
ErgophobiaThe Silene Of Night
Masters ThesisMatt OsbondBen ChandlerHasan AtiehAli Derweesh

N.C.C.A Bournemouth UniversitySeptember 9, 2007

AbstratWith a shared desire to reate a funtional video game, four students deided todo so for their MS Term 4 Projet. They were given the opportunity to reatesuh a piee in a professional working environment through entry into an inter-nation video games ompetiton alled 'Dare to be Digital'. Upon learing the�rst stage, the team went to work for the 10 weeks in an industry developmentstudio. The result is 'The Silene of Night', a third person ninja game. Thegame had strong media overage for the duration of the ompetition and wonappraisal for it's use of interesting tehnologies and it's artisti style.

Contents
1 Introdution. 91.1 Doument Overview . 91.2 Introdution . 91.3 Arhiteture overview . 101.3.1 Modules. 101.3.2 API Layers . 101.3.3 Core Layer . 101.3.4 System Component Layer 111.3.5 Entity Layer . 111.3.6 Appliation Layer . 121.4 Entities and Entity Components 121.4.1 Entity Communiation . 121.4.2 Sripting . 131.4.3 Entity Templates . 131.4.4 Serialization . 142 Diretory Struture. 152.1 Bin . 152.2 Env . 152.2.1 Env/Pro�les . 152.2.2 Env/Text . 162.2.3 Env/Sreenshots . 162.2.4 Env/Con�g . 162.3 Projets . 162.4 Pakages . 161

2.4.1 Pakages/Base . 162.4.2 Pakages/Referene . 172.4.3 Pakages/Tools . 172.5 Log . 172.6 Dos . 172.7 The Development Framework . 172.7.1 The Team Members and Their Tasks 183 Projet Management, Level Design, Environment 203.1 Projet Management . 203.1.1 Outlining Prodution . 203.1.2 Management Methods . 213.1.3 Srum vs Rigid Planning 223.2 Level Design . 243.2.1 Player Eduation . 243.2.2 Sale of Assets / Spatial Awareness 253.2.3 Multiple Routes . 283.2.4 Rewarding Experiene . 293.2.5 Objetives . 313.2.6 AI Agent Routes . 323.3 Environment . 333.3.1 Inspirations . 333.3.2 Polygonal Modelling . 353.3.3 Geometry Pipeline . 363.3.4 Texturing and Stylisation 373.3.5 Materials . 383.3.6 Lighting and Atmosphere 403.3.7 Visibility Management . 413.4 Sound . 433.4.1 Ambiene . 433.4.2 Subtle Touhes . 433.4.3 Triggers . 43
2

4 Interative Cutting 454.1 Introdution . 454.2 Design . 464.3 Model Requirements . 464.4 Data Strutures . 474.5 Program Flow . 484.5.1 Intersetion Testing . 484.5.2 Triangle Resolution . 494.5.3 New Objet Analysis . 504.5.4 New Surfae Triangulation 514.6 Game Integration . 524.7 Conlusions . 554.8 Taking It Further . 564.9 Tables and Figures . 584.10 Aknowledgments . 635 The AI System 645.1 Introdution . 645.2 Previous Work . 655.3 Theoretial Bakground . 675.4 The FSM Solution . 685.4.1 The FSM System . 705.4.1.1 The FSM Core. 705.4.1.2 The Senses/States Library. 755.4.2 The Proposed Behaviour 785.5 Disussion . 805.6 Conlusion . 826 Input And Charater Control, Audio/Visual Programming, Game-play Engineering 846.1 The User Input To Charater Control Proess 846.1.1 Input Controller . 856.1.2 Charater Controller . 866.1.3 Animation Controller . 866.2 Sound . 873

6.2.1 Bakground Musi . 876.2.2 3D Sound Soures . 876.3 3D Graphis . 886.3.1 Shaders . 886.3.1.1 Shaders and Materials Within Instint 896.3.2 Water Shader . 926.3.3 Sound Shader . 936.3.3.1 Initial Approah 936.3.3.2 Chosen Approah 956.3.4 Skydome . 976.3.5 2D Unlit Shaders . 976.4 2D Graphis . 976.4.1 HUD . 976.4.2 Menus and Loading/Ending Sreens 986.4.3 Pikup Noti�ation . 996.5 Gameplay & Sripting . 996.5.1 Sore Manager . 996.5.2 Menu Transitions . 996.5.3 End Sreen Transition . 1006.5.4 Pikups . 1006.5.5 Footstep Toggling . 1016.5.6 Floorboards . 1016.6 Partile E�ets . 1026.6.1 Waterfall . 1026.6.2 Clouds . 1036.6.3 Torhes . 1046.7 Tools . 1056.7.1 Rayasting Funtions . 1056.7.2 String Conversion Funtions 1066.7.3 Animation Splitting Tool 1066.7.4 Code Writing Tool . 1076.7.5 Pakage Synhronisation Sripts 1074

7 Charaters and Animations 1087.1 Charater Design . 1087.2 Texturing . 1097.3 Animation Cyles . 1098 Feedbak and Critial Analysis 1118.1 Feedbak Sheet - Protoplay . 1118.2 Conlusion . 112A Sheduling and Projet Management 113A.1 Initial Shedule . 114A.2 Post-It Board . 115B Sreenshots 116C Design Doument 119

5

List of Figures3.1 Sheduling . 223.2 Sheduling [3℄ . 233.3 Player Learning [2℄ . 253.4 Researh: Max Payne [4℄ . 263.5 Pshologial Features of the Environment [6℄ 273.6 Environment Features . 283.7 Multiple Routes of Entry . 293.8 The Objetive . 323.9 A.I. Agent Routes . 333.10 Fable 2 Sreenshots . 343.11 In Game Sreenshots . 343.12 Low Polygon Models . 353.13 Silhouette Styling . 363.14 Geometry Pipeline . 363.15 Texture Pipeline . 383.16 Example Material Usage . 393.17 Material File Desription [6℄ . 393.18 Lighting Mixtures in the Menu 413.19 Example of Portals . 423.20 Trigger Volumes . 445.1 The FSM System Struture . 705.2 The Class Diagram . 715.3 The States Transition Diagram 746.1 Flow Diagram Of Player Being Moved Forwards 856

6.2 Water Shader Calulations . 926.3 Water Shader Applied To A Test Sene 936.4 Preliminary Sound Shader Sreenshot 946.5 Light Attenuation Box and Fallo� Taken From [5℄ 956.6 Original Light Texture Compared To New Light Texture 966.7 Sound Shader Sreenshot . 966.8 The Waterfall Partile System . 1036.9 The Cloud Partile System Within The Game 1046.10 Freestanding Torh Sreenshot 1056.11 Sreenshot Of Animation Splitter 1067.1 Design Sketh . 1087.2 Ninja Texture Map . 1097.3 Guard Animation Rig . 110A.1 The Team's Shedule . 114A.2 The Team's Post-It Board . 115B.1 Early Sreenshots . 117B.2 Sreenshots Near Completion . 118

7

List of Tables1.1 Core Layer Servies . 114.1 Possible Situations When Cutting A Triangle With A Finite Plane. 584.2 Possible Situations When Cutting A Triangle With An In�nitePlane. 594.3 Extra Cases For Soft Bodies. 594.4 Triangulating A New Surfae. 604.5 Triangulating Conentri Rings. 614.6 Triangulating Cuts From A Finite Plane. 625.1 A StateLogi Example . 725.2 The Guards State Transition Table 79

8

Chapter 1
Introdution.
1.1 Doument OverviewA suessful video game must have an almalgamation of talent, organisationand reativity. The team was made up of a mixture of individuals who eahposess these traits, and therefore a �nal produt was realised. This doumentis an outline of the prodution proess, from an overview of the engine used todesription of the ore tehnologies that were developed. Eah member of theteam has written their own speialist hapters, as well as providing input to theremainder of the doument.1.2 IntrodutionThe video games industry has been enjoying a onsistent rise in popularity inreent years ([1℄), and this is re�eted by the number of suessful student gamesprojets. Dare to be Digital was started in 2000 to give support to these studentsby providing not only the means but also the motivation. Until 2007 it was aompetition only open to Sottish students, but this has now been hanged toallow students from England and Ireland to partiipate.Team 'Ergophobia' onsists of four MS Computer Animation students and oneBA Computer Animation and Visualisation Student. After suessfully gettingthrough to the stage where development began, they moved to Eletroni Arts'studio in Guildford for 10 weeks in order to reate their game.'The Silene of Night' is a third person game based in feudal Japan, in whihthe player has to reah a target while avoiding detetion by enemeies throughthe use of the stealth. 9

The game will use two new tehnologies: a unique sound visualisation systemand intereative geometry utting.Various game engine were onsidered for use in the projet, suh as Ogre, Ren-derware and the more simplisti OpenGL. After muh researh the team deidedon the usage of Instint, an engine developed by Instint Tehnologies. This wastehnially a beta release, as the engine itself is not available to purhase at thetime of writing.The remainder of the following two hapters is, for the most part, taken fromthe Instint Studio doumentation. [5℄[6℄1.3 Arhiteture overviewThe Instint arhiteture aims to provide the following features:
• Stable framework for rapidly evolving game software
• Highly integrated tools and runtime
• E�ient use of hardware resoures
• Multi-platform support (Win32/64 PC and Next-Gen onsoles)1.3.1 Modules.The Instint API is omposed of a number of ode Modules. Eah Module isa set of ode that provides a distint set of servies. Modules may depend onother Modules and may be platform dependent. The engine an be extended bythe addition of new Modules at ompile time or runtime. Modules developedby the Instint team are pre�xed with the letters "ie". Some examples: ieCore,ieGraphis, iePhysis.1.3.2 API LayersInstint is organized into a hierarhy of layers.1.3.3 Core LayerThis layer provides the base funtionality for all Instint ode. It provides thefollowing servies, all of whih are typially implemented in the ieCore Module:10

Table 1.1: Core Layer ServiesServie DesriptionMemory management Optimized alternatives tostandard new and delete poolingstruturesFile and resoure management Binary & text reading andwriting XML, CSV and otherparsing funtionsModule management Loading and unloading InstintModulesLogging and error handlingHigh resolution timersCode pro�ling Timings and ounters for funtionalls, Memory usageSripting Command parsing and exeutionSystem omponent managementEntity management Constrution, on�guration anddestrution of entities Entityevent management1.3.4 System Component LayerSystem omponents are C++ objets that typially provide interfae-based a-ess to hardware or operating system funtions suh as those provided by Di-retX or Windows. An instane of a system omponent an be given a uniquename. Suh an objet is known as a Component Instane. Common omponentinstanes inlude:
• File Manager
• Graphis Devie
• Sound Channel Manager
• Input
• Command Mapper
• DiagnostisSystem omponents an be sripted and omponent instanes may also be on-�gured using the system on�guration �le.1.3.5 Entity LayerEntities are data-driven objets that are omposed of smaller objets alledentity omponents. Entities are sriptable objets that are used to de�ne the11

game world and may be edited using Instint Studio. Common examples inludelight, sound, amera and player entities.Users an speify the omposition of an entity using entity templates. Theseentity templates at as blueprints from whih entities may be reated. Anentity an only exist within an entity manager objet. Every entity must have aunique name within its entity manager. Instint allows multiple entity managersto exist at one but a typial game runs with a single entity manager.1.3.6 Appliation LayerInstint appliations are the programs that make use of the Instint API, suhInstint Studio, 3D Studio Max Exporters and Instint games. Note: Modulesmay provide funtionality ranging aross multiple layers.1.4 Entities and Entity ComponentsThe game world is modelled in Instint as a set of objets alled Entities. EahEntity has a unique name and exists within the ontext of an Entity Manager.Instint an support multiple ative Entity Managers but typially a game onlyrequires one.Instint Entities are entirely omposed of objets alled Entity Components.Entity Components an be reused and ombined in order to de�ne many di�erenttypes of Entities. For example, a rakling torh entity might be de�ned usinglight, sound and mesh entity omponents.Entities to be used for the purpose of level onstrution are loated within whatthe developers all a sene �le. Instint breaks up the �le into two setions;primary entities and standard entities. The purpose of the primary entities is toprovide the 'sa�olding' of the level, while the standard ones are the 'briks andmortar'. For example the physis simulation entity (typially alled 'priPhysis')is a primary entity, while all of the objets that are simulated are standardentities.1.4.1 Entity CommuniationInstint provides a number of mehanisms for entity ommuniation: C++ In-terfaes diret aess to virtual C++ methods using standard interfae pointers.Sripting Interfaes via properties and ommands (see below). Event Objetssending and reeiving events. 12

1.4.2 SriptingInstint provides a framework to allow C++ developers to expose sriptableproperties and ommands for entity omponents with a minimum runtime over-head. Entities an be manipulated from the ommand line or sript �les usingan objet-oriented syntax: Copy CodeListing 1 Sript ExamplePlayer.Health.MaxHealth 100Sound.Manager.StopAllSoundsEnemy12.Health.TakeDamage 2 10Instint provides a number of in-built property types inluding boolean, integer,�oating point, string, vetor and quaternion. Developers an also reate theirown property types and register them with Instint.1.4.3 Entity TemplatesUsers an de�ne the struture of games entities using entity templates. Eahentity template ontains a list of entity omponents along with the default prop-erty values for entities reated using that template. Entity Templates an inheritstruture and default property values from other templates. For example, thefollow template de�nition desribes the Chair Entity and Lampshade entitiesmaking use of a Base Entity Template alled SimpleObjet:ÂCopy Code

13

Listing 2 Entity Template ExampleEntityTemplate{ _name = "SimpleObjet"// Entity omponents_omponents = "RigidBody,Model,WorldPosition?}EntityTemplate{ _name = "Chair"// Parent templates_parents = �SimpleObjet�// Default property values for this templateRigidBody.physisFile = �test/hair.psx�Model.meshFile = �test/hair.mesh�}EntityTemplate{ _name = "Lampshade"// Parent templates_parents = �SimpleObjet�// Extra Entity omponents not in my parents_omponents = "Sound, Light�// Default property values for this templateSound.resoure = �test/lampshade.wav�Light.type = �box�Light.extents = (2,2,1)}This data-driven approah for entity reation allows for rapid prototyping andallows uses to reate their own entity types without having to program in C++.1.4.4 SerializationInstint provides a framework for automati entity loading and saving throughentity omponent properties. Developers of entity omponents may also imple-ment their own ustom loading and saving routines if desired.Instint Studio Integration Entities are automatially editable inside InstintStudio via exposed properties and ommands. No extra ode is neessary.
14

Chapter 2
Diretory Struture.Here is a brief desription of the various �le folders used in Instint Studio.2.1 BinThe bin folder ontains all ompiled exeutables and DLLs, inluding ompiledlient ode. The folder is further subdivided by platform & ompiler. At the be-ginning of the projet, there were twoWin32 ompilers supported: Mirosoft Vi-sual C++ 2003 (bin/x86_v7) and Mirosoft Visual C++ 2005 (bin/x86_v8).This has hanged over the ourse of the projet and now only the latter hassupport from the developers.When using the debug on�guration in Visual Studio, the �les will be ompiledto the x86_v8_debug folders. Similarly, using the retail on�guration willompile the �les to the x86_v8_retail folder and the release on�gurationompiles to the x86_v8 folder.2.2 EnvThis folder ontains a variety of data that Instint Studio uses to operate.2.2.1 Env/Pro�lesThis folder ontains information about eah users on�guration for Instint Stu-dio, suh as window layout, user interfae ustomizations and user preferenes.

15

2.2.2 Env/TextThis folder ontains xml �les used to desribe olour syntax highlighting for thedi�erent types of text �les used in Instint Studio.2.2.3 Env/SreenshotsThis folder is used to save out in-game sreenshots. This an be done using aonsole ommand, typially bound to a shortut key.2.2.4 Env/Con�gThis folder stores the on�g �les used to launh studio and the runtime, thesean be overridden if required. These on�g �les are used if no other on�g isspei�ed. For example, when you run bin/x86_v8/Studio.exe diretly it willautomatially use the on�g in env/on�g/InstintStudio.fg2.3 ProjetsA projet desribes the struture of the game, whih is mostly a list of thepakages that the game uses and some on�guration info. Aording to theInstint doumentation, it is reommended that any projets reated for thegame be stored in this folder.2.4 PakagesPakages are the mehanism used to organize assets in Instint Studio. Exam-ples of suh asset an be senes, templates, textures, models, audio �les, et. Itis usual to arrange these assets in sub folders within a single pakage folder.Three pakages are provided by Instint as standard: Base Referene SDK2.4.1 Pakages/BaseThe Base Pakage ontains essential ontent required to run Instint Studio.This folder ontains the publi inludes and ompiled libs for Instint Studioso that one an link with and extend the funtionality provided. Solution andprojet �les for Mirosoft Visual Studio 2003/2005 are available in the buildfolder. 16

2.4.2 Pakages/RefereneThe Referene Pakage demonstrates the suggested use of game funtionalityprovided by Instint Studio suh as models, physis, et. As new funtionalityis added to Instint Studio, the Referene pakage is updated to demonstrateeah new feature. This means that the assets ontained here are liable to hangeas new versions of Instint Studio are released.Aording to the doumentation provided with Instint Studio, it is reom-mended to reate a separate pakage for the game and store it in the "pakages"folder as this is the only loation where Instint Studio looks for them. Also,the ode written for the user de�ned omponents and appliations should bestored in the users pakage folder.2.4.3 Pakages/ToolsThis folder ontains some useful tools whih an use in onjuntion with InstintStudio, inluding the 3D Studio Max Exporter Plugin and NormalBumpMap-Merger tools.2.5 LogThis folder ontains log �les generated by Instint Studio. The logs ontain astep by step list of ommands exeuted and any errors or warnings that aregenerated. This an be useful when trying to diagnose problems with the game.Instint allows users to output to the log by using the LogString() funtion. Theontents of the log �le an also be seen in the onsole window when runningInstint Studio.2.6 DosThis folder ontains the doumentation provided with Instint Studio. Thisonsists of the User Guide whih provides help for ontent reators, and theProgramming Manual whih provides information for game programmers.2.7 The Development FrameworkIn aordane with the development praties suggested by Instint, a sepa-rate pakage was reated for eah team member and another for the game re-sulting in six pakages. These are MO_Pakage, AD_Pakage, BC_Pakage,17

SH_Pakage, HA_Pakage in addition to the Game_Pakage where the �rsttwo apitals of the pakage name represents the initials of the owner of thespei�ed pakage. Also a projet alled �Game_Projet� was reated to bundletogether the six pakages and the rest of the standard pakages provided byinstint.All the pakages were kept in a shared folder where eah team member hadthe ability to upload his own pakage to that folder and download the otherpakages inluding the game pakage. The Game_Pakage whih ontained theGame_Sene was updated by the level and environment designer.2.7.1 The Team Members and Their TasksThe roles of the team members were learly de�ned with minor overlapping. Therest of this thesis will follow a similar approah where eah hapter is writtenby a team member and represents his work on the game.Eah member had spei� responsibilities within the team:
• Matt Osbond:Team Lead / ProduerEnvironment Design and ModellingSound Design
• Ben Chandler:Lead ProgrammerGraphis and Post-ProessingInput And Charater ControllerAnimation BlendingShader Design
• Hasan Atieh:A.I. ProgrammingPhysis Implementation
• Ali Derweesh:Real-Time Cutting MehanismConept Researh

18

• Sebastien Huart:Charater Design and ModellingAnimation CylesConept and Graphis

19

Chapter 3
Projet Management, LevelDesign, EnvironmentBy Matt Osbond3.1 Projet Management3.1.1 Outlining ProdutionThe preparatory elements of the projet pipeline were initially disussed in greatdetail as a team. Having previously reated a game in term 2, we were alreadyaware of the prodution proess and all too familiar with the possible pitfallsof game development. It was important that these elements were taken intoonsideration when outlining the initial prodution shedule. The outome wasan overview of the entire prodution proess that took into aount the following:

• Two weeks of diluted work�ow at the beginning of the projet to aountfor overlap of projets. The main task for these weeks was for eah memberto get used to the game engine. We all had key roles that demanded usto have a good working knowledge of the Instint engine, and these twoweeks were used to traverse the learning urve.
• One week at the end of the projet to allow for tweaking and polishing ofassets and ode.
• Week by week breakdown of tasks on an individual basis. This allowedeveryone to see at a glane what the other members of the team weresupposed to be doing. 20

The �nal point is possibly the most important, as a key to suess in team-based projet management is ommuniation. The ability for eah member toview the tasks of others was vital, as the inter-member dependenies were greatwithin this projet. For instane, utting ould not be tested until the orretgeometries were reated, or the harater ontroller ould not be started untilanimation yles were produed. These dependenies were taken into aountduring reation of this initial prodution outline.The �nal initial Shedule of Prodution an be found in Appendix A3.1.2 Management MethodsOutlining the prodution is the �rst step, from then it is imperative that theteam stays on top of the prodution. There are many methods of projet man-agement available to use, some were investigated as follows:
• Mirosoft Projet 2007 . This was the �rst option explored as it amehighly reommended. It appeared to be a very apable and �uid program(being able to interat with other piees of software, enabling failities suhas automatially emailing members who were falling behind) and inludedfeatures suh as Gantt harts, milestones and other important elements ofprojet management. However, it seemed vast and upon further investi-gation appeared to have a learning urve that rendered it useless for suha short projet.
• Zoho Projets (projets.zoho.om). A web-based projet management toolthat was similar in funtionality to Mirosoft Projet, but with a far moreintuitive interfae and, being web-based, had the added ability to be a-essed from anywhere by every member of the team. This system wouldhave been perfet if our timeframe was longer (so it made setting it all upworthwhile) and if the team were dispersed aross multiple loations. How-ever, with all of us within reahing distane of eah other and a windowof 8 weeks in whih to operate, it again seemed surplus to requirements.
• Post-it Notes. This system was adopted after observing how the profes-sionals within the game industry operate. Post-it notes would be overingall available wall spae in an e�ort to write down every oneivable taskthe team had to do. After using it only a ouple of days the bene�t wasalready notieable. The �uidity of prodution provided by this methodwas allowing the team to re-prioritise as eah member saw �t. The basipriniple is that eah seperate task would be written on a post-it note,and a�xed to a board. This board was laid out as follows:21

Figure 3.1: Sheduling

(a) Prodution Planning Using Post-it Notes
See Appendix A for sheduling and a photo of the post-it note board in ation.3.1.3 Srum vs Rigid PlanningMaintaining ontrol over the projet throughout the duration of the proessis just as important as the initial sheduling. Within our team we adopted amethod of management known as 'srum' [3℄. This is a vast system, intended todeal with larger projets, so our use was toned down to aommodate our moremodest prodution. The idea is that the prodution units divide themselves intoteams of a handful of people, who meet every morning to disuss (and possiblyalter) what needs to be done. It operates by eah small team operating undertheir own ommand in short periods of time known as 'sprints'. Eah team22

has a Srum Leader, who attends meetings with other Srum Leaders. Thisforms a hierarhy of meetings, and allows for every member to be updated withoverall progress with only the leader attending more than one meeting. Onekey to srum is that during a 'sprint', their task annot be hanged by outsidein�uene (exept of ourse in exeptional irumstanes). The only deviationfrom their task should ome from within the team.Figure 3.2: Sheduling [3℄

(a) Srum Time Flow Organisation
In the meetings, eah member asks themselves three key questions:

• What have you done sine yesterday? (aomplishments)
• What are you planning to do by tomorrow? (to be aomplished)
• Do you have any problems preventing you from aomplishing your goal?(risks) 23

This enables eah srum team to analyse what they've done, plan tasks for thenear future and foresee any obstales that may our. Eah unit within srumhas the ability to omplete their tasks with the highest degree of suess, dueto the fat they operate as a small team.Our team did not stritly adopt this method, we did however use a few elementsfrom it. The primary element was to aknowledge the importane of dailymeetings. Using a '10 o'lok daily' we were able to have an overview of allproesses going on that day, and the usage of the three step system enabledevery member to remain foused.The �uidity that srum provides is de�nitely bene�ial, but it should not be usedas a replaement for a sheduled prodution proess. By using an amalgamationof the methods, the team remained foused right until the end.3.2 Level Design3.2.1 Player EduationOne of the key fators to bear in mind when designing a level (and more speif-ially the �rst level of a game) is the inlusion of a system whereby the playeris taught various gameplay elements in a ertain order. These onsist primarilyof ontrols, environment interation and interfae.The key to a suessful tuition interfae is progressive learning, something thatthe Mario series of games aomplished to perfetion. Essentially it involvesavoiding teahing the player too muh at one (suh as displaying all ontrolson the loading sreen, a method used in many demo version of games), insteadadopting a step-by-step proedure. For instane, in the example below theplayer has �rst ome to an obstale and learns how to jump. Then they learnhow to jump over a pit, but are not punished for failing. Finally they are madeto jump over a pit and will die if theyre unsuessful. This proess is far moreintuitive for a player and allows the experiene of playing the game to be moreenjoyable.

24

Figure 3.3: Player Learning [2℄
(a) Desription of Learning Atoms (b) Learning Outomes For Eah Atom

This method was adopted in our game by presenting the player with di�erent as-pets of gameplay periodially throughout the �rst half of the game experiene,as outlined below:Situation Learning OutomesStart of game Interation: Movement ontrolsEnvironment elements Interation: Some objets are uttableFirst asset emitting pulse Interation: Pulse = importantDarkness Interation: Pulse used for navigationGuard Interation: Combat ontrols3.2.2 Sale of Assets / Spatial AwarenessIt is important to understand from square one of level design that the sale of theworld in relation to the harater annot be equal to that of real life. Creatingbuildings that have doorways and eilings to sale will, in the majority of ases,immediately reate a feeling of laustrophobia. It is important to bear this inmind when designing the environment, and only trial and error in the beginningstages will get this sale perfet. The sreenshot below is from Max Payne (2001Rokstar Games sr). It shows that only a slight upsaling of environment sizeis needed for a suessful e�et.
25

Figure 3.4: Researh: Max Payne [4℄

(a) In this example, it is lear to see the sale of the environment is slightly largerthan that of the haraters
Suessfully immersing the player in the digital world is the result of an amal-gamation of various elements, from interation to sound. However, one theplayer is omfortable within the environment, the level designer an reate theassets within the world to invoke a psyhologial feeling or partiular movementupon the player. The entire world an be manipulated to essentially fore theplayer to at as the level designer wishes them to at a ertain point.The texturing and lighting an be altered to reate a spei� mood, but thesewill be explored later in the following hapter. The fous for now will be on theatual shape and size of geometry assets in the game.

26

Figure 3.5: Pshologial Features of the Environment [6℄

(a) Creates an illusion ofgrandeur but makes wallsappear weak. (b) Makes walls and objets appear stru-turally strong.
() Can make the player moreautious, as well as sometimesmaking them turn around. (d) Invokes laustrophobifeeling by dereasing e�etive�oorspae.
These are just few of the examples whereby the assets in the world an bemanipulated to invoke various emotive feelings upon the player. These wereadopted to some degree within the game, as demonstrated below.

27

Figure 3.6: Environment Features
(a) Sloping Walls: Various walls withinthe game are sloped to both invoke a laus-trophobi feeling and give the impressionthe walls are more struturally sound. (b) Con�ned Spaes: The urved wallsof the basement area give the illusion ofbringing the eiling loser to the player.
3.2.3 Multiple RoutesOne important aspet of gameplay nowadays is giving as muh ontrol as possi-ble to the player. A large part of the responsibility of ensuring this ours fallsupon the level designer. Games have for years inluded multiple routes of game-play, in both environment and storyline, and the demand for this is beomingheavier in more reent years as gamers expet more from the developers.With 'The Silene of Night' being a fairly short game, there was no neessity formultiple storylines. However, inluding multiple 'physial' routes of gameplaywithin the level was important in terms of longetivity. Below is the basi layoutof the ore elements of the level, with the 3 entry points de�ned.

28

Figure 3.7: Multiple Routes of Entry

(a) The level was designed to allow for multiple entry points into the targethouse. Presenting the player with more than one option maintains theirinterest.Eah entrane has it's advantages and disadvantages, as outlined:Advantages DisadvantagesEntry Point 1 Large doorway, easy tosee guards The guards an also seeyou easilyEntry Point 2 Guard in kithen hasbak turned to rearentrane No real disadvantageEntry Point 3 Pikups insidebasement No real disadvantage3.2.4 Rewarding ExperieneMaintaining a player's interest in a game is the next hallenge the designersome up against. It is vital that the player's desire to ontinue playing thegame is not quashed too early in the game. This an be aused by suh thingsas the inlusion of a di�ult �rst level, an unintuitive ontrol system or interfaeor an unrewarding experiene.Di�ulty settings are mainly reated through trial and error with the tweakingof settings, and the ontrol system is a result of feedbak oupled with good29

ergonomis. However, rewarding the player from the outset within the game isnot only a superb method of maintaining interest, but also a very simple one toimplement.Games have used this method for years in order to engage more people in ashorter spae of time. A good genre for emphasising this point is that of raing.In games suh as Gran Turismo (S.C.E.E. 1997), the �rst rae a player enoun-ters is always going to be simple. But by adapting the AI to make the speedand handling of the ompetitor vehiles remain around the player's abilities, itbeomes almost impossible to lose. Therefore, within minutes of piking up thegame, the player is presented with an award, usually in this ase a shiny newvehile to use in the next rae.This methodology was adopted within our game in a few di�erent �avours.Firstly, the player begins with a low-damage weapon. Dotted around the envi-ronment are an assortment of more powerful weapons, along with atual weaponampli�er power-ups. These enable the player to gain stronger in their attaksfrom an early stage. It would have even been possible to plae these items inwithout the funtionality being there, and most players wouldn't notie the lakof di�erene, instead enjoying the 'plaebo' e�et of more powerful weapons.Seondly, there are pik-ups loated in seretive loations around the level.These ome in a few inarnations: (Weapon Amp is listed again as the followinglist is exhaustive).Pik Up DesriptionWeapon Ampli�er Ampli�es damage that urrentweapon in�its upon guardsHealth Pak Adds 25% of total health to theplayer's health statusArtefat Objet of value that the player an'steal'With the game having a strong fous on stealth, the tehniques used by theplayer to in�ltrate the house have an e�et on the outome. Soring is based onthe way players 'deal' with the guards, with the following details being reordedby the soring mehanism:
• If the player ompletely avoids detetion by a guard
• If the player kills the guard
• If they do, was the player's presene aknowledged by the guard prior tothe killing? 30

• Did the player not kill a guard, but the guard still saw them
• Or did the guard only hear the player?Lastly, at the end of the game, the tallies are ollated and displayed to theplayer. The player is then presented with a sore, made up of a ombination ofthese results. A stealthy mission, whereby no guard was alerted, will get you themost points, as well as a suitable reward. Likewise, you will reeive an award ifevery guard was killed and every guard notied you.Rewarding the player in this fashion, be it either positively or negatively, is some-thing that has been very suessful, most notably in the game series 'Worms'.Awards suh as 'Biggest Coward' or 'Most Useless' an be just as entertainingto reeive as 'Most Dangerous' or 'Best Player'.The award proess is desribed in detail in the design doument (Chapter 9 -Appendies).3.2.5 ObjetivesThe importane of giving a lear ut objetive to the player in terms what theyhave to do annot be underestimated. There are of ourse some games thatdo not always display this information, instead allowing the player to seek outan objetive and then follow it up (suh as the 'Grand Theft Auto' series ofgames). However, this proess still ends up with the player being presentedwith an objetive.A game is essentially an interative story, and therefore must have a path downwhih the player an traverse. With 'The Silene of Night' being a single missionprototype, the player is presented with the objetive during the loading sreen.This displays not only a text-based objetive, but also a visual lue as to thephysial loation of the target.

31

Figure 3.8: The Objetive

(a) The loading sreen is a good plae to have the objetive as it distratsthe player from the loading time.
By using this method, it not only gives the player a lear objetive from themoment they pik up the ontroller, but it also takes the attention away fromthe time the game takes to load. This method is used by many games, andproves very suessful.The original intention was to have a strong narrative within the game, witha Japanese language voie-over being played while the English subtitles weredisplayed on the loading sreen. This narrative, however proved to be far moretime onsuming to implement than thought, so therefore was omitted from theprodution at an early stage in the proess.3.2.6 AI Agent RoutesOriginally, the AI was planned to simply engage the player when they got toolose, but the system took on a far more omplex design and therefore allowedfor a more omprehensive implementation within the game. The level designwas semi-symbioti with the other strands of prodution, none more so that theAI. Elements of the world were altered during the ourse of prodution to allowthe new features of the AI to be demonstrated.There were three main types of routes used by the AI in the game, stati, irularand osillating. A good example of the implementation of more than one AIfeature within the environment is the �rst �oor of the main house.32

Figure 3.9: A.I. Agent Routes

(a) The level design was developed in oordination with other areas of pro-dution; here the �rst �oor was adjusted to aount for the more intelligentA.I. system.
In this diagram, the player enters the �oor from the stairs in the top left. Theroute of gameplay is up the seond set of stairs, the entrane to whih is on thefar right of the diagram. An AI agent is on a irular route, patrolling aroundthe entral olumn in whih the stairs lie.With the AI having the ability to aknowledge audio, a reaking �oorboard wasplaed in the diret path between the player's entrane and their target, withthe intention of reating a noise that the guard would pik up on.By plaing guards on de�ned routes between the player and their target, thegameplay is altered as the player has to use stealth (the game's fous point) toavoid detetion. Other guards within the level are on either osillating or statiroutes, also sometimes plaed in areas of strategi importane.3.3 Environment3.3.1 InspirationsThe �rst step to reating an interesting environment for a video game is toanalyse the styles that an be used for the game in question. It is up to the33

reative team to ome up with the visual styles, but in suh a small team it isimportant that the styles were given the OK by all team members.The initial stage was to researh styles in existing media that ould be adopted,either in their entirety, an adaptation or by simply using a ertain style ormethod. After researhing games, �lm, television and 2D artwork, one gameame up again and again with an artisti style that the environment designerfelt ould be suessfully transferred to our game.Fable 2 (Lionhead Studios) is due for release in 2008, but sreenshots and art-work have been released in order whet the appetite of gamers. The settinghas a medieval styling, whih is akin to the setting of 'The Silene of Night'.By amalgamating the styling of Fable 2 with an oriental feel, the environmentgeometries take on their own styling.Figure 3.10: Fable 2 Sreenshots
(a) Fable 2 night sene (b) Note the absene of any straight edges

Figure 3.11: In Game Sreenshots
(a) Colours mixing in the night sene of thegame. (b) Straight edges were avoided at every op-portunity.34

3.3.2 Polygonal ModellingDespite the hardware we were supplied being top of the range with nVidiaGeFore 7600 graphis, it was still important to maintain optimisation as apriority during prodution, as we did not have enough of a timeframe to optimiseas a �nal stage. One of the key steps in inreasing the frame rate of a real-time3D simulation is the lowering of the polygon ount.To keep the poly ount low the assets of the world were designed with minimumhigh detail areas (some areas required high detail and so were optimised usinglevel of detail - see setion 3.3.7).Figure 3.12: Low Polygon Models

(a) The models were as low on polygon ount as possible in order to main-tain the level of optimisation required.
The example above shows an asset within the game that, apart from the peakof the roof, ontains no notieable straight edges. This was a key onept thatwas adhered to for the majority of the external geometries. It was importantfor the artisti styling of the piee to ensure that the look of all the world assetsmaintained the intended styling even when viewed as a silhouette. This is an35

old artisti trik that is just as appliable in 3D reation as it is in onventionalart. Figure 3.13: Silhouette Styling

(a) With the styling being learly visible as a silhouette, the textures andshading have little work to do in order to enhane the e�et.
3.3.3 Geometry PipelineThe geometry assets started out life as a 2D sketh, and were translated into 3Dwithin Maya 8.5. However, the exporter supplied with Instint only worked fromwithin 3D Studio Max. This meant the pipeline was somewhat umbersome:Figure 3.14: Geometry Pipeline

(a) The pipeline for the geometry reation was not as streamlined as it ould havebeen.
36

I onduted some researh into the possibility of reating a .mesh exporter forMaya. Originally it seemed that this task would not be too daunting, as theenvironment required only stati geometries, omitting the need for the exportingof bones, animations or skin weights.The intention was to either reate a MEL plugin that ould export diretly fromthe program, or reate a small utility that parsed an exported .obj �le. Seeingas the .obj parser would skip one step in the pipeline, whereas a MEL pluginwould skip two, I opted to fous on a reating a small tool to add to the shelfwithin Maya.After researh into the omplex �le struture of a .mesh �le, it was lear thatthe �le type was optimised for grpahis. Therefore I onluded that the time itwould take to reate a tool apable of suessfully exporting both the geometryand the UV's into suh an awkward �le system was not worth the sari�e oftime for suh a small projet. It turned out the supplied exporter for 3DS Maxwasn't always suessful at reating a funtional �le, whih only reinfored mythoughts about the �le type's omplexities.In hindsight, I feel that the rapid veto of the plugin was a mistake, as it wasrare that eah geometry asset was 100% orret on the �rst attempt at insertioninto the engine. This resulted in literally hundreds of meshes going through thepipeline (the �nal tally for the number of meshes in the sene stood at around170) and as suh numerous hours were spent in the proess of doing so.3.3.4 Texturing and StylisationWith the stylisation of the geometries already deided, the next step in re-ating the desired artisti style is the manipulating of the textures in order toahieve an illustrative look. Textures used were photographs, so these had tobe signi�antly altered in order to reate the target aestheti. The proess oftaking the texture through from original soure to �nal .dds was the result ofweeks of trial and error with the aestheti. The use of photographs as textureswithin the game was resulting in a horrendously unmathed feel, and thereforeexperiments were arried out to amend this e�et.The �rst step was to use a handful of Photoshop �lters to instantly stylise thetextures. The result was a ustom Photoshop maro that enompassed elementsof the artisti �lters 'Poster Edges' and 'Waterolour', then slightly blurring theresult. This took the edge o� the realism of the photographs, while at the sametime remaining slightly more realisti than artoony. Feedbak from varioussoures on�rmed that this was a pleasing e�et.When the game sene reahed a point of near ompletion in the �nal few weeks,37

the lighting was at a state that was almost the �nished artile. The vivid oloursof the textures were �ghting against the blues of the moonlight and the orangesof the �re torhes reating an e�et that was not only distrating but di�ulton the eye. This had to be hanged, and researh suggested that removingsome of the olour from the textures would resolve the issue. Tests were arriedout on some textures by desaturating them to about 60-70% of their originalintensities. It worked well, so another Photoshop automated sript was reatedto go through the folder and apply a preset desaturation maro to every di�usetexture.The resulting texture pipeline is shown below:Figure 3.15: Texture Pipeline
(a) The �ow of textures, from the soure �les to the �nal output.

3.3.5 MaterialsThe Instint engine supports a variety of graphis tehnologies, inluding theability to use a variety of maps for the materials. As well as the standard di�use,it also supports normal maps, speular maps, alpha mask maps, glow maps, mip-maps and blend maps. These an all be ombined to reate a single material,resulting in a very impressive e�et. Although unused within the game, it istehnially plausible to use every type of map in one omplex mapping proess,as outlined below:

38

Figure 3.16: Example Material Usage

(a) A �tional senario whereby every type of texture map is used.
The materials within the engine are reated one, and an therefore be usedon multiple surfaes without draining too many resoures. A material �le isreated by �rst speifying the name and type of material, and then desribingwhat types of �les are used to reate it.Figure 3.17: Material File Desription [6℄

(a) Desription of the �rst stage of de�ning a material �le, taken from theInstint Studio doumentation.
The textures used to reate the material are de�ned within the main body ofthe material ode. The example below is a full material template for the redlanterns in the game. Note the di�erene between the �rst line in the examplebelow ompared to the one in the above diagram. The following example hasan alpha pass.

39

Listing 3 Material ExampleMO_Pakage/materials/lanternRed : BaseDi�useSpeularAlphaTest{ �ags{sortType = litAlphaTestGlow} { di�use = MO_Pakage/textures/lanternRednormal = MO_Pakage/textures/lanternRedNRMspeular = MO_Pakage/textures/lanternRedSPECmap = MO_Pakage/textures/lanternRedFX}Pass SFX : BaseTextureColor {}}
The '�ags' setion of the ode ontains piees of information that the enginerequires to know before the material is reated. In this ase 'sortType = litAl-phaTestGlow' de�nes the sequene in whih the material needs to proess thetextures (or maps) in order to get the desired result. 'lit' is the name of thedefault material properties (di�use, normal and speular). This is followed byalpha and �nally the glow map.Within 'textureAliases' lies the paths of the various texture �les required forthe material. Aside from the usual three, the above example inludes 'map =MO_Pakage/textures/lanternRedFX'. 'map' refers to a texture that is used asan FX map, in this ase a glow map. It de�nes whih areas of the lantern needto glow in a post-proess.3.3.6 Lighting and AtmosphereCreating an atmosphere in any medium is the proess of invoking a partiularmood or feeling upon the viewer / player. One of the most in�uential methodsof ahieving this is to manipulate the lighting. Harsh shadows and dark olourgive a ompletely di�erent feeling to soft shadows and subtle tints of olourwithin the light.The mix of blue moonlight and orange �aming torhes worked well in tests andso was used throughout the game (see �gure 3.3.1), as well as within the menusene �le.

40

Figure 3.18: Lighting Mixtures in the Menu

(a) A mix of blues and oranges work well in the menu sene �le.3.3.7 Visibility ManagementOne method of optimising a sene is to insert portals and break up all thegeometries into areas. This then uses a method of visibility ulling that killsevery asset within a ertain area if that partiular area leaves the viewing angleof the harater. By default, Instint supports visibility ulling, bakfae ullingand lighting ulling (if the harater annot see any area of a light's shadowvolume then the light is turned o�). However adopting portals breaks up theworld into more manageable areas and ompletely deativates all assets withinthese areas.Below is an example of how portals were initially used within the Instint engine.

41

Figure 3.19: Example of Portals

(a) Portals, although not implemented within the game, would have allowedfor a leaner ulling of thw world assets.
However, as Instint was still tehnially a beta release, the engine developerswere unfortunately unable to get portals funtioning suessfully in time. Thiswas not muh of a drawbak for the team, given that the world we had designedwas rather ompat. There was still a need for optimisation though, so the nextstep was to add L.O.D. to the more omplex geometries.Level of detail (or L.O.D.) is natively supported by Instint, and so was imple-mented to a great degree, and in varying strengths. Complex geometries thatould still be viewed from a distane (suh as the windows, trees, rokeries et)were given a level of detail that enabled the player to aknowledge no hange inphysial appearane when the hange ourred. This is was to ensure �uidityin gameplay as well as for aestheti reasons. However, omplex geometries thatwere only visible lose up (suh as the basement support strutures, the vitim,the sandbag ramp et) were given a more drasti level of detailing. In the ase ofthe basement supports, the geometry was reated as one large entity of around1100 polygons. The seond level of detail was a 4 faed shape that overed thesame area as the supports. This hange is drasti but enabled the use of moree�ets elsewhere in the sene.

42

3.4 Sound3.4.1 AmbieneThe seond important area to onsider when reating atmosphere is the audio.This was onsidered in great length, with the result being a sore made up ofthree di�erent looping audio traks:
• Trak 1 - Ambient: To be played through the entire game at a onstantvolume.
• Trak 2 - Tension: Will kik in when the A.I. Agents aknowledge preseneof player.
• Trak 3 - Fight: This is played when the player engages in ombat.All three traks are exatly 45 seonds long and are designed to be played overthe top of eah other. This enables the musi manager to simply alter thevolumes of the seond two traks to aount for the urrent situation of theplayer.Given the lak of serous knowledge of orhestrating a sore, the three trakswere outsoured.3.4.2 Subtle TouhesTo give the player full immersion within the world, it was important to giveas muh audio input as possible. This inluded the reation of various typesof footsteps for use on gravel, wooden �oors and water. Environmental soundsare also important, and these were implemented in the form of trikling water,�res rakling and the oasional animal noise. These all ombined to reate agreater feeling of depth to the environment.3.4.3 TriggersIn order to fully manipulate the audio within the environment, triggers wereused that ontrolled what sounds were used for various funtions. These triggervolumes surrounded areas that required a hange in footstep sound, suh as inthe doorway, as illustrated below:This enables the footsteps of the harater to be altered based upon the player'sphysial loation within the sene. 43

Figure 3.20: Trigger Volumes

(a) Careful plaement of the trigger volumes enabled the player to interatwith the environment in a more immersive way.

44

Chapter 4
Interative CuttingBy Ali Derweesh4.1 IntrodutionThe aim was to try to reate a real-time geometry splitting system suitable foruse in games. Games are ontinually advaning in realism and sophistiation,and there is a ontinual searh for new game ideas and mehanis. While ge-ometry utting systems exist in real-time appliations, these are mainly surgerysimulations; games would have a very di�erent set of requirements.In a surgery simulation what is important is auray of small uts, usually insoft-bodies. Performane is not ritial. Some games may have similar require-ments, but it is more ommon to need to perform large uts on rigid bodies.Either way, performane is far more important. This system is intended toquikly deal with large uts, typially a single ut would represent the path ofa moving blade over one game ation.In the game the system would be alled on to ut both simple and omplexmodels and integrate with the physis engine. It would also give a better ideaof true performane in use.An OpenGL visualisation was used with the atual utting system for devel-opment and demonstration purposes. The system is simple, possessing onlybasi ontrols and no physis or texturing. However, polygon olour is set usingvertex UV oordinates, and normals are viewable.

45

4.2 DesignThe most important design onsideration was performane. In surgial simula-tions typially only a few triangles at most are ut per frame, and frame-ratestutters ourring if longer uts are performed an be forgiven. Shemes relyingon the position of the utting objet an be used that avoid the need to hek alltriangles [16℄. In a game, an entire model an be ut aross in a single operation,and any triangle may be ut. Slowdown is also less forgivable.Additionally, utting soft bodies is atually simpler in some ways than uttingrigid bodies, as physis simulations are already being applied per vertex. Thismeans that simply hanging the verties and edges of the geometry is su�ientto separate the resultant piees of the objet, it does not have to be dividedinto new objets. However, when a rigid body is ut extra proesses must beperformed to separate the new piees reated.While initially the system was developed to use a semi-irle as the uttingplane, during development the deision was made to use an in�nite plane toperform the atual ut. This was muh simpler to implement, an importantonsideration as the timesale of the projet was limited. Resolving ut trianglesand triangulating new surfaes espeially would have required muh longer toimplement if a �nite utting plane had been used. It was deided that usingan in�nite utting plane would also work better for gameplay reasons. Workingout whether an objet should be ut ould be done externally, then an objet issimply disseted. This makes it simpler for the player to ut through anythingthan needs to be ut. In the game we made, sliing things leanly in half provedto be very satisfying. Furthermore, using an in�nite plane made some operationsfaster, thus improving performane.4.3 Model RequirementsUsing the native geometry data format of the game engine reated some limi-tations on the urrent system. Presently the system only supports one trianglemesh per objet. The game engine uses one material per mesh: a material usesa texture map, a speular map and a normal map. This means that the �nalsystem only works with one mesh and one material per uttable objet. A por-tion of the main texture is therefore set aside for use in the new surfaes reatedduring a ut.Sine the game engine relies on objets being solid, rather than �at sheets,the urrent utting system was also designed with this assumption in mind.However it would not be hard to modify in order to aept non-solid meshes.46

It is even possible to automatially work out whether the objet is solid or hasholes, based on whether there are any edges that only onnet to one triangle.Most of these issues an be overome through further development or the use ofa more appropriate data struture. Some additional data is needed for speialases, for example objets that are attahed to the environment need to have avertex spei�ed as a �xed point. This is handled in-game.4.4 Data StruturesThe data format in use by the engine had the orret struture and muh of theneessary data. While the parent Mesh lass stored several mesh surfaes, themain data strutures onsist of:
• Mesh Surfae - Arrays of triangles, mesh verties and edges
• Triangle - Contains a fae normal, the indies of three verties and threeedges
• Mesh vertex - Contains vertex oordinate, normal and UV
• Edge - Contains two indies to triangles and two vertex oordinates orindies to two mesh verties
• Plane - The utting plane. The basi data stored is a point on the planeand a normal to the planeThe game engine also stored vertex tangents and binormals, UVs were storedoutside of mesh verties but orresponded to them and so did not need separateindies. Triangles did not store fae normals or k values, and edges did not storeindies to the original triangles, so these had to be stored separately.More advaned utting shapes would inherit the plane and store extra data. Forexample a irle would store the radius. A semi-irle an store an additionalvetor to de�ne whih half of the irle uts. Using two additional vetors or avetor and an angle allows the use of a setor of variable size.Storing edges allows some optimisations as an edge is shared by two triangles,halving the time needed in some steps, and also allows the entire mesh to beonneted. This is important for splitting the objet into multiple new objets.One problem with storing exess data to that of the engine defaults was that ithad to be stored on a per-objet basis rather than a per-mesh basis. As all ofthis data was alulated, it ould have been alulated at the time of a ut ratherthan stored. However to improve ut performane it was deided to alulate47

the data at load time and store it. This ould easily be hanged depending onthe requirements of a system.4.5 Program FlowThe �rst step is to �nd the intersetions of the triangle mesh and the uttingplane. After eah individual triangle is heked, the results are ompared to theset of possible senarios. Depending on the senario, new edges and vertiesare reated and the old triangle is replaed by new ones. During this stage theedges along the ut surfae are saved for use in the new surfae triangulationphase. After this has been done to the entire mesh, a sorting step takes plaein whih the triangles are sorted into onneted meshes representing the pieesof the objet reated by the ut. Finally the new surfaes an be triangulated.This takes plae on a per-objet basis. The orret edges along the ut fromthose saved earlier are opied, sorted, and then organised into loops, eah looprepresents a polygonal new surfae that needs to be triangulated. New vertieswith appropriate UVs and normals are reated for the new surfae. The polygonis subdivided into smaller polygons in suessive steps until triangles are found.4.5.1 Intersetion TestingWith an in�nite plane only simple plane-edge intersetions an our. When us-ing �nite planes, the shape ditates the spei�s of the intersetions alulations,but there are essentially two types of intersetions: those between the edges ofthe triangle and the utting plane, and those between the edges of the uttingshape and the triangle plane. For example, if the utting shape is a polygonthen the two alulations are almost idential. A irle would require di�erentalulations for �nding the intersetion of the irle perimeter and the triangleplane. Some further heks may be neessary when the utting plane is parallelto a triangle, suh as line-line intersetion alulations. Using inheritane, wean program di�erent utting shapes and use whihever is appropriate.For the purposes of this projet, initially a semiirle was used. This was storedas a plane, a radius and a diretional vetor representing the aeptable halfof the irle. While all the intersetion alulations were fully programmed,the deision was made to use an in�nite plane and the semiirle was dropped.Using an in�nite plane ompletely removed the need to use any alulationswhen the plane is parallel to the triangle. Only plane-edge alulations wererequired.One optimisation that was done at this step was to store the results of heks48

on triangle edges. Sine eah edge is shared by two triangles, this halves thenumber of alulations required during testing. Fortunately the data struturesused by the game engine supported this optimisation.It is also neessary to initially transform the utting plane in order to moveit into the objet oordinate system. This is more ompliated when a �niteutting shape is used and non-uniform saling may our. However the enginedid not support saling and an in�nite plan was being used, so it was not anissue for this projet. Simply transforming the plane origin and normal into theobjet oordinate system was su�ient.4.5.2 Triangle ResolutionFor an in�nite plane, there are only 5 possibilities, of whih only 4 need to beresolved. For a �nite plane, the situation is more omplex but it omes down to11 main ases that need to be resolved (see tables 4.1 and 4.2). Eah ase anbe resolved separately, with new triangles, verties and edges being saved to alist.When the utting plane is exatly along a triangle, it is a slightly di�erent asethat must be treated in a di�erent way. In fat if the utting plane is �nitethere are many di�erent ways in whih the plane an ut aross the triangle.Fortunately eah senario does not have to be onsidered separately (though itmay be more e�ient to do so). If the utting plane is in�nite there is onlyone senario and it is easy to solve. When this ours the triangle fae normalis used to determine whih side of the ut the fae is on, so if a mesh has aninward-faing triangle it will reat inorretly to a ut along that triangle.It is during this stage that the separation of parts of the mesh above and belowthe ut �rst begins. This is done by dupliating edges along the ut. Storageonventions are used to separate those above and below the ut. Triangles belowthe ut always save referenes to the �rst edge, and triangles above always savereferenes to the seond edge (therefore the �rst edge is onsidered below the utand the seond is onsidered above the ut). This is important as onnetivity isfound using these referenes - if a triangle referenes the wrong edge the objetwill not separate after the ut. The atual separation takes plae during a latersorting step.When dealing with soft bodies and a �nite utting plane, ertain extra on-siderations may need to be made. Beause the verties move independently,depending on how the system is being integrated, it may be neessary to havetwo opies of every vertex on the utting plane. This is beause an objet anbe ut without being split into new parts with a �nite plane. With a rigid body49

a vertex on the plane does not move separately, so only one vertex is needed,that is referened by both sides. In ontrast, in a soft body the oordinates andnormals will need to hange separately as the points are pulled apart.The problem with this is that if the edge of the plane intersets the edge of apolygon, it should have only one vertex. This means that ases that an beombined for a single solution with a rigid body or an in�nite plane must bedealt with di�erently in order to have only one point (see table 4.3).The points must be separate for a soft body as the oordinates will hange.However, if the utting plane's edge intersets the triangle edge it must betreated as a separate ase. If we treat it as the same ase, then we get inorretresults as the adjaent triangle should have only one vertex. Therefore someextra onsiderations are needed for soft bodies with �nite planes.4.5.3 New Objet AnalysisAfter all the triangles have been analysed and the new triangles reated, the newparts an be separated. Sine eah triangle stores referenes to edges and eahedge stores referenes to triangles, the onnetions an be followed like a tree,with eah edge, triangle and vertex found being added to lists of omponentsfor one resultant part. The fat that the edges along the ut were dupliatedfor the triangles above and below the ut means that no triangles below the utare onneted to any above, so the omponents of only one part will be addedto a list. This is repeated until all the triangles have been plaed into a numberof lists.Sine the arrays of verties and edges are hanged during this proess, the indiesstored in the triangles and edges have to be hanged. This is done during thesorting proess. A vetor of new indies is reated for verties, and another foredges. A �ag value signals that the vertex or edge has not been added to thenew lists, any other value represents the position of the vertex or edge in thenew list, i.e. the new index. As the onnetions are being followed through thetriangles and edges, every vertex or edge enountered is added to the new listsif the �ag value is found. Otherwise the new index overwrites the old one.The edge data struture did not store the onnetions to the triangles, so thisinformation had to be stored separately. The onnetivity is easily found byrunning through the array of triangles and adding the index of eah triangle toeah edge that it referenes.
50

4.5.4 New Surfae TriangulationAfter the resulting parts have been found, the new surfaes an be triangulated.A simpli�ed Delaunay triangulator [18℄ is used. The urrent system is imperfet,and further work is required, however it suessfully �lls most of the hole mostof the time.Edges along the utting plane are opied to a list, then they an be sorted intoonneted "rings". New verties must be reated, with appropriate normals andUV oordinates. In order to �nd the UV oordinates, �rst the maximum andminimum values of the oordinates on the ut surfae are found. This is used to�nd a saling fator. Using the smallest oordinate values as the origin point,eah vertex oordinate is onverted to a 2D oordinate along the plane. This issaled by the saling fator into the desired range. Currently the range is 0 to0.03, as this region of the bottom left orner of the objet texture was set asidefor the internal texture.Eah ring is triangulated separately. If the ring has three edges it is alreadya triangle and is saved. Otherwise an edge is reated from the �rst vertex inthe ring to the third (see table 4.4). This edge is tested in two ways. First theangles of the new edge with the �rst and last edges are tested to see if it is insideor outside the ring. Then it is tested for intersetions with all the other edges.If it fails either test the edge is disarded and a new edge is built from the �rstvertex to the next in the loop. If the edge passes, it is added to the list of edges.The proess is repeated reursively on both new rings. If no aeptable edge isfound the proess is repeated from the next vertex in the loop, as sometimesan edge annot be found from one vertex but an from another. A diretionalonvention is used to ensure that the edges are faing the orret diretion;therefore the resulting triangles are reated faing in the orret diretion.A ountdown is used to avoid an in�nite loop. While theoretially in a perfetsystem an in�nite loop should not our as it should be possible to triangulateany polygon with these steps, a bug in this system meant a ountdown wasneessary. The system uses a single list of edges, and pointers to the �rst andlast edge of a ring, for e�ieny. Currently there are some situations that arenot handled orretly, suh as onentri rings.Eah ring is a polygon that needs to be triangulated to form a new surfae.The triangulator tries to reate new edges between verties.This edge goes onthe wrong side of the �rst edge, and therefore is rejeted.This edge intersetsanother edge and therefore is rejeted.When an edge is found to be aeptable,the polygon is subdivided into two new polygons and the funtion is alledreursively on eah one. This edge is added to the objets list of edges.In fata new edge is added twie to the list that represents the polygon as it is part51

of both polygons. This is a separate list from the objet edge list. While onlyone list is used, iterators mark the �rst and last edge of eah polygon.When atriangle is found it an be added to the objet triangle list.In this polygon, theoriginal �rst point annot form an edge to any other points. Therefore the listis rotated but removing the �rst edge and adding it at the end of the segment ofthe list. There is now a new �rst vertex, and the funtion is alled reursivelyagain.Eventually the entire polygon is triangulated.The main ompliation that an arise is if two rings are in fat inside eahother (see table 4.5). This would be a very useful situation to be able to han-dle, as it would allow hollow objets suh as boxes or hollow bamboo to beut.Unfortunately the obvious way of heking whether any rings are onentriis very ine�ient as it involves heking a vertex from one eah ring againstall the edges of all other rings. One onentriity is found it ould be solvedby onneting two verties from the two rings.In essene this would work like asingle polygon of unusual shape, and ould be solved in the normal way.Howeverthis would not be enough, as it is possible to have many onentri rings. Thepossibility of suh situations makes analysis of onentri rings di�ult andslow, whih is why it was not onsidered in this projet. Any onentri ringsthat arise would simple eah be triangulated as a simple polygon.A �nite utting plane, however, introdues a new ompliation (see table 4.6).It is possible to have inomplete loops. This is a situation that is not onsideredby typial Delaunay triangulators.This means that the program has to jointhem together to reate full loops. In theory this is possible by joining the endpoints together to reate a loop.However there is no guarantee that there willbe exatly two loops, there may even be an odd number of loops.Using the faenormal of the triangle would be neessary to resolve this issue, but even thenthe solution is omplex. Sine it is possible for an objet to be ut but notsplit, a triangulator for a �nite utting plane would need to be re-written totriangulate the same fae twie for one objet.4.6 Game IntegrationIt was neessary to build the system around the native geometry data formatsused in the game engine. The engine allowed user made entity omponents, twoof whih were used to integrate the utting system. One was added to any itemthat ould be ut; another represented the blade and was added to the playerontrolled harater. The �rst referened the geometry mesh and stored all theadditional data needed to perform a ut. The seond was basially a wrapperfor the utting plane. Additional data was stored in both lasses for gameplay52

reasons.The game engine was not designed to allow geometry to be modi�ed, thereforeit proved neessary to save the new meshes to �le and load them again. Thisaused performane issues, as the �nal game would pause for a brief moment(on the system we were using it was approximately a split seond) when aomplex mesh was ut. Interestingly, in an OpenGL development environmentthe system would hesitate for a signi�antly longer period of time, suggestingthat the game engines memory management system was athing the �le andreading bak from memory, speeding up the proess.The in-game mesh wrapper lass took are of loading the �les and reatingnew objets. The type of new objet ould be hanged, allowing objets withdi�erent physis or game properties to be reated. For example, when uttinga shoot of bamboo, one piee would remain stuk to the �oor and immovablewhile the other would fall to the ground as a dynami physis objet. Thedynami part was also lassed as a swappable weapon, meaning the user ouldswap it with his urrent weapon.This was done using entity templates. An entity template ould be written,desribing the omponents and default properties of an entity. This templateould then be spei�ed for with the parts reated by the ut. Geometry andphysis data would be set based on the results of the ut. Presently the massis divided evenly aross the new piees. Given more development time a moreadvaned system ould be written to use an estimate of the objet size to assignmass more realistially.As mentioned in the previous example, di�erent parts ould be given di�erentproperties. However, this was limited. An objet ould have a vertex spei�edas a �xed point. Whih ever resulting piee or piees of the objet ontainedthis point would be set a �xed physis objets, meaning that they didn't movebut did interat with other moving objets. The remaining piees would use thespei�ed entity template.A partile system an be reated when an objet is ut. The partile systemmust be reated as an entity template. After a spei�ed period of time it isdeleted. One system is reated per piee after the ut, in the enter of theut surfae and parented to the piee to follow it as it moves. This was usedfor blood when enemy haraters were ut, and wood hips and sawdust whenwooden objets were ut. Other possible e�ets inlude sparks for metal objets.Wood hips and sawdust only appeared for an instant, knoked o� by the sword,while blood lasted longer.The main shortoming was that the system would disappear quite suddenly.This was not an issue with the sawdust as the entire partile limit was reated53

in the �rst instant, then the system was destroyed before the partile lifetimeexpired and more ould be reated. However, with the longer-lasting bloodpartile system, the ut-o� was very notieable and unpleasant. This ouldnot be solved without a more advaned partile generation system than thatprovided by the engine.It was found that the physis engine ould not orretly deal with a physis entitybeing parented to a moving entity. Beause of this enemy haraters weaponswere not physis objets. However, this meant that when enemy haraterswere killed their swords, separate objets parented to a bone in the modelshand, would remain �oating in mid-air as the original objet was destroyed. Inorder to solve this problem the sword had to be destroyed and replaed with anew dynami physis entity. This led to the addition of a new feature, in whihan external objet ould be spei�ed to be destroyed and replaed with a newobjet of a di�erent type. While limited, there ould be some other possibleuses for this feature.The weapon omponent stored the length of the blade, the weapon damage, andthe fore applied during a ut. The length was used for determining when anobjet had been ut. The damage was for ombat. The fore was used whenapplying fore to the piees left after a ut. The user ould pik up di�erentweapons with di�erent attributes.Beause the weapons ould not be physis objets, this had to be done byswapping all the weapons attributes with the values stored in the players weaponomponent, and by swapping the geometry mesh name of the player weaponwith the new one. Unfortunately this is imperfet in that the weapons mayhave signi�antly di�erent sizes or shapes, meaning that the free weapon mayend up with a mismathed physis shape. Additionally it limits the system, forexample it prevents the use of weapons with light soures or attahed partilesystems suh as a �aming brand.As mentioned previously, when utting omplex models the game would freezefor a brief moment. Only the enemy harater models were omplex enough toause this. Therefore a trik was used to redue the e�ets. When the programdeteted the ut, but before it was atually performed, a blood-splatter sprite isplaed along the path of the ut through the harater. This is rendered, thenthe ut is performed, then the sprite is removed. Therefore, during the momentof hesitation, the position of the ut is highlighted with a blood splatter throughthe harater. This reated a dramati e�et that inreased the impat of theut on the player, similar to deliberate pauses used by some games during high-power moves. In fat some play-testers expressed the opinion that it workedeven better than if there was no hesitation.54

During development onepts for several possible puzzles based on the systemwere onsidered. The simplest use would be to ut through obstales suh astree branhes and doors in order to pass. This ould be extended to inludewalls that look similar to normal, non-uttable walls exept for a small yetreognizable distinguishing feature. This would allow the alert player to utthrough to hidden areas and be rewarded for his diligene. Cutting standingobjets suh as thin trees in the orret angle ould reate bridges or rampsto ross dithes or limb up walls. Smaller objets would make useful steps toaess higher ground. Cutting a rope or hain ould drop hanging objets. Cuta box at the right angle and a ramp is reated. It an also be used for otherthings, for example a rope bridge an be ut at the right moment to drop anenemy into a ravine.4.7 ConlusionsThe system proved very viable for use on simple models, meaning it would workwell as a game mehani. For example, it an be used to ut environmentalobjets in order to solve puzzles. This alone ould be used to good e�et.Cutting models as omplex as haraters, however, is less feasible. There isroom for improvement in the system that may bring speeds to usable levels.The need to save the mesh to �le and read it in again was a major soure ofslowdown. Intersetion testing ould be sped up using trees. The triangulationof new surfaes was not optimised, a more e�ient system ould have a signif-iant impat. It may even be possible to perform some operations on a GPU.Therefore on powerful hardware, with a more e�ient purpose-built engine itshould be feasible.Despite the problems with harater utting in the urrent system, feedbakfrom play-testers was generally positive. People found it enjoyable, ombat inthe game was made more entertaining by the greater impat and realism of akill.The reent trend of more versatile ontrol systems would work very well withthis system. The Nintendo Wii ontroller and Nintendo DS touh-sreen areworth mentioning at this point. The DS already has a surgery game alledTrauma Centre, in whih the stylus is used as various medial instrumentsinluding a salpel. The Wii has games in whih the user ontrols a sword andother weapons using the ontroller, suh as Samurai Warriors: Katana by Koei.These would work very well with the utting system.Additionally, on modern multi-ore systems there is more likely to be spareproessing power available, making the system more feasible. All these fators55

make the utting system a realisti and promising prospet for future games.4.8 Taking It FurtherThe system ould be made more sophistiated by using more realisti uttingplanes. Using a semiirle or a quad ould work. One possible hange is to usea single line to ut. When the line is moved by a minimum amount, the oldand new positions an be used as opposite sides of a quad (or if the positionsinterset, sides of two triangles) whih is used as the utting objet. While usinga �nite plane means there are far more possible intersetion ases to deal with,the biggest issue is reating the new surfae. Using anything other than anin�nite plane reates ompliations as the edges may not form omplete loops.Using di�erent data strutures ould speed up the basi proesses. For example,arrays of addresses rather than atual objets may save time in funtions wherelarge arrays need to be re-sized. Instead of building an entirely new list oftriangles, the old vetor an be modi�ed and new triangles added to a separate,smaller list (sine most triangles aren't ut, there is no reason to have to addthese to a new list then opy them bak later).Sine only a small number of the triangles will normally interset the ut, usingtrees suh as AABB trees to hek simple intersetions with the plane wouldlikely speed up the proess of alulating the intersetions [19℄. However, re-alulating the trees for the new meshes may ost more time than is saved, itwould require experimentation to �nd out if there is an overall bene�t or not.This means that trees would be ideal for omplex meshes that would only beut one, as they would not need to be realulated. Alternately, some form oftree may be needed anyway, for example for shadowing; e�ient design ouldtake advantage of this.Textures ould be linked to triangles in a di�erent way (e.g. eah triangle has areferene to its texture, then they an be sorted when building vertex lists), thenmultiple textures an be used for one mesh, allowing for far better texturing ofnew surfaes. What's more, it may be possible to use 3D shaders with a modelfor far more onvining internal texturing after a ut. Alternately some form ofmaterial-based proedural texture generation ould be used.With a more advaned "onnetivity" system it ould be used for models withmultiple meshes, or maintain skeletal data e.g. for rag-doll physis. This wouldtake some work to �nd the best way to do it for eah appliation. For example,for multiple meshes verties that are "shared" by more than one mesh an bemarked or referened in a list. New verties reated between two marked vertieswould also be marked or added to the list. In a later stage, after all the new56

meshes have been sorted into new objets the marked verties ould be hekedto �nd whih of the new meshes are onneted through them.In theory, in the development of a full game integrating with other systems,like Natural Motions euphoria; an in-game tehnology that reates intelligentreative behavior of non-playable haraters [20℄. For example a harater hasa limb ut o� and tries to keep �ghting, perhaps piking up a fallen weapon inhis other hand.The triangulation of the new surfaes an be a rather expensive operation. Cur-rently triangulation is performed separately for eah new part, however realisti-ally the shapes of new surfaes are idential above and below uts, so it shouldbe possible to devise a sheme where the same surfae is only triangulated onethen opied rather than being triangulated above and below the ut. Further-more, it should be possible to optimise some operations in the triangulationphase.

57

4.9 Tables and FiguresTable 4.1: Possible Situations When Cutting A Triangle With A Finite Plane.

58

Table 4.2: Possible Situations When Cutting A Triangle With An In�nite Plane.

Table 4.3: Extra Cases For Soft Bodies.

59

Table 4.4: Triangulating A New Surfae.

60

Table 4.5: Triangulating Conentri Rings.

61

Table 4.6: Triangulating Cuts From A Finite Plane.

62

4.10 AknowledgmentsI would like to thank:
• Jon Maey, obviously.
• Bournemouth University.
• All of Ergophobia, for being so great and espeially for putting up withme for so long.
• Ben Chandler for helping with the maths.
• EA studios for all the help and guidane.
• Dare to be Digital, for the great opportunity.
• All my friends and family for all their support.

63

Chapter 5
The AI SystemBy Hasan Atieh.AknowledgementFirst of all I thank God.I would like to take this opportunity to thank Jonathan Maey at the NCCA,Simon Pik at Eletroni Arts, the kind people at Instint Tehnologies andHaytham Mustafa for their e�orts in providing guidane and motoring throughout the developing the AI system.Also a speial thanks goes to my parents for their support.5.1 IntrodutionAs the game development has beome a main stream industry in reent years, allaspets of game development have been witnessing onsiderable advanements.And game Arti�ial Intelligene, or AI, has reently been reeiving inreasedawareness and attention amongst game developers and players alike. This hasbeen helped partiularly by the introdution of powerful onsoles and omputerswith inreased proessing power, espeially by transferring the proessing ofgraphis from the CPU to the GPU whih freed up CPU yles for the AIprogrammers to utilise.In this hapter, the two main tasks arried out by the AI programmer will bedisussed. The �rst task desribed is the development and implementation of arelatively industry-ompliant Finite State Mahine (FSM) system for the gameAI. The developed system needs to make it fairly easy to add new states andtransition onditions and also to allow non-programmers to hange and design64

the behaviours of a non-player harater (NPC) in the game. Moreover, it needsto make it possible for the game designers to hange various properties of theagents in order to personalise the di�erent agents that share the same behaviour.The seond task is to design a behaviour model for the agents in the gamein a way that would serve the stealth gameplay elements of the game. Thisalso inludes writing the senses and the states libraries suitable for this task.The aim of this work is to suggest a behaviour that would onvey a sense ofintelligene to the agents inhibiting the game world utilising the developed FSMsystem. Again, the designed behaviour should handle the interations with theplayer to emphasise the stealthy nature of the game and most importantly in away whih makes it fun to play against.Other tasks and ontributions inluding Subtitles tool in addition to debuggingand optimisation are not disussed.The work arried out on the AI of the game is an amalgamation between a FSMsystem suggested by Simon Pik, who is a senior AI programmer at EletroniArts - UK and the FSM system desribed in Matt Bukland's book "Program-ming Game AI By Example" (2005). The implementation was extended toinlude the ability to hange the FSM of the agents during runtime whih isknown as a hierarhial FSM.Unlike the ase in a onventional aademi researh, the work arried out on thegame in general took on a development approah rather than a researh one;the di�erene being that in development, a problem must be iterated over andover until a solution is found, whereas the researh method involves analysing atehnique and possibly onluding that it does not solve the problem at hand.5.2 Previous WorkThe FSM struture is probably the most established AI tehnique used in videogames so far. Almost every game will have a representation of FSM. One ofthe most obvious implementations of FSMs in games would be the 1980 Pa-Man game. A ghost in Pa-Man an be either in the hase state, the evadestate, the dead state or the wander state and the transitions between statesare triggered by di�erent onditions. For example, eating the power pill is theondition that triggers the transition from the hase to the evade state, thewander state is triggered after the player dies. While the ghosts had the sameations for some states like the evade state, they had di�erent, more personalisedimplementations of other states. For instane, in the ase of the red ghost, theations of the hase state were to hase the player diretly while the blue ghostin the same state would simply wander randomly. (Bukland, 2005)[15℄.65

Many other games have implemented the FSM tehnique. Players in sports sim-ulations suh as the soer game FIFA2002 are implemented as state mahines.The NPCs in RTSs (real-time strategy games) suh as Warraft, make use of�nite state mahines. Car raing games fall in the same ategory too (Bukland2005)[15℄. Brian Shwab's (2004)[13℄ disusses in his book "AI Game EngineProgramming" major game genres and the AI tehniques used in them. Notsurprisingly, FSM appeared in most the genres he disussed exept for �ightsimulators.The Quake and Quake II games showed higher potential of the FSM. It is sineID Software released the soure ode to the those two projets, that people havenotied that the movement, o�ensive, and defensive strategies of the bots wereontrolled by a simple FSM. The use of FSM in these games was extended toontrol the behaviour of entities other than the bots of the game. For example,the roket had a FSM whih ontained states like spawn, �y, explode, et.(Shwab 2004)[13℄.FSMs are not the only tehnique used in deision making for NPCs. Fuzzy Logihas also be used in many areas of game AI. In the ase of 3rd person shooters, itan be ombined with FSM to form a Fuzzy State Mahine or FuSM adding anelement of non-linearity to the whole behaviour thus making it less preditable(Watt & Poliarpo 2001)[9℄. Among the reasons for not implementing a FuSM,is the small time of player-guard interation.Arti�ial Neural Networks (ANNs) an also be used as an NPC deision makingtehnique. The network an have several inputs representing the fats uponwhih the deision is to be based. Examples of suh inputs an be the healthof the agent, the weapon it has and the distane to the player. The output anbe to hase, evade or patrol. ANNs was not used in this projet due to theirinherently non-deterministi nature. The produed behaviour would have beenhard to test, debug and tweak. However, if time had allowed, neural networksmight have been implemented to ontrol whih FSM an agent needs to use atany given time in the game.The Sims o�ered a new approah to ontrolling NPC behaviour. It provideda novel ombination of A-Life and fuzzy logi to ontrol the behaviours of theagents. The idea behind whih is what the game designer Will Wright refers toas "Smart Terrain". Aording to him, the rule based approahes to AI are veryin�exible. In Smart Terrains, the ations a harater performs when interatingwith an objet is embedded in the objet itself rather than the harater. Thisallowed for the introdution of new objets to the environment, making surethat the haraters would be able to interat with them. This explains themany expansions and add ons that have appeared after the launh of the game.66

(Woodok 2007)[14℄Although this kind of approah an be useful for this type of game (The Sileneof Night), it is beyond its requirements espeially after onsidering the shorttime of player-guard interation. Also, the agents are not required to have thatlevel of interation with the environment whih makes the use of this methodunneessarily ompliated.Other AI tehniques an be applied to ontrol lower-level NPC behaviours. Anexample of whih would be the use of Potential Funtions for hasing/evadingmovement and obstale avoidane. It an also be used for swarming and �ok-ing. The basi theory behind it is to apply positive or negative fore to anentity proportional to the squared distane between it and the other entity ofinterest (Bourg & Seemann 2004)[8℄. This tehnique is lassi�ed as a low-levelAI beause it ats diretly on the oordinates of an entity. For example It anhelp an agent avoid obstales while moving from point A to point B but it doesnot initiate the deision to move in the �rst plae.5.3 Theoretial BakgroundHistorially, FSMs were �rst proposed and used by mathematiians in repre-senting and solving problems. Perhaps among the earliest referenes to �nitestate mahines would be the Turning mahine whih Alan Turing talked aboutin his 1936 paper "On Computable Numbers". (Buklands 2005)[15℄.In mathematis, a FSM (also known as Cellular Automaton) is usually repre-sented with a quadruple of sets, these are:
• A set I alled the input alphabet.
• A set S of states that the automaton an be in.
• A designated state S0, the initial state.
• A next state funtion N : S × I = S, that assigns a next state to eahordered pair onsisting of a urrent state and a urrent input.(Luger 2002)[7℄Some books add a �fth set F of �nal states whih is a (possibly empty) subsetof S to the representation of the FSM.Here is a more desriptive de�nition of FSM provided by Bukland:A �nite state mahine is a devie, or a model of a devie, whihhas a �nite number of states it an be in at any given time and67

an operate on input to either make transitions from one state toanother or to ause an output or ation to take plae. A �nite statemahine an only be in one state at any moment in time. (Bukland2005)[15℄Many types of FSMs exist and an be lassi�ed aording to di�erent fators.For example a FSM an be lassi�ed as a deterministi FSM if for every state, apossible input would math only one state transition. On the other hand, in thenon-deterministi FSM, a possible input for a given state would result in one ormore than one state transition. Other lassi�ations exist aording to wherean output is generated as in the Moore and Mealy mahines. (Blak 2006)[10℄.Implementations of FSMs in games is hard to lassify under a spei� type andin many ases a FSM an �t under more than one. However, a more games-related lassi�ation of FSMs an be found in Martin Brownlow's book "GameProgramming Golden Rules" (2004)[11℄. He spei�es two kinds of FSMs; theseare Expliit vs. Impliit.The di�erene is that in the ase of expliit FSMs, the FSM does not need toknow about the objet it is maintaining the state for. It ats like a blak boxand has events as its inputs that it uses for hanging the states. An extensionon the onept at the opposite end is an impliit FSM. Implementing expliitFSMs have many advantages over impliit ones; the soure ode beomes smallerand easier to maintain, the behaviour of game objets an be altered quiklyand easily without reompiling ode and the designers are now free to experi-ment with objet behaviours without bothering the programmers. (Brownlow2004)[11℄.The FSM system developed for this projet an be lassi�ed as a deterministiexpliit FSM.5.4 The FSM SolutionMany fators ontributed to the deision of implementing a FSM solution for thegame AI. Among these, is the power and e�etiveness of FSM in modelling NPCbehaviour. Given the requirements of the guard's behaviour of the game, FSMhas the potential to meet these requirements to a high standard if properly used.It is true that other less-deterministi AI tehniques an also provide a very goodillusion of intelligent NPC behaviour but implementing suh tehniques impliestaking higher risk due to their inherent non-deterministi nature and also dueto the limited development time frame available on hand.Other reasons for using FSMs an be attributed to the harateristis of this68

tehnique. These inlude their simpliity, ease of debugging, little omputationaloverhead and �exibility. (Bukland 2005)[15℄.Initially, the implementation of the FSM started by implementing the FSM ex-plained in Bukland's book. The output of that FSM was in the form of plaintext printing to the onsole eah state exeution and transition. Fundamentalhanges were done afterwards on that implementation in order to re�et Si-mon's approah to FSMs whih mainly implied moving the rules a�eting thestate transition from inside the states to the agents running the states. Afterthat, hanges took plae in the diretion of integrating it into Instint whih in-luded developing senses and states to produe a basi NPC behaviour. Finally,work was arried out on designing and �ne-tuning the behaviour of the guardswhih also went in parallel with adding more senses and states to extend theirbehaviour.This setion is divided into two subsetions, the �rst one deals with the devel-opment of the FSM engine. This inludes the development of the ore systemand the senses and states that plug into the FSM. The seond setion deals withdesigning the behaviour of the NPCs that inhibits the game world. Figure 5.1shows an over-all struture of the FSM system.

69

Figure 5.1: The FSM System Struture

The over-all struture of the FSM system in the game.
5.4.1 The FSM System5.4.1.1 The FSM Core.At its heart, the developed FSM system has four main lasses or types of lassesthat onstrut the ore of the system. These are the senses lasses, the stateslasses, the Sense State Map entity omponent (SSMap) in addition to theAgent entity omponent that drives the overall thinking proess. Of oursethere are many other lasses implemented but their main purpose is to addmore �exibility, abstration and organisation to the whole FSM system. Thissubsetion (The FSM Core) will fous on disussing the main lasses in detailswhile the other lasses will be disussed whenever the ontext requires but inless details. Figure 5.2 shows the over-all lasses digram of the implementedFSM system with the four main lasses having a darker bakground. Note thatonly one Sense lass and another State lass are shown as examples to avoid70

ridiulously inreasing the size of the graph.Figure 5.2: The Class Diagram

An over-all look at the lasses that onstrut the FSM system. The orelasses are oloured in pink.
The Senses ClassesThe senses inherit the abstrat Sense lass template. Moreover, they are allsingle tone lasses whih means that only one instane exists of any given senseand is therefore shared between all the agents that use that sense. All senseinstanes have a publi method alled ChekSense that aepts a pointer to anagent and returns a boolean. By passing a pointer to the agent for whih thesense is alled, the ChekSense performs the heking aording to that spei�71

agent. For example, SenseZeroHealth will all CurrHealth method of the Agentpointer to get its urrent health.In order to make it easier to retrieve and hek senses, a SenseManager whih isalso a single tone lass, is reated to hold a std::vetor of all the senses availableto an agent.The States ClassesA state lass is very muh similar to the sense lass. It inherits an abstrat Statelass template and is also represented as a single tone. Instead of a ChekSensemethod, a State lass has three publi methods. These are Enter method,Exeute method and Exit method all of whih aepts a pointer to an Agent.As the names suggest, these three methods are alled on various times aordingto the life span of the state.The Sense-State Map (SSMap)The SSMap is atually the entity omponent that delares the CSSMap lasswhih is short for Sense-State Map and not to be onfused with Casade StyleSheet.What makes this lass an important one is the fat that it holds a std::vetorof a struture alled StateLogi. This vetor represents the transition table ofthe FSM. Table 5.1 shows an example of this vetor with two entries.Table 5.1: A StateLogi ExampleFirst entry StatePatrol SensePlayerDead DoNothingSenseSeePlayer StateAlertSenseHearPlayer StateTimedAlertSenseFellowAgents StateAlertSeond entry StateTimedAlert SensePlayerNear StateFightSenseTimedAlertTooLong StateDefaultSenseSeePlayer StateAlertAn example of a StateLogi vetor with two entries.The StateLogi struture is basially the representation of the logi that needsto be followed when the agent is in a ertain state. That state is indiated byan std::string member of the StateLogi struture. In the example above, it isStatePatrol for the �rst entry and StateTimedAlert for the seond.However the atual logi of the state is represented using a std::vetor of anotherstruture alled the SenseReatPair struture. This is a muh simpler struture72

and it holds two std::string members one representing a sense to be heked andthe other representing the reation if the sense evaluates to true.To add a layer of separation between a suggested behaviour and the systemwhih runs it, the behaviour of an agent was provided to the SSMap ompo-nent via an external XML �le whih is parsed into the StateLogi vetor uponinitialisation. See lesting 4.Listing 4 An Example of the state-logi XML<?xml version=�1.0� enoding=�utf-8�?><SSMap><state name=�StateAttak�><pair sense=�SenseAttakDone� reat=�StateFight� /></state><state name=�StateReoil�><pair sense=�SenseAgentZeroHealth� reat=�StateGotCut� /><pair sense=�SenseSeAttaked� reat=�StateFaint� /><pair sense=�Default� reat=�StateFight� /></state></SSMap>The Agent.Now that enough tration has been built explaining the previous lasses andomponents, it is possible to disuss the Agent entity omponent. This entityomponent gains its importane from the fat that it serves as the entral pointwhere all the other lasses ome together. Just like the SSMap, the Agententity omponent delares the CAgent lass whih de�nes member variablesand methods to drive the FSM. Among these variables are four pointers tostates; these are for the urrent state, the previous state, the global state whihis exeuted along side the urrent state, and the default state whih de�nes themain job of the Agent in the game be it patrolling or guarding or anything else.The most important method of the CAgent lass is the HA_Update methodwhih is alled onsistently at a �xed time intervals. Listing 5 shows a simpli�edversion of the pseudo ode for this method whih an also be thought of as thepseudo ode for the ore FSM system.
73

Listing 5 A Simpli�ed Pseudo Code for the HA_Update Method.Exeute urrent stateExeute global stateLoop over the StateLogi list of the AgentIf name of a state in StateLogi list == name of the urrent stateor if name of a state in StateLogi list == "StateGlobal" then:Loop over the SenseReatPairs list of that StateLogi entryIf this Agent hek sense in SenseReatPair then:handle reat in SenseReatPair and break from the inner loopend ifend loopend ifend loopThe way this algorithm works is that for the state that mathes the urrentstate's name, the senses in the list of sense-state pairs are heked in order untila sense evaluates to true. At that point the reation that is paired with thatsense is handled by a spei� method of the agent and the algorithm breaksfrom the inner loop but arries on with the outer loop. The reason why theouter loop needs to arry on is to guarantee that the logi of the global state isexeuted. See �gure 5.3.Figure 5.3: The States Transition Diagram

A diagram showing part of the state transitions.74

In the SenseReatPair, the Sense string an be a name of a valid sense whih anbe su�xed with "not_" to inverse the value returned by the ChekSense fun-tion. The other hoie for sense is simply using the string "Default" whih willalways validate to true when passed in the ChekSense funtion. The "Default"an have the e�et of the else keyword when used in the last SenseReatPair ina StateLogi entry or it an be used to serve as a debugging option, for exampleforing a state hange. Howerver, valid values for the Reat part in the SenseRe-atPair are "StatePrevious", "StateDefault" and "DoNothing" in addition to astate name. Note that "StatePrevious" and "StateDefault" serves as a memoryof the agent. "DoNothing" an be used to keep the agent in its CurrentState oras a another debugging option.Any entity - inluding the player harater - thet needs to utilise the FSM,must have the Agent omponent among its list of omponents. In the ase ofthe player harater, it's Agent omponent runs a simple FSM that heks to seeif the agent's health has dropped to zero. If so, then it will reat by going intothe dead state whih plays the dying animation and turns o� the omponents ofthe agent. This ould have been used to add a bored state to the player whenthe player remains idle for a long time but was given a low priority for obviousreasons. Among its properties, the Agent omponent has a property that holdsthe name of the AIManager in the game whih is also an entity omponent.The Agent will register to the AIManager upon initialisation if the name of anAIManager is provided.5.4.1.2 The Senses/States Library.After having built the ore of the AI FSM system, there needs to be a numberof senses and states lasses that it an operate on. For that reason, a group ofsenses and states was developed. In addition to the importane of making whatwe had an atual game, the implemented senses and states had to emphasisea ertain gameplay style of the game whih is the stealth style. As a result,almost every interation with the player, required the guards senses to be awareof environment elements like the level of light or the noise the player was making.Also, other senses were developed like testing if a guard knew about the playerbefore getting hit by it in addition to other senses of whih results were re�etedin the sore manager. In all, 27 senses and 18 states were developed whih wereombined to propose an intelligent behaviour for the guards and introdue thegameplay elements of the game. The rest of this subsetion (The Senses/StatesLibrary) will explain only one sense and another state lass. These are the75

SenseFellowAgents and StateAlert and are provided just as an example. Forthe rest of the lasses please refer to the aompanying CD.SenseFellowAgentsAs mentioned before all the senses lasses has a ChekSense method whihaepts a pointer to a CAgent lass and returns a boolean of whether the senseevaluates to true or false. Most of the senses depend on other external entityomponents or even other senses to be able to hek for that spei� sense. Anexample of whih an be found in the SenseFellowAgents lass whih dependson the AIManager omponent in testing the state of fellow agents. Rememberthat the AIManagre knows about the agents in the game sine they register toit upon initialization. This sense will return true if a near by fellow agent is inan alert state or a similarly tensed state. Listing 6 shows the pseudo ode forthe ChekSense method of the SenseFellowAgents lass.Listing 6 The Pseudo Code for the SenseFellowAgentsGet a referene to the AIManagerGet a pointer of the agents list from the AIManagerLoop over the agents listFellowAgent = Agents list [i℄If the FellowAgent is the player harater or the same agent then:ContinueTest the state of the FellowAgentIf state name != "StateDead"&& state name != "StateAlert"&& state name != "StateTimedAlert"&& state name != "StateFlee"&& state name != "StateFight"&& state name != "StateFaint" then:Return falseChek the distane between the agent and the FellowAgentIf distane is lose enough then:Return trueElseReturn falseAgain, a sense an rely on other senses to hek its value. For example theSensePriAttaked will all the ChekSense for "SensePlayerFaingAgent" andfor "SenseInPlayerRange" in addition to testing if the player is performing theattak animation. The design of the system lends itself smoothly to this kindof implementation whih is made possible by passing a pointer of the agent tothe ChekSense method of the sense in addition to making sure the senses areheked through a member method for the agent.76

This adheres to ode re-usability by making simple senses and ombining themtogether in order to onstrut more ompliated ones.StateAlertThe states lasses have three main publi methods that an be used to speifyhow the agent will behave while in that state. These are the Enter, Exeuteand Exit. While this is not always the ase, sometimes an agent does not needto perform tasks in all three methods of the state. Nevertheless, the threemethods are alled automatially in various plaes in the ode. The alling forthe Exeute method has been shown in Listing 5. Listing 7 shows the pseudoode for the ChangeState method of the agent whih is where the Enter andExit methods for a state are alled.Listing 7 The Pseudo Code for the Agents ChangeState MethodIf NextStateName != StateCurrent -> Name then:StateNext = StateMngr -> GetState(NextStateName)StatePrevious = StateCurrentStateCurrent = StateNextStatePrevious -> ExitStateCurrent -> EnterReturn trueElseReturn falseEnd ifThe AlertState, however, needs to make hanges either on the Agent or onother omponents when entered or exited and while exeuting by an agent. Seelistings 8, 9 and 10.Listing 8 The Pseudo Code for the Enter Method of the AlertStateGet a referene to the agentInputControllerGet a referene to the agentSoldierSet the animations in the agentInputController to false (walk, run, strafe, attak,et)Set the �ght stane of the agentSoldier to trueCall the agentSoldier CreatVoals methodDisplay the subtitles of the reated voalGet a refenene to the ambient sound managerhange ambient musi to that of the suspense trakGet a referene to the sore managerInrease the number of agents alerted in the sore managerListing 9 The Pseudo Code for the Exeute Method of the AlertStateTurn the guard in plae to fae the player77

Listing 10 The Pseudo Code for the Exit Method of the AlertStateGet a referene to the agentSoldierSet the �ght stane of the agentSoldier to falseGet a refenene to the ambient sound managerhange ambient musi to that of the suspense trak5.4.2 The Proposed BehaviourOf ourse developing an FSM system is simply half of the work that needed tobe done on the agents AI. The other half was to design the behaviour of theguards utilizing the developed FSM. This task is ruial not only to push thegame in the 3rd person stealth diretion, but also to make it 'a game' ratherthan just a simulation of a harater running around.Naturally this task is more of a soft skill; i.e. the behaviour of NPCs needs tofeel right rather than neessarily be right. Aording to Simon Pik, it is generalpratie to assign the task of tweaking and �ne tuning of the NPC behaviour tothe designers. Doing so leads to better more engaging AI behaviour. (Personalommuniation, 06 Sep. 2007)[12℄.The work done on designing the NPC behaviour did not aurately adhere tothis ode of pratie mainly beause of the relatively small sale of the projeteither time wise or team-size wise. Also, sine the development of the FSMsystem was roughly going in parallel with the design of the behaviour, it wasonvenient to keep iterating on both to build the basi behaviour. Instead,the behaviour was mainly designed by the AI programmer with onsiderableontributions and suggestions from all the other team members.The designed behaviour of the guards is shown in table 5.2. It is fairly easy toread through it however, StateFlee might need some explanation. The �ee stateis entered if the health of the guard goes beneath a ertain level whih is a resultof reeiving damage by the player. This is being tested in the SenseLowHealth ofthe StateFight. While in the �ee state, the guard runs in the opposite diretionof the player and performs three tests; if the player is dead it will return toits default state, if the player is far it will go into the alert state, and if, while�eeing, an obstale is faed it will go into a desperate state mahine. This laststate is atually a separate FSM and sets the StateMahine omponent of theguard to point to the desperate SSMap omponent in the sene. The maindi�erene between the two FSMs is that the guard will not ontinue �eeingwhile in the desperate FSM sine it is theoretially trapped. Instead, the guardwill go into the alert state faing the player and will only hase the player ifthe player's harater turned its bak to it. This approah resulted in moreintelligent behaviour on behalf of the guards espeially preventing them from78

running into walls.Table 5.2: The Guards State Transition TableCurrent State Sense ReatStateIdle SensePlayerDead DoNothingSenseSeePlayer StateAlertSenseHearPlayer StateTimedAlertSenseFellowAgents StateAlertStatePatrol SensePlayerDead DoNothingSenseSeePlayer StateAlertSenseHearPlayer StateTimedAlertSenseFellowAgents StateAlertStateTimedAlert SensePlayerNear StateFightSenseTimedAlertTooLong StateDefaultSenseSeePlayer StateAlertStateAlert SensePlayerNear StateFightSenseAgentAstray StateTimedAlertnot_SenseSeePlayer StateTimedAlertSenseSeePlayer StateHuntStateHunt SensePlayerDead StateDefaultnot_SenseSeePlayer StateTimedAlertSenseAgentAstray StateFightSensePlayerFar StateAlertSensePlayerNear StateFightStateFight SensePlayerDead StateDefaultSenseAgentLowHealth StateFleeSensePlayerIdle StateAttakSensePlayerFar StateAlertnot_SensePlayerNear StateHuntSenseAgentThreatened StateBlokStateFlee SensePlayerDead StateDefaultSensePlayerFar StateAlertSenseObstale StateDesperateSMStateAttak SenseAttakDone StateFightStateBlok SensePlayerIdle StateFightStateReoil SenseAgentZeroHealth StateGotCutSenseSeAttaked StateFaintDefault StateFightStateFaint SenseFaintTooLong StateDefaultStateDeadStateGotCutStateGlobal SenseAgentZeroHealth StateDeadSensePouned StateGotCutSenseSeAttaked StateFaintSensePriAttaked StateReoilThis table shows the state transition table of the proposed behaviour of theguards.79

It an be notied from table 5.2 that the StateDead and StateGotCut does nothave any sense-reat pairs to them for obvious reasons. Also sensing that theplayer is dead in most of the states aside from the StateIdle and StatePatrol, willause the guard to swith to its default state while the same sense in StateIdleand StatePatrol will prevent the guards from testing the rest of the sense-reatpairs.5.5 DisussionAording to S. Pik, the way the industry approahes game AI, is that the AIprogrammer develops the system so that it allows the game designers to hangethe behaviour of the AI entities externally without having to refer to the AIprogrammer for eah hange. The reason being that the game designers need totest and tweak many times in order to get the right feeling of the game AI. Thiskind of approah an be very bene�ial espeially in saving the time of boththe AI programmers and the game designers. Moreover, the ompiling time ingeneral will be substantially dereased as well (personal ommuniation, 06 Sep.2007)[12℄. Of ourse in order to ahieve suh a level of �exibility, the systemmust have a lean objet-oriented design in the �rst plae.The developed FSM is relatively ompliant with the industry's approahes togame AI and relies heavily on the use of sripting in AI. Among the areasthat an be improved, is the use of a proper XML parser for parsing the statetransition XML table. The urrently implemented parser is atually a textproessor developed in ollaboration with Ali Derweesh. It searhes the XMLfor ertain strings and patterns in order to populate the StateLogi list and withno error handling. This approah was adequate for the sope of this projetbeause in most of the ases only one person was working on the AI behaviourwhih made it easy to spot any errors. However, in larger projets, a graphialbespoke AI-editing tool with XML an be more user friendly and less prone toerrors (S. Pik, personal ommuniation, 06 Sep. 2007)[12℄Throughout the game, many of the player-guard's interations were handledthrough the AI. It is not the sword's ollision with the agent's mesh that triggersthe mesh utting, it is the guard's AI testing if its in the player's range, thediretion of the player and the animation of the player. Although this has helpedin providing a rapid solution, along with avoiding the overhead of having thephysis testing for ollisions, it had its own problems and the fous here is onthe SenseAttak. The problem was that the attak animation of the player's80

harater starts by pulling the sword to the bak and then swinging it. Nowtesting if the player is in the attak animation would return true from the �rstframe to the last one. This resulted in the guards getting ut as the player hitsthe attak button before the sward reahed the guard. In an attempt to solvethis problem, the normalized timing of the animation was tested to roughlyspeify the time when the sward would naturally ollide with the guards mesh.For example after 40% of the animation time has elapsed. Unfortunately thissolution did not work beause the time values returned was inorret for the�rst frame whih made this approah useless. As an alternative, the developersdeided to try to solve this in the utting algorithm rather than in the AI. Thenew solution was to perform a short delay in the utting omponent beforepreforming the atual utting. The results of this last solution looked morerealisti, however, this approah would be hard to work with if there were manydi�erent attak animations with di�erent timings.One very important feature the game ould de�nitely bene�t from is the im-plementation of a path �nding algorithm. Although Instint engine implementsone, it is inomplete and is provided as an example. The e�et of having a path�nding feature an help make the guards look more intelligent and perhapsmore hallenging to the player. It would allow the guards to hase the playerfor longer distanes and most importantly avoid running in walls and obstales.In an attempt to work around this problem, the guards were able to sense howfar away they were from their initial position. Guards would stop hasing ifthey're astray so that the hane of walking into obstales is minimized afterthey return to their default state. The astray threshold of a guard was madeaessible from within instint studio for onveniene and guards outdoors weregiven higher values ompared to those indoors.Turning to the NPCs behaviour, in a three-day event alled Protoplay (12-14August 2007), the developers had the hane to exhibit the game and wathpeople of the publi playing the game and breaking it on some oasions. Doingso helped the developers put the theory to the test and pratially identify whatworked and what did not.Among the omments some of the people had about the game AI behaviour, isthat the guards did not pose a real hallenge to the player. Wathing peopleplaying the game, it was notied that in most of the ases, when a guard killedthe player harater, it was when the person ontrolling it did not know theontrols very well. The ombat AI ould have possibly been improved by utiliz-ing the blok state in the behaviour of the guards whih is urrently availableonly for the player harater. Of ourse that would also require more senses tobe developed to help the AI guard identifying when an attak is imminent.81

Also observing people playing the game, when the guard runs away from theplayer, players did not leave the guard and got on with the game. On theontrary, they hased the guard and made sure it was dead before they moved on.As a result, the behaviour of the guards trying to poune the player was neverexperiened by people who played the game making it an inreased overhead.That stresses the fat that designing a NPC behaviour whih 'feels' right is asoft skill that requires experiene.5.6 ConlusionThis hapter has shown how e�ient FSMs an be used in modelling NPCsbehaviour. By no means an the work done on the AI be onsidered ompleteand it an bene�t from a number of features namely a good path �nding andperhaps upgrading it to be a FuSM.In general, the AI system served its purpose. It helped emphasising the stealthgameplay elements of the game and people enjoyed sneaking up to guards andeither ut them in half or stun them, an experiene whih was also stressed bythe on-sreen feedbaks.The developed FSM has the following features:
• It is relatively easy and straight forward to add new senses and states tothe system.
• It is easy for non-programmers to deploy new added senses and states inthe behaviours of agents and also to hange and tweak the behaviours ofthe agents.
• It allows for hanging the whole behaviour of an agent during the runningof the game
• It makes it possible to personalise the agents so that no two agents areidential.
• It -to a ertain extent- adheres the industry praties by modelling thebehaviour of an agent using the widely used XML �les.In onlusion, games development is quite a hallenging �eld and game AIrequires skill-sets of di�erent bakgrounds. Programming a game AI engineevolves a lot of problem solving in addition to researh and design. In order forgame AI engines to be most e�ient it needs to enable the game designers to82

rapidly iterate and test behaviours of NPCs. Designing a NPC behaviour how-ever requires an artisti bakground and experiene as well. (Pik, S. personalommuniation, 06 Sep. 2007)[12℄.

83

Chapter 6
Input And Charater Control,Audio/Visual Programming,Gameplay EngineeringBy Ben Chandler6.1 The User Input To Charater Control Pro-essControl of the harater is broken down into several stages. The �rst stageis reeiving the input from the keyboard, mouse or gamepad. This input ishandled by the input ontroller omponent whih deides how a given inpute�ets the game. For example when in game pressing 'up' on the ontrollerwill ause the harater to run forwards, whereas pressing start will ause themain menu to appear. The input ontroller an in�uene more than just theplayer, it e�ets the whole sene and as suh there is only one suh omponentper game sene (level). In the ase of a harater input the input ontrollersets one or more state �ags in the harater ontroller depending what hasbeen pressed. For example if 'a' is pressed then the 'jump' �ag is set in theharater ontroller to indiate the harater is jumping. The third and �nalstage in the ontrol proess is the animation ontroller. The animation ontrollerreeives input from the harater ontroller when it must hange animation. Forexample, with the aforementioned jump state hange, the jump �ag set in theharater ontroller would be passed on to the animation ontroller by settingit's own 'jump launh animation' �ag. At this point the animation ontroller84

takes harge on the harater and will transition through the launhing, air, andlanding jump animations. With that said it is still possible for the haraterontroller to query the animation ontroller to �nd out what state it's in, thisproves useful for things suh as timing attaks.Figure 6.1: Flow Diagram Of Player Being Moved Forwards

A �nal note before disussing the ontrollers in depth is that the atual imple-mentation of the player's ontroller omponents and the AI's ontroller ompo-nents is di�erent. Initially they were using the same omponents, however asthe projet progressed there were various things that we wanted to do with theplayer harater that meant using it's own version of the ontrollers. In additionto that the implementation of these omponents are in a modi�ed version of theieExample.dll �le rather than in BC_Components.dll. This is beause it wasmuh faster to build upon the existing player ontroller than build another fromsrath.With the above brief summary out of the way I will now desribe some of thespei�s of the ontrollers.6.1.1 Input ControllerThe input ontroller itself was largely an extension of what was already suppliedwith the engine. That is to say, largely it ame down to more ontrols needing85

to be mapped however I still had to implement some small hanges suh as theability to invert the amera ontrols should the player prefer it. For the playersinput ontroller I also the ability to turn on and o� the sound shader.6.1.2 Charater ControllerThe harater ontroller required a lot of new and in many plaes replaed odeover what existed previously due to the large number of possible states thatthe harater ould be in. In addition to this many non-ontrol related hangeswere made, suh as syning footstep sounds to the animations. I also suppliedsome helper funtions here for use by the AI, for example getting the amountof light falling on the player or the amount of noise the player is making as wellas the more simple funtions suh as determining how far through an attakthe player is. The other task that the harater ontroller is responsible for isthat atual physial movement of the player within the world. Little had to beadded in this area, although neither jumping nor sneaking were present in thesupplied version of the ontroller and as suh they had to be implemented byhand.6.1.3 Animation ControllerThe animation ontroller, muh like the harater ontroller, required not onlyan extension of what had been done before, but in many plaes, a rewriting ofthe ode. It's biggest shortoming for what we required was that it onsideredthe harater to have animations blended and applied to the whole harater andwould not take into aount things like jumping and attaking without a messyblend between the two animations over the whole body. To ombat this it wasneessary to write a tool to split the animations into separate �les for di�erentportions of the body so that we ould, for example, attak with the upper bodywhile running forwards. Without having to have every possible ombinationof ations as an animation. The splitter takes a full body animation, suhas running, and splits it above and below the hips, in both upper and loweranimations the hip bone is present for the purpose of smooth blending arossupper and lower body setions.In order to use this tehnique muh of the animation ontroller had to be rewrit-ten in order to take advantage of the separated animations and blend upper andlower body separately. The upper and lower body states are managed by theanimation ontroller itself and not, as one may expet, the harater ontroller.This is beause from the point of view of the harater, the harater onlyneeds to know that they are running and attaking, not that their lower body86

is running and upper body is swinging a sword. Tehnially this tidies up theode, sine when the AI is ontrolling a harater for example, it an tell theharater to run without having to tell it's upper body and lower body both torun, whih would involve all of the subsequent 'an I run?' type state hek onthe animations. One way to look at it would be the harater ontroller tellsthe animation ontroller what it would 'like to do', the animation ontrollerthen sets the animations orretly. For example the harater ontroller wouldpass on that it wants to run and attak, the animation ontroller would realisethat that required the lower body to run, while the upper body performed theattak, none of whih is worried about by the harater ontroller.6.2 Sound6.2.1 Bakground MusiThe manager the bakground musi transitions the Ambient Sound Manageromponent was reated. When making the ambient sound manager, I used2D sounds as build into the engine for the musi traks and attahed themto my own manager. The manager ontrols them and mixed them based on�ags, for example 'player seen' and 'player attaked'. These �ags are in turnontrolled by the AI. The blending into and out of traks itself is logarithmias opposed to linear. This means that it is pereived volume (loudness) thatis linear (roughly), rather than atual volume. This is to ounterbalane thenon-linear volume of a sound that the human ear hears and gives a smoothertransition. Tehnially this is not quite true sine human hearing also varieswith frequeny, that is to say, it is likely that a 1000Hz sound at 1dB will havea di�erent perieved intensity to a 2000Hz sound at 1dB, despite them bothhaving the same loudness. However for the puropose of the game this level ofauray was unneessary.6.2.2 3D Sound Soures3D sound soures within the game are normally part of a larger entity. Inalmost all ases they have a sound shader light and ontroller attahed to bevisualisable. Before diving into the topi of shaders and the reation of thesound shader I will �rst disuss one very important property of the 3D soundsoure omponent provided and that is the 'destroyOnFinish' property. Thismeans that when sounds suh as footsteps are reated they an be automatiallydestroyed if this �ag is set, thereby making managing memory for suh objetstrivial. This also allows automati destrution of any objets attahed to the87

sound whih means that a lifetime is not needed to be spei�ed for the shadersine it is (optionally) destroyed when the sound is.6.3 3D Graphis6.3.1 ShadersLooking at the visual side of things, I will begin with a quik introdutionto the shader system. Shaders in Instint are written using either HLSL orassembly language, both of whih I learnt for the purpose of understanding theexisting shaders that were build into the engine. By way of strengthening myunderstanding I began by writing a simple water shader in HLSL. One it wasworking I then went on to try and takle (what I thought would be) the hardertask of writing the sound shader.Listing 11 Example Of An Assembly Language ShaderpixelShader BaseLightDi�use_1.1{ ps_1_1def 1, 1, 1, 1, 1tex t0 ; light projetedtex t1 ; di�usetex t2 ; normaltex t3 ; L (ube normal map)dp3_sat r1, t3_bx2, t2_bx2 ; N . Lmul r1, r1, t1 ; ... * di�usemul r1, r1, 0 ; ... * light olormul_x2 t0, 1, t0 ; light projetion x2mul r0, r1, t0 ; ... * light projetion}

88

Listing 12 Example Of A Similar HLSL ShaderpixelShader{ #inlude "base/materials/BaseHLSL.material"// Constantssampler2D lightProjetionMap : register(s0);sampler2D lightFallo�Map : register(s1);sampler2D di�useMap : register(s2);sampler2D normalMap : register(s3);sampler2D speularMap : register(s4);�oat4 lightColor;�oat speularPower;COLOR main(in BASE_LIGHT_PS In){ COLOR ;�oat3 light_map = tex2Dproj(lightProjetionMap, In.lightProjetionUV)* 2.0f;�oat3 fallo�_map = tex2Dproj(lightFallo�Map, In.lightFallo�UV);�oat3 di�use = tex2D(di�useMap, In.di�useUV);�oat3 normal = tex2D(normalMap, In.normalUV) * 2.0f - 1.0f;�oat3 L = normalize(In.L);�oat3 bump = lamp(dot(normal, L), 0.0f, 1.0f);�oat3 V = normalize(In.V);�oat3 H = normalize(L + V);�oat3 speular = lamp(dot(normal, H), 0.0f, 1.0f);speular = pow(speular, speularPower.x) * 2.0f;speular = speular * tex2D(speularMap, In.speularUV);.olor.rgb = (bump * di�use + speular) * light_map * fallo�_map *lightColor;.olor.a = 1.0f;return ;}}6.3.1.1 Shaders and Materials Within InstintThe shader system within Instint is intimately related to the material system,as touhed upon in 3.3.5, used to reate materials to texture sene meshes with.Indeed shaders are loated at a deeper level of the inheritane provided formaterial �les. If parent material �les were traed su�iently far bak eventuallya shader would be enountered. However the inheritane hides muh of this andwhen de�ning a material suh as in �gure 3.17 the existene of the shader isalmost hidden other than for saying whih parent material to use.Going into more depth now, material �les essentially omprise of the followingstruture [5℄ 89

Listing 13 Material File StrutureBaseMaterialName{ States{ Blending, depth and ulling options for the surfae are de�ned here}pass 0{ Class{ Shader language and required hardware spei�ed for pass here}Texture TexName1{ Texture �ags set, for example number of frames for TexName1}Texture TexName2{ Texture �ags set, for example number of frames for TexName2}...VertexDelaration{ Vertex shader inputs are de�ned here, for example position}VertexShaderConstants{ De�ne vertex shader onstants here}VertexShader{ De�ne vertex shader here}PixelShaderConstants{ De�ne pixel shader onstants here}PixelShader{ De�ne pixel shader here}}Pass 1{ ...}...} 90

With the above material de�ned we an now override it and give the shader anew texture, as was shown in the referene given immediately above, using thefollowing material de�nition.Listing 14 Overridden Material ExampleNewMaterialName : BaseMaterialName{ TextureAliases{ Here we an now override the default textures by adding for example:TexName1 = NewTextureName}}It is also possible to do more ompliated inheritane within Instint, for exam-ple a state ould be overridden in the following way.Listing 15 Overridden State ExampleNewMaterialName2 : BaseMaterialName{ States{ ullMode = none}}This would serve the purpose of turning o� bak fae ulling on any surfae towhih the material was applied. In addition to overriding material elements inthis fashion, it is also possible to de�ne ommonly used elements outside of amaterial and parent the material's element to it. For exampleListing 16 Externally De�ned Material ElementsStates CommonState{ ullMode = none}NewMaterialName3 : BaseMaterialName{ States : CommonState {}}NewMaterialName4 : BaseMaterialName2{ States : CommonState {}} 91

Of ourse this is not just restrited to states, in fat it is possible to use mostpiees of a material in this way. Elements all the way from the shaders up tothe passes an be inherited and overridden in this fashion whih gives a greatdeal of ode reuseability.6.3.2 Water ShaderThe water shader is alulated by using the inident eye ray, per fragment, toalulate the re�etion and refration rays based upon the surfae's normal mapat that point. The re�etion ray is used for an environment map lookup (the skybox) and the refration ray traverses a �xed distane under the surfae beforedoing a 2D texture lookup for the lake/river bed.Figure 6.2: Water Shader Calulations

The �nal pixel olour is then alulated by blending the two ray ontributionstaking into aount the Fresnel term. The shader was also apable ofaepting animated and srolling textures. For example in the river anon-animated version is used whih srolls, in the lake and pond an animatednon-srolling version is used.
92

Figure 6.3: Water Shader Applied To A Test Sene

6.3.3 Sound ShaderThe problem of representing sound through vision has many di�erent approahesthat ould be used. When implementing the sound visualisation I found thatsome would be more onvenient to apply than others due to the arhiteture ofthe game engine.6.3.3.1 Initial ApproahWhen starting out the initial approah was to reate a shader that would be ap-plied to every surfae, the result of whih would be the intensity of the inoming'light' from the sound soure. Formally, if
x is the point in spae being lit
xl is the position of the sound soure 'lighting' x

t is the time sine the sound's reation time
I is the intensity of the inident light at x from an individual sound sourethen the distane between them is d = |x − xl|It is at this point that I diverge from the traditional di�use lighting model inthat I alulate the intensity of inident light in the following manner:93

Firstly de�ne T (d) as the time taken for the sound to travel a distane d,typially this will be linear.ThenIf the sound has reahed the point, i.e. t > T (d)

I = f(t − T (d)), where f(t) is the intensity of the sound'swaveform at time t after reationElse
I = 0One the sound has played out the sound soure (and with it the light soure)is destroyed. As suh the waveform, due to it being �nite in duration, aneither be represented in it's 'mathematial' form in the shader(e.g.,f(t)= sin(t)

t+1), or in order to save omputation an be pre-alulated andused as a 1D texture lookup. The approah an be generalised by the use ofenvironment maps to take into aount periodi waveforms.In it's favour this approah is highly ustomisable and (fairly) auratelyrepresents the 'feel' of the wave being emitted (e.g. A spike in intensity of thesound will show up visually). Unfortunately this approah is very hard toimplement given the time onstraints based on the arhiteture of the engine[6℄. While I did get a version of this working with only a single sound soure,generalising it to many soures would have proved too time onsuming toimplementing and in all likelihood too expensive omputationally.Figure 6.4: Preliminary Sound Shader Sreenshot

94

6.3.3.2 Chosen ApproahThe �nal approah we deided upon is a ompromise between artisti ontrol-lability and ease of implementation. It relies on the built-in funtionality of theengine's default light soures, to whih I attah a omponent to ontrol themas I wish. The built-in 'box' light soures aept an attenuation texture whihis used to speify the intensity in the horizontal plane based upon the distanefrom the light soure position. They also make use of a fallo� texture whih isused for the vertial fallo�. In the ase of spotlights these textures are handleddi�erently but sine these are not used in-game I will not disuss them here.The box light itself is de�ned by a point together with a box speifying how farit an e�et over whih the textures are saled in their respetive faes. Thelighting intensity is then alulated for a point within the box by looking up theintensity in both the attenuation and fallo� textures (by projeting the pointinto the plane and line respetively). These looked up values are then multipliedto give the �nal intensity. For lari�ation see �gure 6.5 below.Figure 6.5: Light Attenuation Box and Fallo� Taken From [5℄

I modify this for the sound shader by �rstly hanging the texture for a halotype texture
95

Figure 6.6: Original Light Texture Compared To New Light Texture

(a) Original Attenuation Texture (b) Modi�ed Attenuation TextureThe new omponent then takes are of the rest by alulating how long thesound soure has been 'alive' for and saling the attenuation box, as well asintensity of the light soure by linearly interpolating the values based on theage between start and end times for the sound. This is not stritly orret inthe sense that sound waves do not physially behave like this, but visually itgives an aeptable e�et without too muh of an impat to the hardwareunlike some of the previous tehniques. The �nal e�et in-game is as below in�gure 6.7. Figure 6.7: Sound Shader Sreenshot

96

6.3.4 SkydomeThe skydome was reated using the skylab in Brye 5. I rendered out thesky from six di�erent diretions in order to form an environment map whihwas then put together in Photoshop. One onstruted I exported it using theNvidia DXT exporter. One it was in DXT format I wrote a shader to applythe texture as an environment map onto the skydome mesh.6.3.5 2D Unlit ShadersFor some surfaes suh as loading sreens, overlays and the HUD lighting wasnot important. For these ases a olletion of shaders was written to deal withseveral of the spei� ases and di�erent blend modes required. For example theHUD bakground required 8-bit transparenies, whereas other overlays required1-bit while some required no transparany at all.6.4 2D Graphis2D graphis in the game were handled by reating a quad based upon the aspetratio of the sreen. The quad's transform was then parented to the urrentamera and it's transform set so that it was a �xed distane away. Parentingit meant that it would remain �xed in front of the amera during gameplay. Itwas using this tehnique that all 2D graphis were drawn to the sreen.6.4.1 HUDIn the ase of the HUD, a template was made onsisting of several piees. Belowis an outline of the template [Listing 17℄:

97

Listing 17 HUD Entity TemplateEntityTemplate{ _name = "BC_Pakage/HUD"_desription = "HUD Entity"_omponents = "Transform:Transform,HealthTransform:Transform,LightTransform:Transform,SoundTransform:Transform,HUDManager:HUDManager,Mesh1HealthBar:Mesh,Mesh2BG:Mesh,Mesh3LightBar:Mesh,Mesh4SoundBar:Mesh"Mesh1HealthBar.MeshFilename= "MO_Pakage/models/HUDquadhealth.mesh"Mesh1HealthBar.SmmFilename = "MO_Pakage/models/HUDquadhealth1.smm"Mesh1HealthBar.TransformName= "�this.HealthTransform"HealthTransform.ParentTransform = "�this.Transform"...}Eah HUD element, for example the health bar, has a mesh and a transformassoiated with it to ontrol it's position on sreen. The health level, lightlevel and sound level bars are all parented to the bakground transform, whihin turn is parented to the amera. Additionally there is the HUDManageromponent whih ontrols how the transforms are updated. Eah frame itaquires, for example, the urrent health of the player and updates therespetive transform in the entity.6.4.2 Menus and Loading/Ending SreensThe main menu is aheived using a 3D rendered sene for the bakground. The�ashing text that appears on the start menu (saying �press A�) was aheivedby using a HUD entity. While the full funtionality of the entity type was notneeded, for the text, it su�ed to set the bakground transform and mesh up.The other transforms were then set to be o� the sreen and as suh only the textremained. The �ashing text that appears was aheived by putting an animatedtexture on the quad used for text.The loading and ending sreens we aheived by swapping the HUDbakground (the sprite that 'held' the status bars) with the respetive sreenbakground. Additionally the other elements were moved o� sreen all ofwhih was aheived via a olletion of sripts.98

6.4.3 Pikup Noti�ationPikup noti�ations refer to the text that �ashes up on the sreen during game-play to inform the player of events suh as a 'stealth kill' or 'artifat olleted'.The implementation was similar to that of the HUD entity, however due to theway in whih animated textures work in the engine it was not suitable to simplyapply an animated texture to the sreen quad. This is beause there was noway of telling it when the animation should start so if attempted this way thestart frame of the animation would not neessarily be the one intended. To getaround this materials were made for eah frame separately and a PikUpNoti�eromponent was written in order to swap over these materials and eventually killthe text one it had been displayed.6.5 Gameplay & SriptingInstint supports Lua sripting whih we used for many of the sripted gameplayelements sine often it is quiker to add and modify than the equivalent fun-tionality in a piee of ode. The other invaluable omponent supplied is that ofthe 'trigger blok'. Trigger bloks de�ne a box in spae suh that when a par-tiular objet or seletion of objets passes through them they trigger a sriptto be run. Linking the trigger bloks to the sripts allows for various gameplaytehniques to be implemented, for example, menu/end sreen transitions, objetpikups and powerups. I provide more detail and examples below.6.5.1 Sore ManagerOne omponent that had to be written from srath was the sore manager.The sore manager was a simple devie whih (unsurprisingly) kept trak ofthe various elements used to produe the sore. For example, had the playerbeen seen by guards, had they been heard, number of guards killed, et. Thesevarious variables were updated mainly by the harater ontroller & AI duringthe ourse of the game. The �nal sore is then alulated by a funtion builtinto the lass whih outputs a �le detailing the players performane during thelevel whih is displayed upon ompletion of the level.6.5.2 Menu TransitionsThe menu transitions work di�erently depending of where in the game the tran-sition is ouring. If the player is in the main menu or loading sreen then dueto lak of a player, there is no player input ontroller. However the engine omes99

with what is alled a ommand mapper. This takes input from the keyboard,mouse or gamepad and an be used to perform sene transitions by mappingthe appropriate input to a sript all to hange sene.In game, things work a little di�erently. Rather than use the omand mapperfor input, the player input ontroller is used instead. In essene there is littledi�erene between what atually happens to hange sene. A sript is alled inboth ases, however in the ase of the player input ontroller, it is alled fromwithin the ode. In the ase of the ommand mapper, it is a sript allinganother sript.6.5.3 End Sreen TransitionUnline the menu transitions, the end sreen displaying is an automated proesswhenever the player gets within range of their mission target. The end sreenis ativated by a trigger blok around the destination that the player had toget to. This then runs a sript telling the HUD manager to put the 'missionsuess' sreen over the bakground as well as alling a funtion in the soremanager to output the statistis of the players performane to a �le. This �lewas then read in and displayed on the sreen.6.5.4 PikupsThe pikups are derived from a base pikup template the important lines ofwhih are listed below [Listing 18℄Listing 18 Base Pikup TemplateEntityTemplate{ _name = "BC_Pakage/PikUpBase"_desription = "A base template for pikups."_parents = "example/seletor/TriggerVolume"_omponents = "TriggerCondition:VolumeTriggerCondition,Trigger:Trigger,Transform:Transform,Shape:BoxShape,PikUpMesh:Mesh"Trigger.sriptFile = "BC_Pakage/sripts/PikUpTrigger.lua"...}For illustrative purposes I also give an example of how the health pikup inheritsthis [Listing 19℄ 100

Listing 19 Health Pikup TemplateEntityTemplate{ ._name = "BC_Pakage/PikUpHealth"._desription = "A health pikup."._parents = "BC_Pakage/PikUpBase"._omponents = "PikUpHealth:PikUpHealth"._ompleteEntity = yes.PikUpMesh.meshFileName = "MO_Pakage/models/seletorHealth.mesh".PikUpMesh.smmFileName = "MO_Pakage/models/seletorHealth.smm"}The pikups, muh like the end sreen transition, eah use a trigger blok aspart of a pikup template in order to detet for proximity of the player. Whenthe player triggers the blok, a sript is run, whih in turn runs a member fun-tion of the pikup entity omponent within the entity. This member funtionperforms the pikup-spei� funtionality, for example adding health, followedby spawning of any feedbak entities and �nally destroying itself.6.5.5 Footstep TogglingIn order to hange the footstep sounds over various surfaes trigger bloks wereone again employed. This time the harater ontroller had a member variableadded whih ontained the name of the template that would be used to reatethe footstep entity. When the animation triggered the footstep entity to bereated it would use this template for it. Similarly a template was spei�edfor the partile system to use for any dust or splashing partiles to reate ona footstep. Eah of these variables was hanged by a sript alled when theplayer entered/left an area (trigger blok). For example going from a stone�oor indoors to grass outdoors hanged the footstep sound template from astone sounding footstep to a grass one. It should be noted that these footsteptemplates aren't just sound soures, the templates also ontain a sound shaderlight soure and a sound shader ontroller for managing the sound shader light.6.5.6 FloorboardsThe reaky �oorboard was simply reated using a trigger volume whih alleda sript to reate a reak sound. Like the footsteps it also had a light soureand sound shader manager as part of the entity. The entity itself ound be usedfor a more general group of e�ets in whih the player triggers a sound, it isnot spei� to the reaking sound. It ould even be used for fairly ompliated101

e�ets suh a water dripping on the �oor, whih if you stand underneath it itstops. Sadly due to time onstraints this did not get into the demo in time.6.6 Partile E�etsInstint supports a very powerful partile e�ets system with many speifyableproperties. The properties that an be spei�ed fall under three main ategories.These are
• Emitter
• Behaviours
• GraphisThe emitter setion allows the designer make hoies about the shape and ex-tents of the objet that the partiles are emitted from as well as the rate atwhih they are emitted. The behaviours setion ontrols parameters suh as thefores to be applied as well as any olour transitions that should our over thepartile's life. In the graphis setion one an hange the orientation of parti-les with respet to the amera as well as any material properties they wish tospeify beyond the simple transitions spei�ed in the behaviours setion.Partile e�ets were used extensively in the game, some of the uses of whih Idetail below.6.6.1 WaterfallThe waterfall partile system was used in the garden at the beginning of thelevel where the stream from the mountains �ows into the pond. It uses twopartile systems in order to reate the e�et, one for the falling water dropletsfrom the top of the fall and one for the mist generated at the bottom of the fall.Eah of these systems has a di�erent sprite assoiated with it as visible in thesreenshot below.The emitter volume for eah system was a long thin box alligned with the edgeof the waterfall. One at the top and one at the bottom. In the ase of thedroplets they were given no initial fores and left to simply fall under gravity.With the mist gravity was ignored and the initial fores were random upto aertain maximum fore.

102

Figure 6.8: The Waterfall Partile System

6.6.2 CloudsThe loud partile system, as one would expet, is positioned in the sky. Ad-ditionally however it is used for the puropse of mist over the lake. The emittervolumes for these are, as with the waterfall, long thin boxes. The olud emitteris positioned just behind the mountain, the other under the jetty. The systemitself is the simplest used in the game and onsists of only one sprite. Due tothe slow nature of the loud movement it was possible to use very few partilesto over the sky provided they were su�iently large and had quite a long life-time. In-game there are approximately 150 partiles used at any one time onthe louds and another 150 for the mist. The way in whih the louds work isby additively blending the sprite over the top of the skydome bakground usinga very low alpha value.

103

Figure 6.9: The Cloud Partile System Within The Game

6.6.3 TorhesThe �aming torhes have di�erent implementations depending on whih torhtype it is. In the ase of wall torhes 6 partile types were used, in the ase ofthe freestanding torhes 7 types were used. The torhes are the most expensivepartile systems in the game eah one oming in at around 400-800 partiles.In the ase of the freestanding torhes an additional e�et I added was to applyrefration when looking through the �ame to what was behind, as if the heatwas making the torh's bakground shimmer. This was aheived by reating asingle billboarded quad within the �ames and applying a refration shader ontoit whih refrated the framebu�er.

104

Figure 6.10: Freestanding Torh Sreenshot

6.7 ToolsDuring the ourse of making the game I wrote several helper funtions, sriptsand appliations just to make the proess �ow more smoothly. The funtionsthemselves were added to BC_Components.dll and the header was supplied tothe other pakages for use in external ode.6.7.1 Rayasting FuntionsOne set of funtions that proved useful was the ability to perform rayasts whihI mainly used to determine the orret position for the amera so that it didnot go behind walls. Instint supports rayasts as part of the build in physis,however these funtions made it simply one line to perform various ray queries,rather than numerous preparatory ones. One thing we had to be areful of wasthe use of the various physis objets beause due to the rayast being a physisquery it ollided with the ollision mesh for an objet whih in many ases wasnot it's atual mesh. More problematially the trigger volumes used for manythings as disussed in 6.5 ounted as as ollidable geometry. Therefore walkingthrough a door for example whih had a trigger volume to hange footsteptemplate ould fore the amera forwards sine it ouldn't 'see' the player due105

to the volume being in the way. This issue was got around by the use of 'ollisionmasks' whih allow the designer to selet whih types of items the ray an ollidewith.6.7.2 String Conversion FuntionsInstint has it's own string format, but often we would want to use STL strings,for example. Therefore I wrote various onversion funtions both to and fromtheir format and STL.6.7.3 Animation Splitting ToolIn order to use the animations with our ustomised animation system, the an-imations needed splitting �rst. I reated a GUI driven tool written in VisualBasi for use by the artists to split up the animations from Instint's own formatinto two animations, still in the orret format for Instint, but separated intoupper and lower body �les. This was aheived by supplying the tool with two�les, eah listing the bone names that would be searhed for and kept, one forthe upper body and one for the lower body.Figure 6.11: Sreenshot Of Animation Splitter

106

6.7.4 Code Writing ToolDuring the writing of the harater ontroller it beame neessary to write atool to automate some of the repetitive ode writing. The reason for this wasdue to the large number of animations that needed to be set. In terms of settingand getting anamations there were 96 funtions to write, eah funtion beingapproximately 25 lines long. While it would have been possible by hand thefuntions themselves were not trivial to write and various uses of the funtionswere required in the ode. For example the de�nition and delarations for thefuntions were in the same �le, however the funtions needed de�ning in thelass, so a seperate list of predelared funtions had to be written to go there.Additionally interfae funtions had to be written so that the various sriptingproesses within Instint ould funtion. This meant that animations alone raninto literally hundreds of funtions. For that reason I implemented a methodof automating the ode writing whereby the user ould speify a template forthe ode, together with what varied from funtion to funtion. The tool ouldbe run and ode was output, based on this template and the inputs for thevariables, for example funtion name.6.7.5 Pakage Synhronisation SriptsI wrote the sripts we used to synhronise our work over the network. Theyonsisted of sripts to upload a newer version of our own work to a entral server,as well as download the latest (uploaded) version of everyone else's work. Thesripts were simple bath �les that relied on using the ommand prompt (md)ommands.

107

Chapter 7Charaters and AnimationsBy Seb Huart / Matt Osbond7.1 Charater DesignThe enemy haraters were based on skethes of Imperial Guards from the Edoperiod of Japanese rule. This gave the haraters a more stylisti feel, withelements suh a large sword, baggy trousers and tied bak hair ombining togive an artisti look. Figure 7.1: Design Sketh

(a) All major assets in the game began as a2D design sketh. 108

7.2 TexturingIt was important to allow the textures of the haraters to be onsiderably highresolution. This was espeially the ase with the main harater (the ninja) asit would be permanently within the players view, not to mention lose up.Figure 7.2: Ninja Texture Map

(a) The texture map was reated from one alrge UV output.
7.3 Animation CylesThe ompliated nature of the movements involved with a stealth game meantthat the rigs for the haraters had to be versatile. The yles were reated109

as a small loopable animation lip that were then belnded together using theharater ontroller. Figure 7.3: Guard Animation Rig

(a) The rig was developed to allow for a greater freedomof movement.

110

Chapter 8
Feedbak and CritialAnalysis
8.1 Feedbak Sheet - ProtoplayAt the �nale of the Protoplay event, the teams were presented with a sheet offeedbak. This was a ollated list of responses from the judges in the ompeti-tion:

• Should have spent more time re�ning fewer features
• Looked somewhat un�nished
• Gameplay simple but not partiularly unique
• Lot of potential with further development
• Sound detetion visually interesting
• Dissetion tehnially impressive
• Nie harater pro�les. Clear to see what was happening in game world
• Seemed to be trapped within graphi styles
• Nie ideas - good job of exeuting di�ult plan
• Tehnology good but let down by being typial ninja game
• Ambitious projet but don't think they foussed on what they wanted todo very well 111

• Left me with unmathed expetations
• Good bakgrounds, sonar nie but not di�erent enough, story well thoughtout
• Publi vote - bottom third of tableThe general onsensus is that there is nothing wrong with the game, it's justthat it was a) not polished enough, and b) not original enough.These are two valid points, but unfortunately it is too late to do muh aboutthe seond one. However, we were given the opportunity to fous on polishingthe game, and as suh have done so for submission.8.2 ConlusionThe game presented us with numerous hallenges along the way, from smallhurdles suh as textures not mapping orretly to game breaking engine troubles.The ability of the team to overome eah of these hallenges is a testamentto both their determination and their team spirit. Communiation amongstmembers was ritial to suess.The �nal produt is of a standard that many judges and professionals on�rmedwas loser to industry level than any other prodution at the event; on oneoasion a senior member of a respeted ompany mentioned that if they wereto ask their programmers to develop the features of the game within the sametime frame then they would struggle to do so. The main drawbaks seemedto be, as aforementioned, the unoriginal idea and the lak of polishing. Theseelements, in fairness, were not our primary area of fous (impressive visualsand tehnology were), but knowing that a simple element suh as last minuteiteration let us down is a lesson we will all take away with us.Although it is of ourse disappointing that we did not make it through to the�nal round, the experiene of working within a professional environment atindustry level is invaluable. Likewise, suessfully seeing an entire produtionthrough from onept to realisation is valuable to us all in terms of experieneand employability. The �nal game is of a quality that surpasses any expetationsthat were held at the beginning of the prodution. This is due partly to thepressure that was plaed on us via the submission of the projet for not onlythe ompetition, but also our dissertation. However, the main fator is that theprodution was a steep learning urve for us, as we all left at the end with a fargreater knowledge of not only our subjet areas but also the game produtionindustry in general. 112

Appendix A
Sheduling and ProjetManagement

113

A.1 Initial SheduleFigure A.1: The Team's Shedule

114

A.2 Post-It BoardFigure A.2: The Team's Post-It Board

115

Appendix B
Sreenshots

116

Figure B.1: Early Sreenshots

117

Figure B.2: Sreenshots Near Completion

118

Appendix C
Design DoumentThis page is intentionally left blank.The Design Doument is loated at page 124

119

Bibliography[1℄ Szalai, G. 2007. Video game industry growth still strong [on-line℄. California, The Hollywood Reporter. Available fromhttp://www.hollywoodreporter.om/hr/ontent_display/business/news/e3if5f9e6af1f789e828399b0253e7b78d[2℄ Cook, D. 2007. The Chemistry of Game Design [online℄. California, Gama-sutra. Available from http://www.gamasutra.om/view/feature/1524/the_hemistry_of_game_design.php?print=1[3℄ Srum Methodology: http://www.ontrolhaos.om/ andhttp://www.softhouse.se/Uploades/Srum_eng_webb.pdf[4℄ Piture Referene: http://www.rokstargames.om/maxpayne/main.html[5℄ Instint Engine Doumentation: loated within the Instint 'dos' folder[6℄ Instint Engine Pakage Referene: loated within the Instint 'dos' folder[7℄ LUGER. G.F. 2002. Arti�ial Intelligene strutures and strategies for om-plex problem solving. Pearson Eduation Ltd: Harlow, England UK[8℄ BOURG. D. M. and SEEMANN. G., 2004. AI for Game Developers.O'Reilly Media, In.: USA.[9℄ WATT. A. and POLICARPO F. 2001. 3D Games , Real-time Renderingand Software Tehnology. Pearson Eduation Ltd: Harlow, England, UK[10℄ Blak. P. E., "�nite state mahine", in Ditionary of Algorithms and DataStrutures [online℄, Paul E. Blak, ed., U.S. National Institute of Standardsand Tehnology. 24 February 2006. (aessed 31 August 2007) Availablefrom: http://www.nist.gov/dads/HTML/�niteStateMahine.html[11℄ BROWNLOW. M., 2004. Game Programming Golden Rules. [on-line℄. Charles River Media., VA: books24x7.om. Available from:http://library.books24x7.om/book/id_10420/120

viewer.asp?bookid=10420&hunkid=0164695988 [Aessed 8 September.07℄[12℄ Pik, S., (____�europ.ea.om) 6 Sep 2004. RE: Please Advie. e-mail toAtieh, H. (has981�hotmail.om)[13℄ SCHWAB. B., 2004. AI Game Engine Programming. [on-line℄. Charles River Media., VA: ebrary.om. Available from:http://site.ebrary.om/lib/bournemouth/Top?id=10074871&layout=home[Aessed 30 August 07℄[14℄ Woodok, S. M., 2007. Game AI Resoures: State Mahines & Agents.Available from: http://www.gameai.om/ [Aessed 8 September 2007℄.[15℄ BUCKLAND. M., 2005. Programming Game AI By Ex-ample. [online℄. Wordware Publishing, VA: books24x7.om.Available from: http://library.books24x7.om/book/id_9482/viewer.asp?bookid=9482&hunkid=0722540724 [Aessed 9 Septem-ber 07℄[16℄ BIELSER, D., MAIWALD, V. Interative uts through 3-dimensional softtissue, Computer Graphis Forum 18(3): C31-C38, 1999.[17℄ BRUYNS, C., MONTGOMERY, K. Generalized Interations Using VirtualTools Within the Spring Framework: Cutting, Mediine Meets Virtual Re-ality (MMVR02), Newport Beah, CA, January 23-26, 2001.[18℄ SHEWCHUK, J. Engineering a 2D Quality Mesh Generator and DelaunayTriangulator, 1st workshop on applied omputational geometry, Assoia-tion of Computing Mahinery, Philadelphia, pp 124-133.[19℄ VAN DEN BERGEN, G. 1998. E�ient ollision detetion of omplex de-formable models using AABB trees. Journal of Graphi Tools 2 (4) 1-13[20℄ http://www.naturalmotion.om

121

Index3D Studio Max, 36AABB trees, 56AI, Plaing In The Environment, 32Arti�ial Neural Network, 66Autodesk Maya, 36Brye, 97Charater Control, 73, 86Charater Design, 108Cutting, Design, 46Cutting, Integrating Into Instint, 52Cutting, Testing for Intersetions, 48Dare to be Digital, 9Deterministi FSM, 68Dynami Link Library, 15, 85, 105Entity Component, 12Entity Manager, 12Entity Template, 13Ergophobia, 18Expliit FSM, 68Fable 2, 34Finite State Mahine, 64�73, 75, 78,80, 82Footstep Triggers, 43Fresnel, 92Fuzzy Logi, 66Gameplay Objetives, 31Gameplay Options, 28hardware, 10, 11, 35, 55

HUD Control, 98Impliit FSM, 68Instint API, 10Instint Arhiteture, 10Instint Con�guration, 15Instint Exporter, 36Layer, API, 10Layer, Appliation, 12Layer, Core, 10Layer, Entity, 11Layer, System Component, 11Level Design, 24Lighting, 40Lua, 99Materials, 38Mirosoft Visual C++ 2005, 15Modules, 10Non-deterministi FSM, 68Non-Player Charater, 65�69, 78, 81�83Nvidia DXT, 97Optimisation, LOD, 42Pakages, Base, 16Pakages, Developer, 17Pakages, Referene, 17Pakages, Tools, 17Partile Systems, 102Photoshop, 37, 97Pikup, Artefat, 30122

Pikup, Health Pak, 30Pikup, Weapon Ampli�er, 30Player, Rewarding, 29Polygon Count, 35Portal Areas, 41Portals, 41Potential Funtions, 67Primary Entities, 12Projet Management, 20Protoplay, 81, 111Rayasting, 105Sene File, 12Sripting, 13Srum, 22Shaders, 88Skydome, 97Smart Terrain, 66Sound Design, 43Sound Shader, 93�95STL strings, 106Texturing, 37Visual Basi, 106Water Shader, 92Zoho Projets, 21

123

