�erent types of the procedural content creation[Prusinkiewicz and
Lindenmayer 1990]. It has recently been extended to create more complex nat-
ural objects like trees, clouds, terrains, etc. [Ebert et al. 2003]. Nearly a decade
ago the �rst version of a real-time tree generation system called SpeedTree RT
was released by Interactive Data Visualization Inc. and since has been used by
many games studios and in �lms. Most recently it was extensively praised for
and used in Avatar and the game The Witcher 2: Assassins of Kings [IDA Inc.
2011].

�Procedural Modeling of Cities� presented by Yoah I H Parish and Pascal
Muller at ACM SIGGRAPH 2001 described a system titled �CityEngine� which
procedurally generates an entire city including procedurally created buildings
and the city layout based on the data provided by the user in the form of image
maps. User provides the information like street map, height map, vegetation
map, population density map , etc. which are collectively used for the formation
of city layout that is then populated with the roads and building which are again
procedurally generated using two di�erent types of L-System which user can
modify to vary the buildings and road formation respectively. CityEngine got
very popular with time and has been widely used in the �lms and commercials.
Most recently it was used to recreate the London city model procedurally which

3

Figure 2.1: SpeedTree Cinema

Figure 2.2: CityEngine in CARS 2

was used in a car chase scene in the �lm CARS 2 [PROCEDURAL Inc. 2011].
In the paper �CityGen: An interactive system for procedural city generation�

presented at the Fifth International Conference on Game Design and Technology
in 2007 by Kelly and McCabe describes an interactive stand alone application
which generates a procedural urban city in three step process. Primary Road
Generation which uses sampling technique to generate the road path which is
again subdivided in the second step and in the third step Split-Grammar concept
is used to generate the building and populate the city.

Procedural Modeling is also used in a di�erent and entertaining way in the
form of city-building simulation games. Where instead of letting the algorithm
compute everything from the city layout to the positioning of buildings and
roads, etc. user can have a range of city creation elements to select from where
user can use an interface to create and manipulate the city pattern, road lay-
out, building positions, house positions, tree positions and any other elements
available for the city. This makes this type of procedural creation of city more
interesting to the user as although most of the content is managed algorithmi-

4

Figure 2.3: Cities in Motion

cally inside the game network like depending on the modi�cation of the terrain
allowing the user to put city elements like road and buildings accordingly and
restrict from the areas where elements can not be positioned and so on. This
is not a very new concept. It has been used in games like SIMCITY which was
�rst released in 1989 and has grown in popular since. In April 2011, Paradox
Interactive released a building simulation game titled Cities In Motion which
uses the same technique. Additionally the user has implement and improve a
public transport system in European cities. Here, most of the computations are
done procedurally yet the user has very high level of control for the creation of
the city which makes the game-play interesting and entertaining [PARADOX
INTERACTIVE 2011].

5

Chapter 3

Technical Background

In this chapter di�erent procedural content generation techniques and their
application in the computer graphics is discussed brie�y and how a combination
of two or more techniques can be more e�cient for achieving realism and making
the the creation process more interesting is explained. The most commonly used
techniques are L-Systems, Fractals, Perlin Noise, Voronoi Diagram.

3.1 Fractals

Fractal, derived from the Latin word fractus which means �broken� or �frac-
tured�. A fractal is generally �a rough or fragmented geometric shape that can
be split into parts, each of which is (at least approximately) a reduced-size copy
of the whole,� a property called self similarity [Prusinkiewicz and Lindenmayer
1990]. Fractal are created by a procedural technique of using a recursive algo-
rithm where the basic fractal shape is recurred a certain number of time which
de�nes the detail of the fractal shape. Fractals are useful while creating irregular
shaped geometries with repetitive textures like clouds and mountains. Although
Fractals can create a geometry of complexity to a certain level they are still not
as e�cient as L-Systems in procedural creation.

3.2 L-Systems

L-System or Lindenmayer system is a parallel string rewriting system originally
developed to study bacteria replication and the growth of simple organisms.
This was further extended to generate more complex natural phenomenon such
as plants and branching structures. Adopting this, Prusinkiewicz and Linden-
mayer together extended the application of L-System to computer graphics and
described it in the book �Algorithmic Beauty of plants� which has since been
very useful and the basis of many procedural creation techniques [Prusinkiewicz
and Lindenmayer 1990]. Basically, L-Systems works on the concept of rewrit-
ing, a technique for de�ning complex objects by successively replacing parts of

6

a simple object using rewriting rules. L-Systems in the most basic form can be
explained as follows:

Rule 1 = A � AB
Rule 2 = B � BA

Iteration 1 : A
Iteration 2 : AB
Iteration 3 : ABBA
Iteration 4 : ABBABAAB
. . .

This Concept is then applied to generation of geometries which can be further
extended to create extremely complex geometries by adding more complex rules
depending on the requirement [Prusinkiewicz and Lindenmayer 1990].

3.3 Perlin Noise

Perlin Noise can generate a set of random values relative to a range speci�ed
by the user. A combination of multiple Perlin Noise values added, multiplied
or subtracted together can give a range of complex Noise value which can be
used to create geometries with irregular shapes which as a whole still have a
uniformity like in a terrain or clouds.

3.4 Voronoi Diagram

Voronoi Diagrams are cellular patterns generated by scattering points on a sur-
face and each point has a Voronoi cell where each edge of a voronoi cell clamps
itself to the nearest point's voronoi cell edge so that every edge is equidistant
from its two nearest points. This technique can be used to generate cellular
pattern geometries like cracks on a dry land etc.

3.5 Point Selection

This technique gives the highest level of control to the user than any other
procedural techniques. It is quite similar to the technique of taking some part of
information as input from the user and then using that information to generate
the procedural content. For example, calculating data from the Density Map or
Population Map provided by the user as an input and then use that information
to categorise the positioning of di�erent geometries which can again be combined
with any of the techniques explained earlier. In this project Point Selection will
be used partly for the city generation.

7

Chapter 4

Implementation

This chapter describes the development of the tool and the various techniques
used.

4.1 Approach

The basic idea was to create an interactive tool that gives artistic control over
the creation of a complex and customizable city using procedural generation
approach and at any point user can add, delete or modify the elements of the
city like buildings, roads, road pattern, etc. as he see �t. Instead of using and
being limited to the existing techniques for city generation like L-Systems a new
or extended technique should be implemented. To give variety of control to the
user two di�erent type of approaches are available in the tool to generate a city.
User can select a Map Based city creation where user can provide a prede�ned
layout of the city and then con�gure and control distribution of the city elements
or User can can choose to create a city entirely from scratch with the help of
artistic content creation controls which allow the user to create/modify road
patterns dynamically and also paint buildings, houses and trees, etc. depending
on the users choice.

4.2 City Generation Tool

4.2.1 Overview

A Houdini Digital Asset (HDA) using the identi�er �CITY� was created. It can
be found in the otl folder. To install the Digital Asset in Houdini go to File �
Install Digital Asset Library. Browse and select the CITY.otl �le. It will be
visible in the Digital Asset menu when u click Tab in the Network view inside
a geometry node. Select the Digital Asset to create an instance of the tool.

8

4.2.2 Creation Type: User De�ned

This is the main part of the tool which allows the user to have the most control
over the creation and the customizability of the city. This method of city cre-
ation depicts the method of creation in various city building simulation games
like Cities in Motion and SimCity. It controls the �Switch_Creation_Type�
node in the network which further disables the unselected part of the network
and works only with the selected creation type.

4.2.3 Year

4.1.3 This option allows user control the age of the city. There are three options
that user can select from, 1950, 2000, 2050. Each selection has di�erent e�ect
on the creation of the city every age has di�erent set of buildings and houses
which change according to the selection. This also a�ects in the increase in
the average level of the city. Older the age, higher will be the geometry level.
This is also directly proportional to the density / population of the city and
the average number of buildings to be placed on the city will be higher with
time. This does not a�ect the city scale or size in any way bearing in mind
the fact that with time only the city buildings and density will grow and not
the city scale itself. This options was mainly meant to give an overall growth
appearance to the city with the change in time. Many nodes in the network are
controlled by this option which will be further explained as and when they are
discussed.

4.2.4 Use Dummy Geometry

This is an important option to make the tool much more e�cient while at the
creation stage of the city. A city is bound to have a very large number of
geometries when it is being created and working with high mesh geometries or
textured geometries could make the network extremely heavy which will make
the working of the tool slower. To avoid this �Use Dummy Geometry� option
is provided which can be activated or deactivated at any point and accordingly
heavy geometries will be replaced by dummy low poly geometries making it
easier and faster to set up the positioning of all the city elements and once
everything is set, it can be deactivated again to get the dummy geometries
replaced by original geometries. This a�ects the all the switch nodes which
control the Switch To Dummy Geometry option respectively.

4.2.5 City Size

This controls the scale of the ground plane or the terrain. This also modi�es
the available area for the geometries to be positioned.

9

4.3 Road Creation

Road Creation is one the key points of this tool. This option has gives user the
control that most of the procedural city creation applications do not or cant not
because of their complete procedural creation system. This is the plus point
here that though the road is getting generated procedurally since it basically
is a curve which has various other nodes and expressions a�ecting it to make
the curve a road, and a customizable road. The user has the control to select
any point on the road and move it and the road will modify itself accordingly.
Similarly the user can delete any point from the road to rearrange the road
network. To add a new point somewhere in the road user can do so by SHIFT
+ Left Mouse Button (LMB) Click to increase the complexity of the road. User
can can also click anywhere on the terrain and it will create a new point and
connect it with the end of the road. User can adjust the width and depth of the
road. Also the colour can be adjusted. To make the tool more e�cient there is
an option to �Show only road on terrain for faster results�. It is a handy option
while modifying the road as the tool might get heavy with a large number of
buildings available in the city, even dummy geometries as even though they are
low poly geometries collectively at such a large number they can be very heavy.

The Display Grid option must be ON in the Display Options toolbar since
the Base curve for the road creation gets created on X-Z axis i.e. on the grid
and not keeping the Display Grid option will not have an axis for the points to
be placed.

Since the Road is getting generated on X-Z axis it is necessary to proce-
durally adjust it to the position of the terrain depending on the terrain height
which can be variable as user has the control to modify the terrain as well. This
will be explained in the algorithm below:

10

Algorithm for Road Creation:

\Take Base Curve as input for road profile

\Snap the points very close to each other

\Increase the subdivisions of the curve for

smoother corners and surface

\Reposition every point on the curve to be

equidistant from the previous and next point

\Keep the Beginning and End points at their position

\Sort the curve_point_numbers in order so that

positioning is correct at all times

\Modify the Normal of each point so that the Y is

always pointing upwards and X is always point to

the next point

\Add a line at the beginning of the Base curve

\Copy the line on each point on the Base curve

\Make it always perpendicular to the Base curve

\Skin/Join the lines so that they follow the path

of the curve

\Make the line customizable by the user to control

the width and depth of road

\Take the Y position of the every point on the terrain

\Project the curve on to the Terrain's so that

Y position of the Terrain matches with the point

position of the curve

\Use an instance of the Terrain and make

Terrain-Minus-Road so that only they rest of the

area is available for painting geometries

\Join the curve and the original Terrain

4.4 Paint Buildings

This is the most interesting and artistic option of the tool. It allows user the
control to select a building and paint it anywhere in the city. User can remove
the buildings already painted as well and the user can reset the selected building
and start painting again. To achieve this each individual geometry was passed
on to a GroupPaint node which allows user to paint and area on the grid. the
selected points were then passed on as the position for the buildings respectively
for each building.

4.5 Map based

This options allows the user to provide a layout map which will used as the
road layout of the city and buildings will be distributed automatically on the
Terrain-Minus-Road area and user has the control to manipulate the city size,

11

displacement of the terrain, density of the distributed buildings and the rotation
o�set for the buildings.

12

Chapter 5

Conclusion

The project has succeeded in most areas. The tool has many new and interesting
features compared to the existing city-building tools. Despite of such complexity
in the network the Tool is fairly fast and e�cient. The tool surely struggles to
achieve the realism, but it shows fair amount of customizability and artistic
control to the user. In the current state the tool is not e�cient enough to
produce assets at the leave of detail required in the industry but it is still an
e�cient tool for inspiration and an prototype for implementing new and di�erent
techniques.

13

Figure 5.1: With Dummy Geometries

Figure 5.2: With Original Geometries

14

Chapter 6

References

Go�redo, E. (2010), `A tool for procedural destruction in houdini'. Available
from: http://nccasta�.bournemouth.ac.uk/jmacey/MastersProjects/MSc2010/04EmanuelleGo�redo/
[Accessed 10 May 2011].

odforce (2011), `Curve on Mountain?'. Available from: http://forums.odforce.net/index.php?/topic/13802-
curve-on-mountain/ [Accessed 10 May 2011].

INTERACTIVE DATA VISUALIZATION INC. 2011. SpeedTree RT. Avail-
able from: http://www.speedtree.com [Accessed 14 August 2011].

PROCEDURAL Inc., 2011. CityEngine. Available from: http://www.procedural.com/showcases/showcase/cars_2.html
[Accessed 14 August 2011].

PARADOX INTERACTIVE, 2011. Cities In Motion. Available from: http://www.citiesinmotion.com
[Accessed 14 August 2011].

SideFX (2011b), `Houdini 11 documentation � nodes'. Available from: http://www.sidefx.com/docs/houdini11.0/nodes/
[Accessed 10 May 2011].

Figures:

CityEngine in Cars 2.png - PROCEDURAL, 2011. Cars 2. Image. Available
from: http://www.procedural.com/showcases/showcase/cars_2.html [Accessed
14 August 2011].

SpeedTree Cinema.jpg - INTERACTIVE DATA VISUALIZATION INC.
2011. SpeedTree Cinema. Available from: http://www.speedtree.com/gallery/
[Accessed 14 August 2011].

Cities in Motion.jpg � PARADOX INTERACTIVE, 2011. Cities In Motion.
Available from: http://www.citiesinmotion.com [Accessed 14 August 2011].

15

