
Swarm Intelligence
simulating ant foraging behaviour

Han Wang
MSc CAVE 09-10

Master thesis

August 20, 2010

Contents

1 Introduction 2

2 Previous Work 3
2.1 Swarm intelligence and flocking system . 3
2.2 Evolving creature and artificial ecosystem . 4
2.3 Massive . 5

3 Technical background 7
3.1 Swarm Intelligence . 7

3.1.1 Flocking system . 7
3.1.2 Ant colony optimization . 7

4 Design and Implementation 9
4.1 C++ Application . 9

4.1.1 Class diagram . 10
4.1.2 Three layers of behaviour . 11
4.1.3 Stay in the world . 12
4.1.4 Random navigation and thinking . 12
4.1.5 Obstacle avoidance . 12
4.1.6 Neighbourhood . 12
4.1.7 Pheromone and trail . 13
4.1.8 Food and nest . 13
4.1.9 Terrain . 13
4.1.10 Rotation . 13

4.2 Visualisation in Maya . 14

5 Result and discussion 16
5.1 Pheromone weight and perception . 16
5.2 Errors . 16
5.3 Pheromone representation . 17

6 Conclusion and further Work 18
6.1 Conclusion . 18
6.2 Further work . 18
References . 20

1

Chapter 1

Introduction

In games and visual effects, it is needed to animate dynamically changing group behaviour. How-
ever, it is tedious and time-consuming to manage the motion path or behaviour of each individual
manually due to the large quantity. So using swarm intelligence to simulate group behaviour
controlled by simple rules would be an effective way to solve the problem.

This thesis illustrates the procedure of researching and implementing swarm intelligence based
on pheromone which simulates ant foraging behaviour.

The first section is demonstrating previous works of emergent behaviour. Swarm intelligence,
flocking system and other related research of the subject is introduced. Software and works that
use this technique is also discussed in the section.

The second section is the technical background. Details of the algorithm is further explained,
such as how flocking system works, and algorithm that use pheromone in the research paper.

The third section is design of the system, details of implementation, problems encountered and
solutions to the problem.

The forth section shows the result of the project. Different result with different parameter
specified of the system is discussed in this section.

The Fifth section states the conclusion, and discuss further work that can be put into consid-
eration to improve the design, performance and usability.

2

Chapter 2

Previous Work

Emergent behaviour is a characteristic that relatively simple rules emergent into complex and
uncertain result. There are different types of research on the subject. Some works focused on
simulating the emergent behaviours of individual, such as Karl Sims’ evolved virtual creature.
Some works focused on simulating the collective behaviour of a group, such as Reynold’s flocking
system.

2.1 Swarm intelligence and flocking system

Swarm intelligence is inspired by emergent behaviour in nature, such as bird flock, ant colony,
fish school. It is first introduced by Beni and Wang in “Swarm Intelligence in Cellular Robotic
System”. In the paper, swarm intelligence is described as “systems of non-intelligent robots ex-
hibiting collectively intelligent behaviour evident in the ability to unpredictably produce ‘specific’
([i.e.] not in a statistical sense) ordered patterns of matter in the external environment” Beni and
Wang (1989).

Craig Reynolds’ flocking system is one of the influential swarm intelligence example. Individuals
in flocking system are called boids. They have three layers of motion, action selection, steering and
locomotion. The three simple steering behaviours–aggregation,separation,alignment–can emergent
into complicated result that looks like a flock of bird or a school of fish. In his paper, other steering
behaviours such as obstacle avoidance, seeking, foraging are also added to the system to enhance
the over all realism. Reynolds (1999)

Figure 2.1: Craig Reynold’s flocking system Reynolds (1999)

Another well known example of emergent behaviour would be Conway’s Game of Life. It is
a cellular automation with initial state specified and rules are set to decide whether the life live
or die. With different initial state given, different pattern generate after certain time with the
three rules. Figure 2.2 is a Gospers Glider Gun creating gliders. Conway’s idea is a simplified
implementation of John Von Neumann’s attempt to build a machine that can build itself, which is
also an analogy of the rise, fall and alterations of a society of living organisms Wikipedia (2010).

3

Figure 2.2: Gosper’s Glider Gun creating ”gliders” in Conway’s Game of Life Wikipedia (2010)

Panait and Luke introduced a pheromone based utility to perform a relative effective method
to implement foraging behaviour of ants. It is inspired by ant colony who is famous for finding
the shortest route between nest and food with obstacles in between. An ant is an automata with
internal state which perform actions and deposit pheromone based on rewards, value of pheromone
in immediate neighbourhood Panait and Luke (2004). There is also an algorithm called ant colony
optimisation which use the same theory and has been applied to path finding.

Figure 2.3: Ants, trail and optimisation of the path using pheromone Panait and Luke (2004)

2.2 Evolving creature and artificial ecosystem

In 1994, Karl Sims did a research project on simulating Darwinian evolution of virtual block
creatures. Creatures are generated and evaluated by fitness function. The successful ones remain,
and then they are combined, mutated to make offspring. This process continued and interesting
and complicated behaviour emerge. Figure 2.4 shows evolved creatures competing with each other.
Sims (1994)

Figure 2.4: Creatures evolve to competition Sims (1994)

Polyworld is a simulator of ecosystem on a flat surface, which combines genetic algorithms and
neural networks. Organisms and freely growing ”food” are distributed in the world. Size, strength
and other attributes of neuron are coded as organisms genome, while they have vision as an input
and different behaviours as an output for the neuron. With limited resources in such a simulation,
some species are able to sustain numbers through mating behaviour. Some species stay inside the

4

world by turning to avoid dropping outside of the world and die. Some just follow other organisms
to get food. Behaviours like foraging, swarming also formed during the evolution Yaeger (1994).

Figure 2.5: Polyworld. Small Squares at the top are vision of creatures in the world Yaeger (1994)

Figure 2.6: Life evolved with the interaction with the player

Different from evolution mentioned before, in flash game “Flow”, you can have interaction with
the evolving creature, and player’s choices will affect how the creature will evolve and what they
evolve into. Same mechanism is also used in game “Spore”.

2.3 Massive

Massive is a commercial software package for visual effects which is initially made for “Lord of
the Ring” to simulate battles that involve thousands of people. Now it is widely used in movie
industry to effectively create crowd scenes. In pixar’s “Ratatouille”, Massive is integrated into the
pipeline to produce the scene of large number of rats. In Massive, each agent is an AI with brain
which can react individually to different situation. Fuzzy logic is also used to make the behaviour
more human like. Massive (2010)

5

Figure 2.7: Fuzzy logic in Massive Massive (2010)

6

Chapter 3

Technical background

3.1 Swarm Intelligence

Swarm is a population with characters like interacting, decentralised, self organising. Usually
members work collaboratively to achieve a certain goal by defining local behaviour of an individual.
Population starts with randomness or chaos, but after the coordination between the members,
intelligent like behaviour is formed as a result.

3.1.1 Flocking system

Flocking system is a type of swarm intelligence that members of the flock move according to
the position and velocity of surrounding members. As mentioned in chapter 2, the autonomous
character have three layers of motion: locomotion, steering, path planning. Locomotion is body
representation of the model, it pass the information from steering behaviour to control the motion
of the character, such as position, direction, rotation, Steering defines the behaviour that is going
to affect locomotion of the model. Three central steering behaviour is cohesion, separation and
alignment. Cohesion: make a boid move towards the average position of local flock mates. Separa-
tion: boid keeps a distance away from surrounding flock mates so that they won’t crash onto each
other. Alignment: keep the boid align with the direction of the nearby boids. Reynolds (1999)

Members of flock have access to all geometry information, but they only respond to flock mates
that are near themselves. These flock mates are defined as neighbours within the area that is
characterised with a radius and angle Reynolds (1999)

3.1.2 Ant colony optimization

Ant colony optimisation is a stochastic algorithm to find the shortest path between two places.
Ants don’t rely on their eye sight to find food , most of the communication is accomplished through
laying pheromone. There are different types of pheromone, one of which is trail pheromone that
marks up the path from one position to another, another is territorial pheromone to draw a line

(a) Cohesion (b) Separation (c) Alignment

Figure 3.1: Steering behaviour in flocking system Reynolds (1999)

7

Figure 3.2: Definition of neighbourhood Reynolds (1999)

between different colony, and also alarm pheromone which is used to alert other members of the
dangerous location. According to an ant’s aim, they will walk towards to place with a higher
density of target pheromone. Suppose when a group of ant is marching away from nest to search
for food, there are obstacles that block their way. Randomly some of them choose the left path,
some of them choose the right path as in Figure 3.3. Ideally all the ants move at the same speed.
As in the figure, the left path is shorter than the right one, so in the same amount of time, there
will be more ants pass through left path, thus accumulate more pheromone. Hence, when the
rest of the ants came to the obstacle, they will choose the left path as in Figure 3.4. MONTES
DE OCA (2010)

Figure 3.3: Initially, same amount of ants choose to walk on left and right MONTES DE OCA
(2010)

Figure 3.4: After sometime of accumulation of pheromone, ants move to the left side MONTES
DE OCA (2010)

8

Chapter 4

Design and Implementation

The simulation is divided in to two part, C++ application and Rendering using Mel Script.

4.1 C++ Application

The application part is implemented using NCCA Graphics Library and C++. The aim is to
prototype ant foraging behaviour on a flat surface. The world is consists of terrain, a colony of
ants, trail created by ants, obstacles, food, nest where ants start from and carry their food back
to. Position and movement of all objects is restricted on the terrain.

In order to intuitively demonstrate the simulation, different colour and models are used as
shown in Figure 4.1. Terrain is a plane. The torus represents the nest. The blue sphere represents
food source. The small blue spheres in front of ants represent the food taken from the source.
Red cylinders represent obstacles ants can not pass through in the environment. Green trail is
”to home” pheromone. Blue trail is ”to food” pheromone. Circles around objects represent the
bounding circle of objects, when they turn white, it means they are hit by other objects in the
scene.

Figure 4.1: Ants search for food and carry it home

There are two kinds of pheromones: “to food ” and “to home”. Pheromone has weight to

9

indicate its lifespan, just like in real world that pheromone evaporate. The design follow the
theory that ants always follow the direction which has a higher density of pheromone Panait and
Luke (2004). Ants start randomly from the nest, looking for food. At the same time they deposit
“to home” pheromone to mark up the way that they had used from home to food. They move
randomly until they detect ”to food” pheromone. Then they will move to the position with high
density of the pheromone until they can detect the food source. After that they walk to the
opposite direction, follow the density of the pheromone again until they detect nest. When they
arrive at the nest, status of ants is reset and they start looking for food again. This procedure
continued until all food resources no longer exist. Figure 4.2 show the state changes of ants.

Figure 4.2: Flow chart

4.1.1 Class diagram

Class Ant specifies attributes of ants such as the status, locomotion such as moving direction,
position and rotation, restrict ants within and on the surface, access height value from the texture,
get vertex normal from ant position, define drawing method of ants.

Class Pheromone specifies attributes of pheromone, including type, position and also the draw-
ing method of pheromone.

10

Class Trail maintains a list of pheromone, define the creation method, evaporation method and
deleting method.

Class Colony manages ants in the colony and the trail created by ants, defines the steering
behaviour of Ants, including obstacle avoidance, following pheromone, food detection, separation,
nest detection, and also the rules that ants follow. Mel script is also written to a file in some
methods in this class.

Class Object specifies attributes of other objects that are not ant, define drawing method and
access height value from texture. Class Food, Nest, Obstacle are all derived from this class.

Class World manages all the objects, including colony, obstacles, nest, food resources. Mel
script creating non ant objects is written to file in the method in this class.

Class Scene initialise Graphics Library, creates VBOprimitives using Graphics Library as model
for objects to use in their drawing method, sets up openGL including material, light, camera set-
up, processes events, display and update objects in the world. Events processing will process the
mouse and keyboard input.

Class Global is a singleton class that stores global variable, sets up parameter for the simulation,
create text file for Mel script .

Main function create instances of the classes, use a while loop and timer to update frames until
users exit.

Figure 4.3: Class diagram

4.1.2 Three layers of behaviour

As in Craig Reynolds’ “Steering behaviour of autonomous character”, behaviours can be divided
in to three layer. Reynolds (1999) The first one is locomotion. In the simulation, ants have
moving direction, speed, position and Rotation. Position is modified by adding the product of
speed and direction. Rotation is combination of spin and pitch. Second is steering behaviour.
In the simulation, it includes obstacle avoidance, separation from local flock mates, following the
pheromone, food detection, nest detection. Path planing and task: In the simulation, rules that
decides the sequence of steering behaviours according to the status of ants is defined to make ants
accomplish the foraging behaviour.

11

4.1.3 Stay in the world

Ants are requested to stay within the terrain surface. If the position assigned to ants after being
modified by the direction is outside of the surface, the position is moved back to the edge of the
surface, and a vector attraction which is perpendicular with the edge pointing to the centre of the
surface is added to the direction to stop it from hitting the boundary. This also create an effect of
wall following. This feature is implemented in Class Ant.

Figure 4.4: ant stay with in the surface

4.1.4 Random navigation and thinking

When an ant is not affected by surrounding objects or pheromone, it walks randomly. But gen-
erating a random direction creates an uninteresting look and produces non sustained movement
Reynolds (1999) . So similar approach used for wandering in “Steering Behaviors For Autonomous
Characters” Reynolds (2006)is adopted. A random offset is added to direction every frame to
imitate ants behaviour of ”sniffing” around, meanwhile this maintains the sustained turning, Ac-
cording to observation, real life ants do not move at the same speed all the time. When they are
navigating, they move some distance, and then stop to detect the direction it should move next. In
order to achieve this effect, a walk counter is initialised at start. The counter is increased by one
every time it moves, and function fmod() is used to make ant moves 47 steps and stop for 3 frame
every 50 frames. Not all ants stop at the same time, so the counter is randomised at initialisation.
This feature is implemented in Move method in Ant class

4.1.5 Obstacle avoidance

Each object in the scene has a bounding circle for detecting collision. If distance between ant and
objects is less than the sum of the radius of two bounding circle, a vector that is opposite to the
vector point from the obstacle to ants is used to modify the the direction. But this leads to the
result that areas with more obstacles are not passable. When an ant detects an obstacle in the
neighbourhood that may cause a potential collision such as right in front of it, the ant will try
avoiding it. When obstacle is on the side, ant won’t collide with it so the ant wouldn’t be affected
by this obstacle. As if a man is walking along a wall but won’t think he will collide with the wall
and thus walk away. So, instead of just using a radius, an small angle is also used to predict the
possible collision with the obstacle. Reynolds (1999) Same method is also used to prevent crowding
with other ants in the simulation.

4.1.6 Neighbourhood

Perception of ants is limited, it should only respond to the objects which are within local area.
Local area is defined by a radius and an angle with the moving direction. A search of all the
objects in the scene is performed to decide which is neighbour. Only objects within the area is

12

considered to be neighbours. But this will result in the slow speed of the performances. Since this
simulation is focused on the behaviours, speed is not put into consideration.

4.1.7 Pheromone and trail

Pheromone attraction used in this application is different from the rewarding mechanism in the
Panait’s pheromone model Panait and Luke (2004). Attraction to pheromone is designed similarly
to the cohesion definition in flocking system. An average position of pheromone within the neigh-
bourhood of ants is calculated and then ants direction is modified . Pheromone does not maintain
the same density all the time, they evaporate. Weight is added as an attribute of pheromone. so
weighted average position of pheromone within the sense area is calculated, an attraction from
ants to the average position is used to modify the direction of ant. Thus, the ant shows a be-
haviour of moving towards position with the highest density of pheromone. However,the lifespan
and evaporation rate of the pheromone will affect ants performance, different result is compared
in the result section.

Managing the trail. A list called trail is maintained by the colony to store pheromone laid by
ants. Pheromone’s type is decided by ant’s status. When an ant is looking for food, pheromone’s
type is ”to home”. When an ant has found food, pheromone’s type is switched to ”to food”. Ants
create pheromone every frame, the position of pheromone is the same with the ant. Information
of what type of pheromone and position of pheromone is added to the trail. There is only one
instance of trail which makes it easy to maintain, but difficult to tell which ant laid the pheromone.
Every frame, pheromone evaporates, their lifespan decrease, and their age grow. When pheromone
lifespan evaporate to 0, which means pheromone is ”gone”, it is deleted from the trail.

4.1.8 Food and nest

Ants find food and nest with the indication of pheromone. However, pheromone alone does not
create desired behaviours. Trail of pheromone is an indication, but it is not the exactly the right
way to go. When food source is in front of ants, ants can be confused by pheromone because
pheromone density can be the same with in the sense radiation of ant near nest. So when an ant
is close to food source, an attraction to the food is added to the ant as if the ant can see the food.
When ants reach the food, food life span decreased, and ant is set to the opposite direction. Same
with the nest, an attraction to nest is added to ants direction when ants are close to nest. When
ants reach nest, they are reset.

4.1.9 Terrain

Terrain is generated by displacement in Maya using a grey-scale bitmap. The y value of position
of the terrain is calculated in C++ application. Gray scale value of bitmap define the height of
the terrain and is loaded in as a texture instance using Graphics Library. The position of the ant
moving on xz plane is scaled from world size to 1*1 used as an index to lookup for the height
information in the texture. and then value returned from the texture is scaled to the world size
and assigned to y. This will cause errors on calculating the height because the function in graphic
library require integer value to get the data which the application cannot provide. More accurate
method is needed for getting the height information. Ratio of texture size should consist with
macro that defined for height and width.

4.1.10 Rotation

Rotation is crucial part to make ants look realistic. Two rotations are applied to ants, one is
rotation on xz plane around y axis called yaw, the other is rotation xy plane around z axis called
pitch.

In order to get xz plane rotation, the angle between direction and ant model’s direction is
calculated by using the angle-between function from the Graphics Library. Whether the angle is

13

Figure 4.5: Flat surface and its displacement

Figure 4.6: Texture map

positive or negative is decided by value of z, if z is positive, rotate counter-clock, if z is negative,
rotate clock wise.

In order to get xy plane rotation, terrain normal needs to be calculated. Because when ants
move on the surface, moving direction is perpendicular to the terrain normal. A virtual vertex
normal is calculated, Four points are defined around the current position of the ant, xz value of the
points are defined by adding four different offset to xz value of ants position. Y value of position
is got from looking up in the texture map. Four points and ant’s position form four faces, thus
the vertex normal is the average got from the normals of the four faces. When x value of moving
direction is positive, angle between direction and normal is used to rotate the model, when x is
negative, angle between opposite of direction and normal is used to rotate the model. Order of the
rotation makes difference. Initial design of rotating xz plane first cause the failure of the xy plane
rotate.

4.2 Visualisation in Maya

Colony and World class are in charge of writing Mel script to a text file, which is used to create
the key-frame animation for ants, nest, food, obstacles. Terrain is generated using displacement,
and then displacement is converted into polygon. The world is scaled to unit 1, so that the data
is consistent between C++ application and Maya.

Initially, data of ants was written into a file and a script is written to load the data into Maya
to create a motion curve for the animation. However, this method is inaccurate and ineffective,
and extra script is needed to organise the object. So instead of writing data to file, a Mel script is
written into a text file called “melscript.txt” when running the simulation.

The Mel script follow the order as bellow: Create objects–set current time–perform translation
and rotation–key framing More details of the script can be examined in “ melscript.txt“.

14

One problem with the the first “current time” for Mel script is that the time is got at compile
time. This is not what we want, so it is manually defined to be a small value which is close to
0. Attention should be paid that the models in c++ application should consist with the ones in
Maya simulation, or they will cause unwanted effect like ants go through an obstacle.

Figure 4.7: A rendered image in Maya

15

Chapter 5

Result and discussion

After some time, most ants are able to find the shortest path and keep transporting food between
nest and food source, avoiding the obstacle. Simulation runs fluently until ants number reaches
50. Pheromone, obstacles and ants all need to be searched , so the longer pheromone last and the
more objects there are, the slower the speed is.

5.1 Pheromone weight and perception

If a pheromone lasts too long, then the pheromones will become overlapped and the ant will get
confused. If a pheromone evaporates too quickly, it will disappear before ants start to carry food
home, so in order to get better result, evaporation life span should consist with the world size.
When world is large enough and to-home pheromone evaporate too quickly, ants loose information,
they will get confused, and chase the pheromone laid by other ants which are searching for food,
This will form a circle, ant won’t be able to get food, neither can they get home. This phenomenon
is called ant mill and happens a lot in an ant species called army ant.

5.2 Errors

A well performed simulation needs tweaking the value of coefficient of all the steering attraction.
For instance, when coefficient of obstacle avoidance is too small, errors like ant go though the
obstacle will occur. If the attraction of pheromone is too large, ants do not go back to the nest
and get lost in the world

(a) Ant mill (b) Ants get lost

Figure 5.1: Errors with different settings

16

5.3 Pheromone representation

In most cases, the definition of moving to the direction with a higher density of pheromone in the
simulation works well on making ant choose the right direction, however, some errors occurred
on their way searching. This might be due to the simplification of the mechanism of attraction
of pheromone. So trail information still need to be improved and more research into actual ants
behaviour and the reason behind it would help to improve the algorithm.

17

Chapter 6

Conclusion and further Work

6.1 Conclusion

With the ideas of two types of pheromone and references from flocking system, prototype of the
swarm intelligence simulating ant foraging works on a displaced surface. The system can manage
colony of ants using different pheromone to find effective way to transport food between food
source and nest, output the Mel script into files which can be sourced in Maya to create animation.
User can simulate in the C++ application until they are satisfied with the result and then use
Maya to render the animation with more details and better quality. The behaviours of ants in the
simulation is relatively realistic, however, this prototype still need further development to be used
as tool.

6.2 Further work

As described in the implementation section, the points position got from GetHeight function prob-
ably won’t be within the surface that created with Maya displacement. This will result in ants
walking through the surface. There are two ways to solve the problem, generating terrain in the
C++ application or improving quality of displacement.

When there is a larger displacement, ants velocity is increased, this will result in unnatural
speed up in simulation. This could possibly resolved by generating terrain in C++application.

Pheromone is scent, it diffuse in the air. Diffusion should be put into consideration and colour
representation of the evaporation would be help to research the effect of pheromone on ants.

Currently, there is no interface to interact with users. Most parameter need to be modified
manually in the global class. A parser should be implemented to read in data from user interface.
Obstacles and food is randomly generalised, however, allocation of obstacles by hand would be
more user friendly and extend the usability of the simulation.

Optimisation using spatial hashing would be a good way to solve the slow speed problem
when there are more ants and pheromone. Because users simulate in the application to see the
effects first, a faster speed would help user made modification as soon as possible when they found
problems with the simulation.

What ants can do now is simply follow the rule, ‘sniff’ for food and then carry them home until
all food resource is carried to the nest. There are still many interesting behaviours can be added
to the system. Ant does not only forage static food, living creatures are also attractive to their
stomach. Different colonies have different smell, intruders will be recognised depositing different
pheromone. So adding different colonies and implementing the way they conflict with each other
will be an interesting extension to the behaviours.

More research on artificial intelligence technique such as state machine, fuzzy logic may con-
tribute to the behaviour of ants. Besides, how genetic algorithm and neural network can affect the
system would also be put into consideration.

18

The way code is organised will have much influence on the understanding and usability of the
code. So a better design of the classes should be put into future work..

19

Bibliography

Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotic systems, Proceedings of NATO
Advanced Workshop on Robots and Biological Systems Vol 102.

Massive, S. (2010). What is massive, http://www.massivesoftware.com/.

MONTES DE OCA, M. (2010). Behavior of real ants, http://iridia.ulb.ac.be/~mdorigo/
ACO/RealAnts.html.

Panait, L. and Luke, J. (2004). A pheromone-based utility model for collaborative foraging, Pro-
ceedings of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems - Volume 1.

Reynolds, C. (1999). Steering behaviors for autonomous characters, Proceedings of Game Devel-
opers Conference 1999 held in San Jose2, California.

Reynolds, C. (2006). Big fast crowds on ps3, Proceedings of the 2006 Sandbox Symposium.

Sims, K. (1994). Evolving virtual creatures, Computer Graphics, Annual Conference Series (SIG-
GRAPH 94 Proceedings).

Wikipedia (2010). Conway’s game of life, http://en.wikipedia.org/wiki/Conway’s_Game_of_
Life.

Yaeger, L. S. (1994). Computational genetics, physiology, metabolism, neural systems, learning,
vision, and behavior or polyworld: Life in a new context, Langton, C. ed. Proceedings of the
Artificial Life III Conference. Addison-Wesley.

20

http://www.massivesoftware.com/
http://iridia.ulb.ac.be/~mdorigo/ACO/RealAnts.html
http://iridia.ulb.ac.be/~mdorigo/ACO/RealAnts.html
http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://en.wikipedia.org/wiki/Conway's_Game_of_Life

	 Introduction
	 Previous Work
	Swarm intelligence and flocking system
	Evolving creature and artificial ecosystem
	Massive

	 Technical background
	 Swarm Intelligence
	Flocking system
	Ant colony optimization

	 Design and Implementation
	C++ Application
	Class diagram
	Three layers of behaviour
	Stay in the world
	Random navigation and thinking
	Obstacle avoidance
	Neighbourhood
	Pheromone and trail
	Food and nest
	Terrain
	Rotation

	Visualisation in Maya

	Result and discussion
	Pheromone weight and perception
	Errors
	Pheromone representation

	 Conclusion and further Work
	Conclusion
	Further work
	References

