The Implementation of 2D Fluid Solver plug-in for
Houdini8.0

Mya Yee Win

A thesis submitted for the degree of
M.Sc Computer Animation
September 11, 2007

National Centre for Computer Animation
Bournemouth University

List of Figures

A simulation grid to store the density and velocity values 9
2D illustration of how the velocity is stored in a staggered grid.................. 9
[lustration of the cells reserved for controlling boundary values................ 10
Simulation process of fluid solver............c..coooiiiiiiiiii 12
Basic structure of the density SOIVeT..........c.ovvviiiiiiiiiiiiiiiiiieeeen, 14
A parameter window of the plug-in..............c.ooii i 16
A fluid 2D solver SOPnode............oooiiiiiiiiiiii 16
[llustration of the data flow between processes...........covveviiiiiniinineann... 17
Turbulent wave (A screenshot from houdini)...............c.ooovvi i 18
Smoke (A screenshot from houdini)...........ccooiiiiiiiiiiiiiiii e, 18

Chapter 1. Abstract

There are numerous algorithms and techniques for fluid simulation. Among them, some
of the algorithms are simple, easy to implement and also produce good results. The
purpose for this thesis is about developing a 2D fluid solver plug-in using existing
algorithms for houdini users. The discussion about the pros and cons of the plug-in is also

included at the end of the thesis.

Chapter 2. Introduction

Most of the people these days are quite familiar with cinematic special effects like fluid
effects, in the form of smoke, water, fire, or wind. One of the possible ways would be to
film fluid effects live on set. But in reality, it is not that simple because many movie
makers demanded fluid effects that are far beyond than reality. Sometimes these effects
cannot be feasible, affordable, and safe to film on set. Animating the physical phenomena
such as water, fire and smoke is quite complicated to create using the traditional methods.
That is why simulating fluids has become popular in computer graphics but it still
remains a challenging problem. This is not surprising since the motion of gases such as
smoke is highly complex and turbulent. Ideally, a good CG fluid or smoke model should
both be easy to use and produce highly realistic results. Over the decades, people have
been researching and developing new technologies for the fluid simulation. However, it's
been found out that not many people have been using those available resources but
instead they are trying to reinvent which have been discovered. The purpose for this thesis
is to create a fluid solver plug-in using those existing resources, and making them
available for the artists and the technical directors.

This thesis is organized in the following order:

Chapter 1 presents the abstract of the thesis.

Chapter 2 presents the introduction of the thesis.

Chapter 3 introduces brief information about the commercial fluid software packages and
how different CG houses have been using them. Following that information are different
algorithms for the fluid simulation.

Chapter 4 presents the implementation details about the fluid solver and the plug-in and
shows the result.

Chapter 5 presents a discussion about the plug-in and the conclusion of the thesis.
Chapter 6 presents the future work.

Chapter 7 presents the appendices where main functions will be explained in details.

Chapter 8 concludes with the bibliography.

All the source codes, HTML files of the source codes generated by doxygen, plug-in, pdf
documentation of this thesis, user guide in HTML format, and some rendered images

and sequence are presented in the CD with the thesis.

Chapter 3. Previous Work

3.1 Introduction

The big CG houses have some amount of proprietary CFD software, for example ILM has
their own proprietary software[25] but the smaller houses usually rely on plug-ins and
outsourcing. Since cost and visual impact are higher priority in CG, non-CFD solutions
are typically preferred. In most cases, visual effects producers require a simple solution
that runs on a desktop PC. There are a few commercial packages for the fluid; for
instance, Realflow and Flowline.

RealFlow is a fluid simulation software that utilizes particle-based fluid dynamics and
implicit surfaces for rendering realistic fluid dynamics. Flowline is an in-house developed
tool created by Scanline for creating realistic fluid simulations. The Moving Picture

Company has recently licensed Flowline and integrated into its production pipeline[26].

3.2 Fluid Simulation Algorithms

The first physically based simulation of complex water effects using the full 3D Navier-
Stokes equations has been based upon the large amount of research done by the
computational fluid dynamics community (CFD) over the past 50 years. Foster and
Metaxas[12] utilized the work of Harlow and Welch [3] in developing a 2D and 3D
Navier-Stokes methodology for the realistic animation of liquids. A semi-Lagrangian
“stable fluids” method was introduced to the computer graphics community by Stam[6]
in order to allow the use of significantly larger time steps without losing stability. Foster
and Fedkiw[14] made important contributions to the simulation and control of three
dimensional fluid simulations through the introduction of a hybrid liquid volume model
combining implicit surfaces(Level Set) and massless marker particles.

In order to simplify the simulation, the fluid is assumed to be homogeneous and
incompressible. The homogeneity part implies that the simulation only treats one kind of

fluid, and not multiple fluids and their interactions. Incompressibility means that the

http://features.cgsociety.org/story.php?story_id=3248

density of the fluid is constant. Given these assumptions, the Navier-Stokes equations for

homogeneous incompressible fluids [6] can be used.

The equations are defined as follows:

V-u=90 @

M— _—(u-Vu+rVau+f-Vp (3

u =Velocity field
t =Time

p =Pressure field
D =Viscosity

f =Force field

3.2.1 Solving the Equations

These two equations state that the velocity should conserve both mass (Equation 1) and
momentum (Equation 2)[6]. The first equation, known as the continuity equation, states
that the divergence of the velocity must always be equal to zero. This constraint ensures
that the sum of all velocities entering and leaving at a point in space is zero. When this is
conserved, the total mass is conserved over the entire simulation.

The second equation, known as momentum equation, describes the change of the velocity
in a fluid. The change of velocity involves 3 computations to update the velocity at each
time step:

(i)advection,

(i1)diffusion and

(iii)external forces application

(iv)solving the forces formed by the pressure.

(i)Advection

—(i-V)d

The first term of the equation(2), advection, represents the fact that the motion of the
fluid causes motion of the entities contained within it. This can be thought of as the
velocity of the fluid moving itself along, and is sometimes referred to as self-advection
because of that property. The advection part of the equations can also be used to model

motion of other entities inside the fluid.

(i1) Diffusion

vV2u

Different kinds of fluids behave differently. Water for instance, reacts very rapidly and
lively, when a force is acting on it. Paint or syrup on the other hand is much more
resistant to interaction when a force is acting on these liquids. This fluid property is
called viscosity, D, and is modeled by the diffusion part of the equation. This part of the
equation allows the velocity to propagate outwards from its current location, with the
viscosity parameter controlling how fast this happens. High viscosity yields thick and
slow fluids, while a low yields lively fluids. As smoke is lively and active, it is similar to
water. As the viscosity goes toward zero, the contribution from it will be smaller and
smaller, and therefore be less likely to give any contribution to the overall simulation.
Therefore, for this project, the viscosity part would be to leave out from the diffusion part
completely.

(i11)Forces (f)

The third term of the equation(2) is considered as the sum of all external forces. Natural
forces, like the wind blowing smoke and the drag generated by gravitational forces are
external forces. Some of these forces are easily simulated by constant forces, such as the
gravity, while others require separate simulations, such as the forces generated by
temperature differences. Another source of external forces could be the user interacting

with the simulation, for instance controlling a fan or a hand inside a simulation.

(iv)Pressure

Vp

The last term, pressure, presents in the equation(2), have an influence on the motion of
the fluid. This can be considered as the fluid from the area with high pressure will be
pushed by the pressure toward the area with lower pressure. This force is represented by

the gradient of the pressure field, p.

3.2.2 Solving the Equations Numerically

Turning away from the infinite equations described by the physical relations, a discrete
representation must be selected. The numerical methods used when solving the equations
are closely tied to the discrete representation, as it attempts to approximate the equations
using the data present. The discrete representation is used for storing the different fields
of the simulation, velocity, pressure, density, temperature, color and external forces.
Currently, numerical methods are generally grouped in to two categories, Lagrangian
method(particle-based) and Eulerian method (grid-based).

Lagrangian Method

Lagrangian methods represent the fields by small massless placeholder particles, which
are moved around during the simulation. Each particle is assigned a number of quantities,
such as velocity, temperature, etc. The particles are then used to approximate the
necessary values at arbitrary locations in the field, by using particles close to the desired
location. Similarly, when calculating derivatives, the lagrangian methods use particles
within some range to generate approximations.

Eulerian Method

Eulerian methods take a quite different approach. The second approach, the grid-system,
divides the space a number of rectangular cells, with each cell storing the relevant
quantities inside it, velocity, density, pressure, etc. The desired quantities can be read
directly from the cells, and derivatives can be approximated by using values stored in

neighboring cells.

The two different approaches have different advantages and disadvantages, and both are

useful in different cases.

Advantages and Disadvantages of Lagrangian and Eulerian Approaches

The representation of particles in lagrangian methods is good when simulating more than
one fluid. For example, when simulating water, it is necessary to determine the surface
that separates water and air. The particles are useful when determining the surface. This
approach is generally considered not a practical method to do for computer graphics, due
to the large amount of particles needed to be rendered on the screen in order for it to be
realistic; however this approach is often used by the physics people due to it being more

physically real.

Eulerian methods have the advantage of having an efficient representation. The
performance is independent of the amount of matter introduced in the simulation.
However, as the space simulated is to be divided into cells, the growth of the time
complexity becomes cubic in three dimensions, and thus limits the size of the volume

which can be simulated.

Among those two methods, Euler's equation is considered to be much faster. Therefore

Euler's equation for the fluid simulation is used for this project.

3.2.3 Representing the Cells

When all quantities are stored at the center of each grid cell, the grid is known as a
collocated grid. There is another type of grid called a staggered grid which stores the
velocity on the center of the faces of each grid cell instead, while still keeping the other
properties at the center. The partitioning of space is restricted to cells with the same size
across the entire simulated area. The simulation grid is split into cells along each of the
dimensions in width x height, with a length of h. The grid is indexed like using integer

coordinates going from O to N +1.

-10 -

o|f|R|R|T|BR|R|R|¥

1 2 N-1 N N+1
Figl. A simulation grid to store the density and velocity values. These values are stored at
the cell centers. The grid contains an extra layer of cells to account for the boundary

conditions. Image taken from Jos Stam’s Real-Time Fluid Dynamics for Games

—>T —»T —>T
—»T —»)r —»T
1 [[

Fig2. 2D illustration of how the velocity is stored in a staggered grid.

3.2.4 Finite Differences

In order to evaluate the equations, a method to approximate the derivatives from values in
a discrete grid is needed. Taylor’s theorem can be used to state the derivative of an

arbitrary function, f, at parameter value x0 with arbitrary precision[6].

Assume having a function of two variables: f (-{L‘) ?J)
Finite difference approximations to mixed partial derivatives can be found by using

Taylor’s theorem: Assuming that Dx is the grid spacing (always positive) that can be

-11 -

21 (a,b)

formed finite differences like this: Y0

(e] at+Azx,b)—fla—Ax.b
5 (a.b) ~ Horbnty flo dnh

af (ﬁ) (J,b) _ %(G,HA@/)—%(a,b—Ay) flat Az b+-Ay) - fla—Az,b+Ay) - f(a+ Az, b—Ay)+ f(a—Az,b—Ay)

dy \ oz 2Ay = 1Az Ay

3.2.5 Boundary Conditions

A boundary conditions an essential topic regarding the simulation. A boundary is defined
to be the face between two simulation cells, where one of the cells is participating in the
simulation, and the other is not. These boundaries appear at the edge of the simulated
area, and it needs to be determined how the various fields behave, in order to control the
simulation. This is necessary, as it can have a large impact on how the simulation behaves
close to the boundary. To control the values of the fields near the border of the
simulation, all the cells of the simulated area having one ore more faces that borders the
outside of the simulated area, are reserved as boundary cells. The boundary cells are cells
which are not used for simulation, but instead are used for controlling the values between

the boundary cells and their neighboring non-boundary cells.

. Border boundary cell

Fig3. Illustration of the cells reserved for controlling boundary values

S 12 -

Chapter 4. Development of 2D fluid solver plug-in

4.1 Introduction

There are a lot of resources out there for the fluid simulation and nobody has made a
good use of those resources yet. Therefore the author has come up with an idea how to
integrate the existing available fluid solvers into the existing 3D software efficiently?
Among these available resources, the programs and algorithms distributed by Jos Stam
are available for the public and easy to implement. “Jos Stam is a leading researcher in
the field of computer graphics, focusing on subdivision surfaces, rendering algorithms
and the simulation of natural physical phenomena, Stam made significant contributions
to the fluids simulation component of Alias' Maya 3D content creation software product.
Stam is now a "Senior Research Scientist" at Autodesk, Inc.”[24]

The third party softwares like RealFlow and Flowline are really powerful and can give
convincing look but the problem with them is for the CG houses, they have their own
production pipeline and there are no proven pipelines to run and render in the way it is
expected to work. Therefore, to fit into the production pipeline could be challenging, time
consuming and expensive. After a few research done about 3D softwares, it appears that
Houdini would be a good choice for this project. Houdini provides a good node-based
work flow system and also Houdini Development Kit is a C++ based which can be used
to develop any types of nodes. The current version (which is 8.0) of Houdini does not
have the fluid solver yet but with fluid solver coming in Houdini 9.0, it would be very
interesting. The official release date for Houdini9.0 is unknown yet and usually for the
CG industry, the transition period from the old version to the new software could be quite
long. Meantime, to produce fluid like motion, writing a custom plug-in seems to be an
ideal solution. Because of the node- based structure of the Houdini and lack of fluid
solver for the current version, Houdini is chosen and fluid solver plug-in is written in
HDK. Based on the algorithms written by Stam, a fluid solver in C++ has been developed
and written a plug-in using hdk for making an interface in houdini. Meantime, if anyone
comes across to do their FX works using fluid simulation, this plugin will help them to

solve the problem.

“13 -

http://en.wikipedia.org/wiki/Autodesk
http://en.wikipedia.org/wiki/Maya_(software)
http://en.wikipedia.org/wiki/Subdivision_surfaces
http://en.wikipedia.org/wiki/Computer_graphics

After the software has been decided, a new area of research needs to be done again to
make the plug-in efficient. The design of plug-in has been carefully planned and made
with the help of the TD's.

4.2 Implementation Details

Stages of developing the custom fluid solver plug-in in Houdini

1. Implementation of fluid solver in C++

2. Implementation of GUI for the plug-in in HDK

3. Integrate the solver in HDK and create a custom node

Input Geo Size

o

== Call ErrorHandles
Sim Grid Size

l yes

Yhile (Simulation)

l Wes

Initiali ze
&
Read Data

}

Assign sim data
to the solver

.

pdate the solver

.

Return data
(density, welocity)

— 08 Cuit the program

Fig4. Simulation process of fluid solver

S 14 -

4.2.1 Implementation of the fluid solver in C++

The solver is based on the Jos Stam's Realtime Fluid 2D solver and is written in C++.
Extra features like adding the vorticity confinement force back into the solver. A well
known problem with fluid dynamics solution is that they tend to dampen any swirling
motions in the velocity field. In other words, the curl of u diminishes too quickly as the
simulation progresses. To counteract the undesired dampening of swirling motions,
Fedkiw[17] adopted a technique known as vorticity confinement from the CDF literature.
The idea is to isolate and increase swirling motions in the fluid by amplifying the curl of

the velocity field. During a simulation, the vorticity confinement force is added.

All the technical details have been explained in the technical background and below are

the basic pseudocodes for the simulation is like this:

WHILE (simulation)
Get forces and sources from the user
Update the density
Update the velocity
Output the data back to the scene
ENDWHILE

Get Forces and Sources from the user
The values for the forces and the amount of the density will be input by the user via

Houdini program.

Solving the density part of the equation

For moving smoke density, from equation(4), there are four things to consider:
1.Add Density Sources

2.Advect Density

3.Diffuse Density

4.Dissipate Density

15 -

Initial Density Add Sources Advect Diffuse Dissipate

Fig5. Basic structure of the density solver. The three terms appearing on the right hand
side of the density equation are solved at every time step. Image taken from Jos Stam’s

Real-Time Fluid Dynamics for Games

Below is the pseudocode for calculating density:
PROCEDURE CALC_DENSITY

FOR (number of simulation iterations)
addDensitySource();

advectDensity();

diffuseDensity();

dissipateDensity();

ENDFOR

END

Solving the velocity part of the equation

The change in velocity from equation (3) is due to the three terms: advection, diffusion,
and forces, right hand side of the equation. There are also a few issues to consider for the
velocity to be mass conserving. This is an important property of real fluids because it
forces the fluid to have swirly effects. Numerical dissipation is also another important
thing to consider for the fluid simulation. Vorticity confinement method, proposed by
Fedkiw [6], re-injects the lost energy due to numerical dissipation back into the fluid,

through a force which encourages the flow to display small scale vorticity.

PROCEDURE CALC_VELOCITY

FOR (number of simulation iterations)

- 16 -

addDensitySource();
calcVorticityConfinementForce();
diffuseDensity();
ProjectToMakeVelocityConserveMass();
advectDensity();
ProjectToMakeVelocityConserveMass ();
ENDFOR

END

4.2.2 Implementation of GUI of the plug-in in HDK

In Houdini, nodes are organized into nested hierarchies which make it easy to step back
and make changes, revise, rewire and share among the colleagues. Houdini technical
directors are able to build up complex systems and even create custom tools by working
interactively in Houdini’s network editor without writing any code. C++ based Houdini
Developer's Kit is freely distributed with Houdini Apprentice version which allows the
developers to extend the software. With HDK, the freedom of adding new tools is infinite.
All types of new nodes can be created: SOPs (Surface Operators), COPs (Compositiong
Operators), Objects, CHOPs (Channel Operators), ROPs (Render Operators), DOPs
(Dynamic Operators) and POPs (Particle Operators). There are several node types based
on their functions like surface operators (SOPs), particle operators (POPs), shader
operators (SHOPs) etc. Each operator has an output that can be passed to the next
operator as input. Operators can optionally have one or more inputs depending on the type
of the nodes, for example, the create type does not need an input but for the modification
type nodes needs at least one or two inputs depending on the nature of the node.

GUI is very important for the custom plug-in because that can put off the artist and
technical directors’ abilities very easily for them to use. Also some technical terms can
easily scare the users away. At the same time since this plug-in is designed for the
Houdini users, the naming standard and convention should also be considered and should
follow the Houdini naming convention and its program structure because that will save a

big time for the first time users to figure out what the plug-in does. Considering all these

-17 -

http://odforce.net/wiki/index.php/POPs
http://odforce.net/wiki/index.php/DOPs
http://odforce.net/wiki/index.php/ROPs
http://odforce.net/wiki/index.php/CHOPs
http://odforce.net/wiki/index.php/Objects
http://odforce.net/wiki/index.php/COPs
http://odforce.net/wiki/index.php/SOPs
http://odforce.net/wiki/index.php/HoudiniApprentice

facts, simple terms are used and multiple user controllable variables are added for

flexibility.

Fig7. A fluid 2D solver SOP node

4.2.3 Integrate the solver in HDK and create a custom node

This section contains details about how developers can widen the power of the software
using third party plug-ins like fluid solver. It is implemented in Houdini SOP level and
can integrate with any other components.

The simulation parameters are read from the Houdini program. These parameters are
passed down to the solver and the solver does all the calculation. After the calculation,

the solver gives back density values and velocity values. Those values can be used

- 18 -

anywhere in the creation of different effects, for example, density could be used as the

height map for the displacement shader or the color values for the texture map.

SOP_Fluid2D

Initialization

Input Grid Dimension _
Point Positions Read Ul Sim Data

Input Geo .
QW Assign Values to the solver

velocity values

Update the solver

Read density and velocity
values back from the solver

Sim Data

Fluid Solver

¥

Fig 8. Illustration of the data flow between processes

4.3 Results

-4
i

density values
welocity values

Calculate density and
Yelocity values

Update the solver

This section is about how different effects can be created using the plug-in. The plug-in

can be used as a modeling tool and/or animation tool. The artists can define the sources

of water and as well as sources for the smoke. Extensive controls allow the artists to

modify the simulations and the adjustments of fluid properties at any points in space.

With this plug-in the users can now focus more on creating the effects to resemble

realism and natural complexity. More exciting effects can be achieved by a few tweaking

and adjusting the controls. Here are only a few examples of how this plug- in can be used.

-19 -

/fluid2d_test_demo_1.16.hip - Houdini Escape

EE S [Y R A R <

INEEEE

is/fluid2d_test_demo_1.16.hip - Houdini Escape

perspl

EE WENE] 4R (o [Bl e A R S

e

Fig10. Smoke (A screenshot from houdini)

-20 -

Chapter 5. Discussion and Conclusion

5.1 Discussion

Fluid animation in computer animation is always a challenging problem. Furthermore, to
get the complicated look that the directors need and at the same time to keep the natural
behaviour and look of water and smoke are even more challenging. For the traditional
animators to manually hand animate the fluid animation is not possible. Even if it is
possible, it is going to take a large amount of time to get the look that they have desired.
This plug-in provides greater artistic control and flexibility. But to be able to get to the
desired direction, a few parameters need to be tweaked and fine-tuned until it reaches to
the specific look that the artists have intended. The solver is implemented in a very
specific way based on the needs of the technical directors and effects artists, which will
definitely help their work flow faster. Using this plug-in can also reduce the expensive
computational time as well. The simulation time is relatively quick compared to the other
fluid solvers since it is based on the requirements of the users and unnecessary
calculations are removed. The solver is written in C++ therefore it is highly extensible and
any new features can be added or subtracted anytime. With the cooperation of artists’
creativities and the flexibility of this plug-in, any interesting effects can be created.
Understanding how fluid is modeled for CG can be a challenge too. This is especially true
for students who have not taken courses in vector calculus and differential equations, or
are rusty in these subjects. First of all, beginners tend to get slowed down or could even
could get completely backed out in the notation of the Navier-Stokes equations and the
difficulties that arise when trying to discretize them. Second, the implementation details
of the fluid flow systems described in the papers are referenced from a lot of “previous
work”.

The system has been developed using Houdini8.0 HDK Toolkit therefore it can only be
compiled using that version. Although HDK is a very good toolkit, lack of good
documentations in it is a major problem. It takes some time to understand how it works.
But thankfully Houdini community is very supportive, and some codes are available to

look at, it is therefore possible to write a plug-in within a few months.

=21 -

There are two major types of solving fluid: Eulerian and Lagrangian method. And so far
only Eulerian method is efficient in terms of speed and feasibility. Since Eulerian is a
grid based approach, it is limited to have the grid input. Its advantage can also be viewed
as its disadvantage. For example, once the dimension of the simulation grid is increased,
the calculation time went up immediately noticeably and slows down the calculation.
Because all the grid points are used (although some of the points are not needed for the
simulation) to store all these attributes for example, velocity and density, it takes up a lot
of memory space. Sometimes, Houdini cannot handle the large amount of grid numbers
and it crushes the program immediately. Last but not the least this plug-in is tested in
every possible way and fixed any bugs that came up but the end users might have
different experiences and might have found a few bugs that needs to be fixed. Even the
fluid simulation software used by ILM which was and is still in use is rewritten over and
over again so that it can produce better results within short amount of time. To achieve a

reliable and high fidelity fluid solver took many years of work.

5.2 Conclusion

This plug-in is not intended to give the physically accurate fluid simulation. Instead it is
meant to work with other surface operator nodes in Houdini and to improve the workflow
of the technical directors and effects artists. For most of the time in the visual effects
industry, visual quality is more important than the physically accurate animation. With
this plug-in, the visual quality produced by using with other operators is also quite
convincing. The purpose of this thesis is to use the available resources and make it
possible for Houdini users to use the full extent of those resources. Since it has reached its
purpose which is to help the technical directors and effects artists to get the fluid like
motion within a short amount of time with the extensible user controls, this project can be

considered as a success.

-22 -

Chapter 6. Future work

There are still a few areas that can be improved or needs to be considered:

Extend the solver from 2D to 3D

That can give users more flexibility.

Collision Objects or Obstacles
It needs to be considered how the fluid would react when it collides with stationary or

animating objects.

Grid Dimension
Instead of calculating all the points from the simulation grid, calculate only the points

within the area where the actual simulation takes place.

Memory Handling
To consider different approaches in memory allocation so that it can prevent Houdini
from stopping the program abruptly. This is directly related to the dimension of the

simulation grid as mentioned in above.

Boundary Conditions

It would be a good control for the users to have an option like open or close boundary.

_23 .

Appendix A:

List of main functions from the fluid solver

void diffuse (int b, float *x, float *x0)

-Calculate the diffusion part of the equation. Calculate the input array with diffusion

effects. This is achieved through use of a linear solver.

void advect (int b, float *d, float *d0, float *u, float *v)

-Calculate the advection part of the equation. Calculate the input array after advection.
Start with an input array from the previous timestep. For all grid cells, it needs to
calculate for the next timestep and trace the cell's center position backwards through the
velocity field. Then, interpolate from the grid of the previous timestep and assign this

value to the current grid cell.

void project (float *u, float *v, float *p, float *div)

-This function is for making the velocity a mass conserving, incompressible field. It
forces the flow to have many vortices which produce realistic swirly-like flows. Achieved
through a Hodge decomposition: every velocity field is the sum of a mass conserving
field and a gradient field. Calculate the divergence field of the velocity first by using the
mean finite difference approach, and apply the linear solver to compute the Poisson
equation and obtain a "height" field. Then subtract the gradient of this field to obtain the

mass conserving velocity field.

void linearSolver (int b, float *x, float *x0, float a, float c)

-Iterative linear system solver using the Gauss-Seidel relaxation technique.

void vorticity_Confinement (float *_u, float *_v)

- Semi-lagrangian approaches suffer from excessive numerical damping. Vorticity
confinement method is proposed by Fedkiw [5] to re-inject the lost energy due to
numerical dissipation back into the fluid, through a force which encourages the flow to

display small scale vorticity. This function calculates the vorticity confinement force for

_24 -

file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#c857098ef2688f063df94a15f15aa3db
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#a93549a0561e9142a2952126abb5d452
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#da4e5e235406d9691bad8c6a95fe7c36
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#4ceee42731d3b3bfd303f1b6283f06a0
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#5d5ad4747d34ddc0395c65648dfa2cda
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#da4e5e235406d9691bad8c6a95fe7c36
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#4ceee42731d3b3bfd303f1b6283f06a0
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#13a04aea97f65dba692e5ce39665c920
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#0adfb87375ee2dbc51df3e2f14a3ea2d
file:///msc/mwin/Desktop//C:/Documents and Settings/Ma Chaw/Desktop/fluid-05-24-03/html/html/classSolver.html#3bf0519d9a7cc66298e649f96d5136d0

each cell in the fluid grid. At a point (i,j), ForceVorticityConfinement = N x w where w is
the curl at (1,j)) and N = del Iwl / Idel Iwll. N is the vector pointing to the vortex center and

add force perpendicular to N.

_25-

Appendix B:

List of main functions from the SOP_Fluid2D

void initSystem()

-Initialize the variables and allocated the memory

void readUIData(float currentTime)
-Read data input by the users, these values will be evaluated every frame of the

simulation.

void assignValues()

-Assign the read values to the solver.
void Update()
-Call the update functions from the solver; this is where the actual calculation for the

solver takes place.

void getDensity()

-Read the density values back from the solver and assign it to each point

void getVelocity()

-Read the velocity values back from the solver and assign it to each point

- 26 -

Bibliography
[1] D. Enright, S. Marschner and R. Fedkiw, Animation and Rendering of Complex

Water Surfaces, in SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, July 2002, 736-744.

[2] D. Q. Nguyen, R. Fedkiw and H. W. Jensen, Physically Based Modeling and
Animation of Fire, in SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, July 2002, 721-728.

[3]Harlow, F.H., and Welch, J.E.,.Numerical Calculation of Time-Dependent Viscous
Incompressible Flow," Phys. Fluids, 8, 1965, pp. 2182-2189.

[4] J. Stam and D. Brinsmead, Method of Producing Fluid-Like Animations Using a
Rapid and Stable Solver for the Navier-Stokes Equations, U. S. Patent#6,266,071 B1, July
24, 2001.

[5]J. Stam, A General Animation Framework for Gaseous Phenomena, ERCIM

Research Report R047, January 1997.

[6] J. Stam, Stable Fluids, In SIGGRAPH 99 Conference Proceedings, Annual
Conference Series, August 1999, 121-128.

[7] J. Stam, Interacting with Smoke and Fire in Real-Time. Communications of the

ACM, Volume 43, Issue 7, 2000, 76-83.

[8] J. Stam, A Simple Fluid Solver based on the FFT, Journal of Graphics Tools
Volume 6, Number 2, 2001, 43-52.

[9] Jos Stam, Real-Time Fluid Dynamics for Games. Proceedings of the Game Developer

Conference, March 2003.

-7 -

[10] Kuldeep Singh, Engineering Mathematics Through Applications, Palgrave
Macmillan, 2003

[11] M. Van Dyke, An Album of Fluid Motion, The Parabolic Press, Stanford,
California, 1982.

[12] N. Foster and D. Metaxas, Realistic Animation of Liquids, Graphical Models and
Image Processing, volume 58, number 5, 1996, 471-483.

[13] N. Foster and D. Metaxas, Modeling the Motion of a Hot, Turbulent Gas, In
SIGGRAPH 2001 Conference Proceedings, Annual Conference Series, August
1997, 181-188.

[14] N.Foster and R. Fedkiw, Practical Animation of Liquids, In SIGGRAPH 2001
Conference Proceedings, Annual Conference Series, August 2001, 23-30.
The Iterative Methods Library (IML++), developed by NIST, available at

http://math.nist.gov/iml++/.

[15] Randima Fernando, GPU Gems: Programming Techniques, Tips, and Tricks for
Real-Time Graphics, Addison-Wesley Professional, 2004.

[16] R. Courant and E. Isaacson and M. Rees, On the Solution of Nonlinear Hyperbolic
Differential Equations by Finite Differences, Communication on Pure and Applied

Mathematics, 5, 1952, 243-255.
[17] R. Fedkiw, J. Stam and H. W. Jensen, Visual Simulation of Smoke, In

SIGGRAPH 2001 Conference Proceedings, Annual Conference Series, August
2001, 15-22.

_28 -

[18] Houdini9 Public Beta News Article. Accessed on August, 2007.
http://www.sidefx.com/

[19] Widgets and Gadgets for Houdini. Accessed on July, 2007.

http://www.houdinitools.com/

[20] Houdini Development Kit. Accessed on August, 2007.

http://odforce.net/

[21] Stable Fluids in Java. Accessed on July, 2007.

http://www.multires.caltech.edu/teaching/demos/java/stablefluids.htm

[22] SPH-Based Fluid Simulation for Special Effects. Accessed on June, 2007.
http://www.cescg.org/CESCG-2007/papers/

[23] Fluid flow for the rest of us. Accessed on August, 2007.
http://poseidon.cs.byu.edu/~cline/fluidFlowForTheRestOfUs.pdf

[24] Jos Stam. Accessed on September, 2007.
http://en.wikipedia.org/wiki/Jos_Stam.

[25] Going with the Flowline. Accessed on September, 2007.
http://vixworld.com/

[26] The Poseidon. Accessed on September, 2007.

http://www.moving-picture.com/poseidonThe

-29 .

http://www.moving-picture.com/poseidonThe
http://en.wikipedia.org/wiki/Jos_Stam
http://poseidon.cs.byu.edu/~cline/fluidFlowForTheRestOfUs.pdf
http://www.cescg.org/CESCG-2007/papers/
http://www.multires.caltech.edu/teaching/demos/java/stablefluids.htm
http://odforce.net/
http://www.houdinitools.com/
http://www.houdinitools.com/

