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1 Introduction

Fire has fascinated us ever since early humans had the idea of rubbing two
sticks together. It is a dangerous, otherworldly phenomenon, which perhaps
our brains, billions of years in the making, are unused to dealing with in daily
life, and therefore pay extra attention to. Fire symbolizes rage, con�ict and
destruction, and stories of rage, con�ict and destruction have always interested
people. Nowadays, we tell these stories with sounds and moving pictures. Many
movies require the depiction of �re, particularly action movies, and the danger
and expense of working with �re mean a director often needs to use tricks and
sleight of hand to make the viewer believe something happened which would be
too dangerous or expensive to actually shoot.

Like with many things, there are certain shots which would be di�cult or
impossible to create by shooting real �re - the director may want a slow motion
shot of a petrol �ame, following a tiny piece of debris as it tumbles away from
the con�agration at high speed. They may want an impossibly fast �ight out
of a mine shaft just as a coal dust explosion gathers momentum, with �ames
licking round the edge of the visual �eld. Along with this, real �re can be
di�cult and expensive to work with for safety reasons, and a director may want
an alternative means of creating a shot. Because of this, software which renders
convincing images and animations of �re can be a useful tool. This project
focuses on the development of such a tool.
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2 Previous Work

There are two approaches one can take when creating CG �re. When creating a
highly stylized shot, for a cartoon, or perhaps a magic spell in a live action movie,
it may be preferable to eschew physical accuracy and create a system designed
with artistic control in mind. Foster and Lamorlette take this approach in [3],
where they explicitly model the structure of a �ame by using control curves
carried through a wind �eld. Portions of these curves stochastically split o�
from the main control curve to create the pu�s and plumes seen in a natural
�ame, and the �ame is rendered volumetrically using noise �elds. This system
was used to create the �re e�ects in the animated �lm Shrek.

If more realism and less artistic control is required, for example, if a �re is
to take place as a background element of a live action shot, it may be better to
create an animation based on the actual physics of �re. This can be achieved
using �uid simulation software, something which has become commonplace in
3D animation lately, and was used to create the oil �re in the lobby in the
�lm Poseidon (2006), using the �uid simulation package FlowLine. This is the
approach taken by this project.

The simulation of real world materials like solids, liquids and gases, which
typically requires large amounts of memory and computing time, has become
ever more common in visual e�ects, due to the increasing power of modern
computers. This kind of simulation normally involves taking the equations
governing the behavior of the material and using a computer to calculate its
motion based on equations. The engineering community has worked on this
kind of problem for decades, and has developed a great deal of expertise, and
many very accurate techniques, but until recently these techniques have required
top end supercomputers, making them unsuitable for creating animations.

Fire is a gaseous phenomenon, technically a �uid, and the �eld of numerical
�uid simulation is known as Computational Fluid Dynamics (CFD). CFD is
largely underpinned by the so called Navier Stokes equations, which describe,
on a very basic level, how the motion of a �uid changes in time. The �rst
published attempt to use these equations in computer graphics was a paper
by Foster and Metaxas[26], who used earlier work by Harlow and Welch[29]
to create animations of liquids. Since then, a large amount of work has been
done in the �eld of �uid simulation for graphics, producing software capable
of animating liquids of varying viscosity, viscoelastic �uids like chewing gum,
sand, gases, �re, and the interactions between these di�erent media, as well as
two way interactions with rigid bodies.

Many commercially available software packages for the visual simulation of
�uids have come from this work. Examples of packages which can handle �re
are Maya's inbuilt �uid simulator, the software package FlowLine from German
VFX house ScanLine, and the 3ds max plugin FumeFX.
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3 Modeling The Dynamics of a Flame

Fire is a gaseous phenomenon, consisting of turbulent, incandescent gas and
soot, driven by a chemical reaction between an oxidizer and a fuel[7]. A �ame
can be satisfactorily modeled as a very fast reaction in a gaseous state, with a
region of vaporised fuel, separated from a region of hot exhaust gases by a thin
reaction surface. This reaction surface spreads into the fuel region according to
certain rules, causing a rapid expansion of the gas it crosses. To correctly model
the behavior of a �ame, one must model the dynamics of the gas on either side
of this surface, the motion of the surface itself, and the expansion caused by the
reaction. This requires the modeling of �uids.

Fluids can be simulated in a number of ways, each with their advantages
and disadvantages. Broadly speaking, �uid models can be divided into two
categories: Eulerian and Lagrangian models[17]. The two approaches di�er,
essentially, in that Eulerian models store �uid properties like pressure and �uid
velocity on a structure which is �xed in space, and track the evolution of those
properties in time, and Lagrangian models use structures which move with the
�uid, like a moving tetrahedral mesh or a collection of particles. A third ap-
proach, the Arbitrary Lagrangian Eulerian (ALE) approach[18], lies between the
two. Currently, the most widely used technique in computer graphics uses an
Eulerian cubic grid, and is based on the so called �Stable Fluids� algorithm[23].
This algorithm is explicitly based on the partial di�erential equations govern-
ing �uid dynamics, and solves them numerically. An implementation of this
algorithm forms the core of this project.

3.1 The Euler Equations

The simplest equations describing �uid dynamics are known as the Euler equa-
tions, which are a special case of the Navier Stokes equations. They describe
�uids with no internal forces other than pressure, which acts radially on pairs
of particles in the �uid and conserves energy. The Euler equations are a good
model for the behavior of �re, as other internal forces like viscosity are usually
very small under the conditions being considered, and also tend to damp the
turbulent e�ects which make �re and smoke visually interesting. The Euler
equations describe the evolution of the �uid velocity �eld u in time, in terms of
the pressure p, density ρ and external forces acting on the �uid per unit volume,
f . The equations are summarized in equation 1:

∂u

∂t
+ (u.∇)u +

∇p− f

ρ
= 0 (1)

In terms of individual components of u = (u, v, w), equation 1 can be written:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+

1
ρ

(
∂p

∂x
− fx

)
= 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+

1
ρ

(
∂p

∂x
− fy

)
= 0
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∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+

1
ρ

(
∂p

∂x
− fz

)
= 0

Most �uid phenomena we see can be modeled adequately as incompressible
�ows, meaning that any given �uid element preserves its volume as it is carried
along with the �ow. Compressible e�ects only become important under extreme
conditions, for example an explosion, the �ight of a bullet or the mechanics of a
supersonic jet engine (and of course sound, which is completely invisible), and
can therefore be ignored for most applications in computer graphics. This is
convenient, as compressibility leads to complex phenomena like shock waves,
which require sophisticated, computationally expensive algorithms.

The incompressibility condition is equivalent to saying that the total �uid
�owing out of any volume is equal to the �uid �owing into that volume. This
can be stated as follows: ∮

s

u.n̂dA = 0

Where S is any arbitrary closed surface, n̂ is a unit outward facing normal
to the surface and dA is an area element. The in�nitesimal quantity u.n̂dA is
the volume of �uid �owing out of an in�nitesimally small patch of the surface S
per unit time - summing this over the surface gives the total �uid �owing out of
the surface, which must be equal to zero for no �uid compression to occur. If u
is su�ciently continuous, then by the Divergence Theorem[27] this is equivalent
to: ∫

V

∇.udV = 0

Where, in Cartesian coordinates, ∇.u = ∂u
∂x + ∂v

∂y + ∂w
∂z , V is the volume

enclosed by the surface S, and dV is a volume element. Since the volume is
arbitrary, and therefore the equation must hold for all volumes, it follows that
the integrand must be zero everywhere, and we arrive at the incompressibility
equation:

∇.u = 0 (2)

3.2 Solving the Euler Equations

The Euler equations can lead to very complex behavior, which along with the
very complicated and unpredictable driving forces the �uid is subjected to,
make them impossible to solve symbolically. We instead search for approximate
numerical solutions to the equations, by �discretizing� them: we split the spatial
domain into cubic cells, and the time domain into discrete steps. There are many
ways of doing this, but we settle for a so called ��nite di�erence� approach, where
quantities are de�ned at regularly spaced points, and derivatives are estimated
by taking di�erences.
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The simplest, most common pattern used for de�ning quantities in �nite
di�erence simulations is on a cubic grid. We refer to quantities on such a grid
using three integers, denoting the Cartesian coordinates of the cell on the grid,
which we write as subscripts separated by commas after the quantity. For
example, ci,j,k refers to the value of the quantity c stored at the grid point i
cells along the x axis, j cells along the y axis and k cells along the z axis. We
store some quantities at points between grid cells, for example at the center
of one of the cell's faces, which we will represent using fractional indices. For
example, the quantity qi+ 1

2 ,j,k is located on the positive x face of the cell whose
coordinates are i,j,k.

Foster and Metaxas[26] did the �rst published work on using the full 3D
equations of �uid dynamics for computer animation, and essentially did so by
writing down the equations governing the �uid, and replacing all derivatives
with di�erences, for example:

∂u

∂x
'

ui+1,j,k − ui,j,k

4x

∂u

∂t
'

ut+1 − ut

4t

Where 4t is our time sampling interval, 4x is the width of one cell on our
spatial sampling grid, and the subscripts i, j, k and t refer to integer locations
on the sampling grid. They then used the resulting equations to estimate

∂u
∂t

at a given instant in time, minus the contribution due to the pressure term,
multiplying that by the time step and adding the resulting quantity to the
velocity �eld, obtaining an intermediate velocity �eld. They then used iterative
methods to generate a pressure �eld which changed the motion of the �uid
such that equation 2 was satis�ed at every time step, and recorded the time
steps to create an animation. This approach runs into di�culties: it is unstable
for large time steps, meaning that small errors tend to amplify themselves and
grow without limit, and within a few frames the simulation explodes, rendering
it useless[1]. The time step restriction also becomes more stringent as the grid
resolution is increased, making this approach potentially very expensive. The
stable �uids algorithm addresses this shortcoming.

3.2.1 The MAC Grid

Before discussing how to solve the equations, we must establish how to arrange
and interpret the data grids the algorithm operates on. This is straightforward
for scalar quantities like pressure - we just store them at regular intervals on a
cubic grid. We could also choose to store the components of our velocity �eld
at the same locations - however, this can lead to problems.

Equations 1 and 2 involve the derivatives of vector quantities a�ecting those
of scalar quantities and vice versa. For example, one of the terms in equation 1
relates the time derivative of the x component of velocity with the derivative of
the pressure �eld in the x direction. The question is: how do we approximate
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the pressure derivative on our discrete grid? If we are storing the velocities at
the same location as the pressures, we can approximate it as follows:

∂p

∂x
' pi+1,j,k − pi,j,k

∆x

This method of taking a derivative has a major disadvantage however - it
is one sided, meaning information only propagates from one direction, and this
can introduce strange biasing artifacts in a simulation. Additionally, it turns
out that there are ways of estimating the derivative which give better accuracy.
It can easily be seen that this particular derivative operator, known as a one
sided di�erence, gives an exact result for the derivative of p if p(x) is of the
form p(0) + ax - a �rst order polynomial in x. Because of this, we say this
method is �rst order accurate - it turns out that if we use it to estimate the
derivative of any higher order polynomial, the error in the estimate will have
terms proportional to ∆x and higher1. We can do better than this by taking a
so called central di�erence:

∂p

∂x
' pi+1,j,k − pi−1,j,k

2∆x

It can be shown that this estimate gives an exact result for quadratic polyno-
mials in x, and is second order accurate - the error in the estimate has terms in
∆x2 and higher, decreasing much more quickly as ∆x becomes very small than
with the �rst method. It also has the advantage that information propagates
both ways.

Unfortunately this method also has a serious disadvantage. If, for example,
pi is de�ned as 0 for even i and 1 for odd i, then taking the central di�erence
anywhere will yield a zero derivative - something which is obviously untrue.
This is known as a �null space� problem, and can lead to �parasitic� oscillations
in a simulation, which in general there is no satisfactory way around.

Harlow and Welch[29] solved these problems by proposing the Marker And
Cell (MAC) grid structure, in which quantities like pressure are stored on a tra-
ditional cubic lattice, but instead of storing the velocities at the same locations,
their components are split and stored on separate faces of the cubic cells. For
example, the x components of the velocity are stored on the +/-x faces of the
cells, etc. With this structure, we can still take central di�erences if we wish
to know the derivative of the pressure where a velocity component is stored,
avoiding bias and retaining second order accuracy, but we now have no null
space problem.

3.2.2 Operator Splitting

A central idea of the stable �uids algorithm is that of �operator splitting�. In
this scheme, instead of calculating

∂u
∂t and adding on the update all in one step,

1Actually, this is the case for any smooth function, for example sin(p), because any function
like this can be written as a polynomial of in�nite order using Taylor series.
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we split
∂u
∂t into its separate terms and update the velocity �eld separately for

each one, using techniques specialized for each term. These techniques may be
optimized for stability, accuracy, or computational cheapness if they are not
particularly problematic. To advance the simulation forward by one time step,
we perform the following steps in order:

3.2.3 The Advection Term

The so called advection term is dealt with �rst, under the assumption that
the velocity �eld already satis�es equation 2, and we perform this step of the
algorithm by solving the equation

∂u
∂t + (u.∇)u = 0 for a single time step.

Advection refers to the passive motion of objects or quantities through a moving
�uid. If a quantity c (vector, scalar or otherwise) is passively carried along with
a �uid having a velocity �eld u, then it will satisfy the so called advection
equation:

(
∂

∂t
+ u.∇)c = 0

This equation is derived by requiring that rate of change of c, measured at
a point co-moving with the �uid, remains constant. In fact, the operator on
the left of c in this equation, ( ∂

∂t + u.∇), is known as the convective derivative,
and measures this rate of change. The advection term of the Euler equations
is essentially this equation, with the quantity c replaced by the velocity �eld u
itself.

In engineering applications, where a high degree of accuracy is required,
the advection term is usually solved by explicitly considering the derivatives,
using sophisticated approximations. These techniques often pose restrictions
on the time step, and are generally quite computationally expensive. Stam
[23] proposed a way of avoiding these time step restrictions, by using the so
called method of characteristics - an intuitive way of looking at the advection
problem, which works by exploiting the fact that the quantity being advected
is constant at a point co-moving with the �uid. The paths followed by these
points are called �characteristics�. To advance �nd the value of c one time
step into the future at a position r, we simply walk back by a single time step
along a characteristic starting at r, and evaluate c at the point we end up
at. To walk back along a characteristic, we can use Euler's method2 and set
r(t−∆t) = r(t)−u∆t. This is known as the �Semi-Lagrangian� method, because
it borrows from the Lagrangian framework by moving e�ectively moving the grid
points and resampling.

Using this technique, we can �nd an updated velocity �eld u∗ by evaluating
u at the point we are interesting in, �nding the point r − u∆t, and setting u∗
to the value of u at that point. On a MAC grid, there is no point at which
all the components of u are all de�ned at once, as the components are de�ned
separately on the faces of the cubic cells. Therefore, to evaluate u at any point,

2Euler's method often performs poorly for rotational motion, so we can use a more sophis-
ticated method if we need to.
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we must interpolate the components. The most straightforward way to do this
is by trilinear interpolation.

3.2.4 Body force term

The next term we use is called the body force term, and is the easiest term
to deal with. It does not lead to any instabilities, so it can be dealt with
using a very simple technique. We compute this term by solving the equation
∂u
∂t =

f

ρ for one time step, so approximating the derivative with a simple one

sided di�erence, we can update the velocity �eld by simply adding
f

ρ ∆t. This
scheme is known as the Euler method.

3.2.5 The Pressure Term

The most complicated step in the solution procedure is calculating the pressure
�eld p, so it can be used to update the velocity �eld, completing our time step-
ping procedure. We are modeling an incompressible �uid, so we must calculate
p such that the velocity �eld is divergence free following the update. The pres-
sure term models the internal forces in the �uid, and is responsible for most of
its interesting rotational motion.

By taking the divergence of the Euler equations, we can arrive at the follow-
ing condition on the pressure �eld[1]:

52p

ρ
= 5.(−u.5 u + f)

This is true in the continuous limit, but in our discrete simulation we will
not use this, opting instead for a more direct approach. Having run through the
previous two steps, we now have an intermediate velocity �eld, which we will
call u∗. This will typically not satisfy the incompressibility equation. What we
require is a pressure �eld p which will makeu∗ divergence free when we update
it using the pressure term, ie we obtain:

u = u ∗ −5p

ρ
∆t

Such that u satis�es the incompressibility equation. We can obtain an equa-
tion for p by taking the divergence of both sides of this equation:

5.u = 5.u ∗ −5
2p

ρ
∆t = 0 (3)

Where 52p is the �laplacian� of p, which in Cartesian coordinates is ∂2p
∂x2 +

∂2p
∂y2 + ∂2p

∂z2 . We can simplify this equation slightly by de�ning a variable p′ = p
ρ∆t,

and rearranging equation 3 to obtain:

52p′ = 5.u∗ (4)
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We must now �nd the counterpart of this continuous equation on our discrete
grid. To do this, we again approximate all derivatives using �nite di�erences,
giving us a very large system of simultaneous equations. To solve this system of
equations, we use an iterative method called the �conjugate gradient� method.

3.2.6 Boundaries

In a �uid simulator, the pressure equations need several special cases. For exam-
ple, the grids we use are �nite, so care must be taken when we take derivatives
across the edges of the domain - along with this, the �uid must �ow round
and interact with objects the artist places in the domain. Problems like this,
when we specify certain things on the boundaries of our domain, are known as
boundary conditions. We use two kinds of boundary conditions in the simu-
lation, which are technically known as Dirichlet and Von Neumann boundary
conditions. Dirichlet boundary conditions explicitly specify the values of a quan-
tity on a surface, whereas Von Neumann conditions specify the derivative of a
quantity in a direction normal to a surface. We use Diriclet boundary condi-
tions on the edges of the domain, requiring that the pressure be equal to zero
on the edges, allowing the �uid to move freely in and out of the domain. At
the surface of solid objects we use Von Neumann boundary conditions, setting
the derivative of the pressure to be zero in a direction normal to the surface.
This way we can set the velocity of the �uid on that surface in a previous step,
and the pressure step will leave the normal component of the velocity unaltered,
allowing �uid to �ow round objects, and allowing solid objects to push on the
�uid. This topic is covered in more detail in section 4.2.3.

3.2.7 Vorticity Con�nement

A major problem with the stable �uids algorithm is one known as �numeri-
cal dissipation�. Numerical dissipation has the e�ect of unintentionally adding
viscous behavior to the �uid, which can damp down some of the intricate tur-
bulent behavior seen in natural smoke and �re. This arises mainly from the
advection step in the solver: a given velocity value is updated by tracing back a
characteristic through the domain and then interpolating the nearby velocities
to calculate the velocity where the characteristic landed. This interpolation is
e�ectively a weighted average, and has the e�ect of blurring the velocity �eld
over many time steps - this destroys rapid variations in the velocity �eld, and
unnaturally reduces turbulence. Vorticity con�nement combats this by essen-
tially detecting vortices and forcing back in some of the rotational motion that
numerical dissipation took away.

The rotational motion of a velocity �eld can be related to a vector quan-
tity called �curl�. Intuitively speaking, curl is a �paddle wheel� force. Imagine
carrying a tiny paddle wheel around and placing it somewhere in a �uid - the
�uid's motion will be slightly di�erent on each side of the wheel, and under the
right conditions it will start spin. Now orient the paddle wheel in the direction
which gives it the maximum torque. Roughly speaking, the curl of the �uid's
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velocity �eld at that point is a vector pointing along the axis of the wheel, with
a magnitude proportional to how fast it is spinning. More precisely, curl is mo-
tivated and de�ned using a mathematical result called Stokes' theorem (see [28]
for more details).

It turns out that this useful quantity can be denoted 5× u, where

5× u =

 ∂v
∂z −

∂w
∂y

∂w
∂x −

∂u
∂z

∂u
∂y −

∂v
∂x


In �uid dynamics, tubes of rotational motion or vortices form, which can

be detected by looking for regions where the curl �eld has a high magnitude.
Our task is to identify these structures and apply a force which accelerates their
motion.

To generate such a force, we �rst �nd the curl of the velocity �eld, which
we will call ω, and its magnitude, Ω = |ω|. We can then take the normalized
gradient of this quantity, which we will call N :

N =
5Ω
| 5 Ω|

This is a �eld of unit vectors which point towards the center of the vortices
in our �uid, as it points towards regions of high vorticity. We can obtain a
�eld of vectors going round the vortices in the direction they are moving by
taking the cross product of N with ω. We �nd our vorticity con�nement force
by multiplying this by a constant ε, and the grid spacing ∆x, so that the force
gets smaller as the cells get smaller, and we converge on the true solution to the
equations. The �nal formula for the con�nement force is written below:

f
conf

= ε∆x(N × ω)

3.3 The Flame Model

Implementing these features will give us a basic �uid solver, which is capable of
producing pleasing animations of passive phenomena like smoke and clouds. To
model the dynamics of �re, we must make some modi�cations, which will now
be described.

At the heart of most �ames is a structure known as a de�agration front. This
is a thin layer separating a region of air from a region of fuel, in which a chemical
reaction takes place, and can be successfully modeled as being in�nitely thin[7].
The reaction releases heat, and changes the chemical nature of the gas, leading
to a rapid expansion of the reaction products - a process through which much
of the turbulent, chaotic behavior of �ames arises. The exhaust then rises, as
it is hotter and less dense than the air around it, and eventually cools - this
can be modeled as part of the body force term in the Euler equations. A �re
simulator must model and couple together the dynamics of the gases either side
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of the reaction front, the dynamics of the front itself, and the e�ects of the gas
expansion.

In our model, the reaction front will move along with the �uid, and ad-
ditionally, the surface will spread into the fuel region with a uniform speed
normal to the surface, in a frame of reference co-moving with the �uid. Burning
objects can be modeled by enclosing the object in fuel, and adding a velocity
perpendicular to surface of the object onto the surrounding �uid.

3.3.1 The Level Set Method

It can be di�cult representing the reaction front using, for example, an explicit
polygon mesh[11]. The motion of a �uid can be very irregular, meaning the
quality of the mesh can deteriorate rapidly if its verticies are simply swept
along with the �uid. The reaction front can also experience topology changes,
where two separate fronts can merge, or a piece of fuel can break o� and �oat
away, which is also di�cult to handle with an explicit representation. A much
more robust way of tracking the surface is by representing it using an isosurface
of a level set function, often denoted φ. This is the approach taken by the
simulator, with all regions containing fuel having level set values greater than
or equal to zero, and all other regions containing air.

Given a level set function de�ned on a grid, and a velocity �eld at a given
time, we wish to �nd the level set function after one time step has elapsed. We
do this by considering how the surface de�ned by the level set is moving at that
point. Take the unit normal, n̂, as pointing into the region of fuel. According to
our simple �ame model, the surface must move with a constant, uniform speed
S in the direction of n̂, and must also move with the �uid, having a velocity
�eld u. Therefore, the total speed of the surface at that point, which we denote
w, is found by adding these terms together:

w = Sn̂ + u (5)

We must now �nd an equation of motion forφsuch that its isosurfaces move
in this way. We do this by considering a characteristic - a point which moves as
a function of time in such a way that φ stays constant when evaluated at that
point. We will denote the point r(t). Along this characteristic, the value of φ
remains constant, ie:

d

dt
φ(r(t)) = 0

We can now expand the time derivative using the chain rule to obtain:

∂φ

∂t
+

∂φ

∂x

dx

dt
+

∂φ

∂y

dy

dt
+

∂φ

∂z

dz

dt
= 0

∂φ

∂t
+∇φ.v(t) = 0
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Figure 1: Pitted surfaces will eventually lead to creases and cusps, as shown
above for an advancing sine wave (�gure taken from [4])

Where v(t) is the time derivative of r(t), ie the characteristic's velocity.
However, we know the desired behavior of this point from equation 5. Because of
the way our level set is de�ned, the fuel-facing unit normal is given by n̂ = ∇φ

|∇φ| ,

and v(t) = w. Therefore:

∂φ

∂t
+∇φ.w = 0

∂φ

∂t
+ w.n̂|∇φ| = 0 (6)

We refer to equation 6 as our level set equation, which we must now solve
numerically.

The level set equation presents a hidden di�culty, illustrated in �gure 1.
If the surface is pitted or grooved in any way, and the normals to the surface
converge, some of the characteristics will eventually cross paths, and the surface
will develop a cusp. This can present di�culties, as the gradient of the surface
will become discontinuous. To correctly handle situations like this, we can use
an �upwind� di�erence operator to discretize equation 6. A simple discretization,
used by Fedkiw et al in [7] is to approximate the derivatives by taking a one
sided di�erence in the direction w is coming from. This means, for example,
that if the x component of w is greater than zero, we approximate ∂φ

∂t with
1

∆x (φi,j,k − φi−1,j,k)
It turns out that this scheme requires we limit the time step such that

∆t < ∆x
|w| everywhere, meaning we may have to take fractional steps in the level

set update part of the simulation. However, because we only need the zero
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isocontour of the level set function, we need not de�ne it everywhere, and we
can therefore skip over most of the domain when applying the update.

3.3.2 Regenerating the Level Set

The surface tracking method described in the previous section works well if
the level set is a so called Signed Distance Function (SDF). This is a function
obtained by plotting the minimum distance to a surface, in this case the reaction
front, throughout the domain. A numerically convenient property of an SDF
is that the magnitude of its gradient is always the same - ie |∇φ| = 1, and
it is desirable to keep our level set function close to an SDF throughout the
simulation. Unfortunately, the level set equation does not preserve this property,
so we must periodically regenerate the level set function. However, as we only
need the zero isocontour of the function, we need only do it in a narrow band
either side of the isocontour.

We achieve this regeneration using the so called Fast Marching Method, �rst
proposed by Sethian in [4]. The SDF property |∇φ| = 1 can be treated as a

partial di�erential equation called the eikonal equation, equivalent to |∇φ|2 = 1,
which we discretize using an upwind �nite di�erence formula. |∇φ|2 is equivalent
to ∂φ

∂x

2
+ ∂φ

∂y

2
+ ∂φ

∂z

2
, and we approximate each of the derivatives with a one sided

�nite di�erence in the direction which yields the largest absolute value.
The fast marching method propagates the SDF outwards from a region of

known cells - it can do this in either the increasing or the decreasing direction.
To save time, we can terminate the procedure for cells greater than an upper
threshold, or less a lower threshold.

The algorithm keeps three lists: a list of cells for which the SDF is known,
a list of cells for which it is unknown, which we initialize to the upper or lower
threshold, depending on weather we are going in the increasing or decreasing
direction. We also keep a list of cells with tentative values. To establish these
lists in the �rst place, we use a method which will be described later. We then
loop over the following procedure:

1. If the �tentative� list is empty, exit. Otherwise, grab the cell with smallest
value in the list, and remove it from the list. Add it to the �known� list.

2. If the newly �nalized cell has a value outside the permitted range, clamp
it to the range and go to step one. Otherwise, scan the unknown and
tentative cells in the newly �nalized cell's six cell neighborhood. If they are
in the unknown list, compute their values and add them to the tentative
list. Otherwise recompute their values.

3. Return to step one.

We initialize our lists as follows: �rst, we generate signed distance values on cells
adjacent to the zero isocontour. This is an important step, because we want
the isosurface to move as little as possible. We achieve this by �nding a gird
point with neighbors on the opposite side of the isosurface, and then �nding the
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gradient vector of φ at that point. We then set the signed distance value of our
new level set function, φ′, to φ/| 5 φ| at that cell. We measure the components
of 5φ by taking one sided di�erences across the the surface, in the direction
which gives the largest absolute value if the cell has neighbors the opposite side
of the surface either side of it. This was found to cause the minimum change in
the isosurface. We add these cells to the list of known signed distance values.

Next we generate a band of signed distance cells on both the positive and
negative sides of this. We do so at each of these cells by writing the equation
|∇φ|2 = 1 as a quadratic equation, using the usual upwind di�erencing methods,
and taking either the most positive solution if we are generating cells in the
positive region, or the most negative solution if we are in the negative region.
This is also the method we use to compute signed distance values once we enter
the main loop. We can now label all other cells unvisited by setting their SDF
values to the upper limit if they are on the positive side of the isosurface, or
the lower limit if they are on the negative side. Finally, we start the main loop
for two fronts, one moving in the positive direction and one in the negative
direction.

An important step in the main loop is �nding the cell with the minimum
SDF value in the tentative list. This can be accomplished using a min heap
- see [10] for details. A min heap uses a tree structure to keep track of its
smallest element, which is located at the root of the tree. Each node has two
children, each of which must be smaller than their parents. Every time an
element is added to the heap or modi�ed, the tree is rearranged so this property
is preserved. The heap structure used in the algorithm also requires pointers to
cells on the domain, so a heap class was implemented to code the algorithm.

3.3.3 Jump Conditions

The reaction front separates two regions of the gas with di�erent densities and
spreads into the fuel region, converting one to another. This, along with the
conservation of mass and momentum, leads to the so called Rankine-Hugoniot
jump conditions across the interface:

ρ′(u′n − S) = ρ(un − S)

ρ′(u′n − S)2 + p′ = ρ(un − S)2 + p

Where unprimed quantities indicate quantities immediately inside the reaction
surface, and primed quantities indicate those immediately outside, ie quantities
in regions of �uid which have just reacted. The discontinuities in the velocity
�eld at the de�agration front are responsible for a lot of the motion at the base
of the �ame, and must be incorporated into our numerical model. The �ame

speed S, and the ratio ρ′

ρ are two parameters which have a lot of e�ect on the
appearance of the �ame, and the user should be able to specify them.
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3.3.4 Re�nements to the Original Algorithm

The original stable �uids algorithm treats the grid values as an approximation
to a continuous function, and will quickly smooth out any discontinuities such
as these, through interpolation and the dynamics of the system. We do not
want this, and we must �nd a way of explicitly maintaining these discontinuities
within our algorithm. One such method is known as the Ghost Fluid Method[2].
When we take the derivative of a quantity across a discontinuity using a �nite
di�erence, we get a quantity which increases inde�nitely as our cell spacing
decreases, rather than converging on a value. The Ghost Fluid Method �xes
this problem by taking the jump conditions into account at the discontinuities.
If the derivative of a quantity is desired in the fuel region for example, instead
of taking a �nite di�erence using the grid values of this quantity, it checks if any
values in the �nite di�erence stencil are on the other side of the interface, and
replaces them with �ghost� values by subtracting the jump conditions from them.
A similar technique is used when the simulator has to interpolate between two
quantities de�ned at opposite sides of the interface, and when a characteristic
crosses the interface in the semi Lagrangian advection phase. This method must
also be used to modify the linear system in the pressure solver. For more details
on how these modi�cations are implemented, see [12] and [11] .

4 Implementation

The numerical algorithm described in the previous section was implemented as
part of a standalone simulator program with a graphical user interface. The
program, uses the FOX toolkit3, a cross platform GUI library with OpenGL
support, which compiles under Windows and Linux. The interface allows the
user to see the simulation in 3D while it is running, visualizing the objects in
the simulation, along with the smoke and �ames as isosurfaces of some of the
volume data. The simulation caches these isosurfaces so the user can play back
the animation, and it also saves some of the data grids to disk so they can be
used in rendering. The interface also has a render preview feature, and allows
interactive editing of parameters like the speed of the �ame, the gravity vector,
buoyancy and smoke curves, etc. A screen shot is shown in �gure 12.

Initially, a standard stable �uids solver was implemented, using the so called
preconditioned conjugate gradient algorithm to solve the pressure equations (see
section 4.1). This was then extended to deal with �xed and moving boundaries.
Algorithms concerning the level set were then implemented, and �nally jump
conditions were integrated into the solver.

The simulator operates on solid objects, which are loaded in from the disk
and can interact with the �uid and emit fuel. Three kinds of object are sup-
ported: ellipsoids, static polygon meshes and dynamic polygon meshes. Each
object in the simulator has a transformation matrix, which can vary over time,
and a number indicating how much fuel it is emitting, if any. Along with the

3www.fox-toolkit.org
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motion generated from varying its transformation matrix, the verticies of a dy-
namic mesh can move in arbitrary ways. All this motion is coupled to the
�uid.

The code for the simulator was written in C++ and encapsulated in a class
called CSimulator, which has member variables for the data grids, various meth-
ods for adding and editing parameters and objects in the simulation, and an
�advance� method, which advances the �uid forward through one time step.
The pseudo code for the advance method is shown below:

updateObjects();

voxelizeOccluders();

advectFields();

emitFuel();

advectVelocities();

addForces();

projectVelocities();

In the updateObjects stage of the algorithm, the simulator loads new values for
the object transforms, and new states for the dynamic meshes, and calculates
velocity data, which is used later when coupling the objects to the �uid. The
voxelizeOccluders method then converts all objects to a volumetric represen-
tation and sets velocities at their surfaces. Quantities like smoke density are
then swept along with the �uid in advectFields, fuel is placed in the domain
in emitFuel, and the advectVelocities, addForces and projectVelocities methods
deal with the advection, body force and pressure terms of the Euler equations
respectively.

4.1 The Pressure Solver

The most di�cult phase of the simulator to implement is the pressure solver.
This is mainly because of the boundary conditions that have to be enforced to
couple the solid objects to the �uid, which can be di�cult to debug if coded
incorrectly. Equation 4, when written in discrete form, gives a large number of
simultaneous equations similar to the following:

−6∗pi,j,k+pi−1,j,k+pi,j+1,k+pi,j−1,k+pi,j,k+1+pi,j,k−1
∆x2

=
u

i+ 1
2 ,j,k

−u
i− 1

2 ,j,k
+u

i,j+ 1
2 ,k

+u
i,j− 1

2 ,k
+u

i,j,k+ 1
2
+u

i,j,k− 1
2

∆x

This is and equation for a cell at a position i,j,k, without any solid objects,
domain boundaries or portions of the �ame interface in its six cell neighborhood.
The presence of such objects, ie boundary conditions, will lead to di�erent
equations.

Typically, for a large grid, there will be millions cells and millions of these
equations. Large systems like this are commonly solved using matrix techniques.
If we order our cells along one dimension, for example by running up the x axis,
going back to zero and incrementing our y coordinate when we have reached the
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maximum x coordinate, and doing the same with the z coordinate, we can write
all the pressures and the right hand side terms of these equations as column
vectors. Once we have done this, the system of equations can be summarized
in the form Mp′ = d, where p′ and d are large column vectors, containing the
pressures and right hand side terms respectively, and M is a square matrix.
Normally, this kind of system is solved by �nding the inverse of the matrix, or
using techniques like Gauss elimination. However, in this case M is enormous,
and can easily have over 1,000,000,000,000 elements, meaning its inverse or row
reduction cannot possibly be stored on today's computers. Fortunately, M is
sparse, meaning most of its entries are zero, and it has a special structure, in
that its nonzero elements lie on the diagonal, and additionally on six bands
parallel to the diagonal. The matrix is also symmetric, meaning that swapping
its rows and its columns does not change it, which further reduces the amount
of bands in the matrix which have to be stored to 4.

The solution to this system is obtained in an approximate sense using an
iterative method. An iterative solution algorithm is one which starts with an ini-
tial approximation to the solution and progressively re�nes it, using a procedure
which, ideally, is guaranteed to bring the approximation closer to the true solu-
tion with each step. Particularly e�ective for this kind of system is the so called
Conjugate Gradient algorithm, which treats the problem as one of minimizing
a high dimensional quadratic function. It can be made to perform especially
well by combining the matrix with a �preconditioner�, which is an approximate
inverse of the matrix - this makes the algorithm converge on a solution in a
smaller number of iterations. For a detailed mathematical description of the
conjugate gradient algorithm, see [8], and for practical implementation details
including the implementation of a preconditioner, see [1].

4.2 Solid Boundaries

4.2.1 Volumetric Representation of Objects

There are three problems which must be overcome before objects can interact
with the �uid. The �rst is converting the objects to a volumetric representa-
tion, so they can be understood by the solver. For this, the objects need to be
converted to voxels. The simulator uses an ID bu�er for this, storing the ID
numbers of the objects as one byte per voxel. Voxelizing ellipsoids is a straight-
forward task. Ellipsoids in the simulator are de�ned as the image of a unit
sphere under a matrix transform. To voxelize an ellipsoid, the simulator �nds a
conservative estimate of its bounding box, and then transforms all the points in
the bounding box back to the space in which the ellipsoid is a unit sphere. If the
object's normal is required, it is fetched from the unit sphere space and trans-
formed back to world space using the transpose of the inverse of the ellipsoid's
matrix. It turns out that this keeps normals orthogonal to surfaces undergoing
that transform, although unsurprisingly it alters their length. Meshes are more
di�cult, as they are not represented implicitly, and an inside-outside test is
more challenging. Initially, ray tracing was considered as a means to carry out
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Figure 2:

this test. If a surface is closed, a point can be classi�ed by drawing a line be-
tween that point and a point known to be outside the surface. If the line crosses
the surface an odd number of times, the point is inside the object, otherwise
it is outside. This can potentially be very slow for highly tessellated objects
though, and would limit the complexity of the objects the sim could work with.
The code would also be complex. E�cient ray tracing requires an acceleration
structure like a KD tree, the creation of which has problems of its own. The
solution which was adopted, following some discussion with lecturers and peers,
was a scan conversion algorithm. This method is essentially the same as the
ray tracing method, in that it counts intersections with the surface, but it does
this by marching over the surface rather than testing ray intersections, and is
therefore much faster and easy to code. Initially, all voxels in the grid are set to
empty. The object is then viewed looking down the x axis and all the triangles
in the object are essentially rasterized on the simulation grid - all voxels behind
the point being rasterized have their states �ipped, ie full cells become empty
and vice versa. If the mesh is good, all grid points will be correctly classi�ed
once this procedure has been completed. For added robustness, to handle some
cases when the mesh is non manifold, the procedure is performed using all three
axis and a majority vote is taken. For non manifold meshes, this can still lead
to artifacts, which are shown in �gure 2 for a Utah teapot model. After some
reading it was found that this algorithm was used by Frantic Films[22] for �uid
work on the �lm Scooby Doo 2, and integrated into their �uid simulation soft-
ware package, Flood, with several extensions involving ray tracing to make the
algorithm more robust.

Two methods of scan converting the triangles were tried. The �rst found
the rows of grid points corresponding to the top and bottom of the triangle,
and then moved from top to bottom �nding the left most and right most grid
points in each row. It then went through all the points in each row and used the
plane equation to �nd the position of the point being visited on the remaining
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axis, and �ipped the state of all voxels beyond that position. This method runs
into a lot of numerical problems however, which can cause poor performance
for complex meshes, and require complex code to overcome. Instead of this, a
slightly slower but more robust method was used, where the bounding box of
the triangle was found, and each grid point within the box was explicitly tested
against the edges of the triangle. Care had to be taken that exactly the same
edge tests were carried out by two triangles whose bounding boxes overlapped,
and to avoid complexity when disambiguating edges, points were perturbed
slightly when they landed exactly on an edge. This gave good performance,
although there were still occasional problems when triangles were viewed at
extreme angles.

The �nal step in voxelizing the objects is a �ood �ll. The �uid is incom-
pressible, and therefore the pressure solver is only able to deal with situations
in which the �uid is not forced to compress. If there is a solid object with a
shrinking cavity from which no �uid can escape, for example, the solver will be
completely unable to �nd a solution, and often gives the velocity �eld arbitrary
values and ruins the simulation. To avoid this, we make sure that there is a
path to the edge of the �uid domain, through which �uid can freely �ow, for
every empty cell, and we do this using a �ood �ll, starting from the edges of
the domain. We �rst mark all the empty cells as tentatively empty. Active cells
are held in a C++ STL queue, initialized to be all empty border cells in the
domain, and at every step in the algorithm a cell is taken from the front of the
queue, it is marked as empty, and its neighbors are examined. If any of them
are marked tentative empty they are added to the back of the queue, otherwise
they are skipped over. This is repeated until the queue is empty - following
that, all tentative empty cells are marked occupied.

4.2.2 Setting an Object's Surface Velocities

The second problem when coupling solids to the �uid is setting the velocities of
the �uid on the surface of the objects. Ellipsoids are the most straight forward
objects to deal with, and only move via matrix transforms, meaning the velocity
of any point on the ellipsoid can itself be calculated using a matrix. Consider a
point r in world space, lying on the surface of the ellipsoid, whose transformation
matrix at frame n is Mn. The corresponding point in object space, ie the space
in which the ellipsoid is a unit sphere, is M−1

n r. The world space position of
the same object space point at frame n-1 is Mn−1M

−1
n r, and therefore between

frame n-1 and frame n, the object has moved by the vector δr:

δr = r −Mn−1M
−1
n r

= (I −Mn−1M
−1
n )r

= Vnr∆t
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Where I is the identity matrix, and Vn = 1
∆t (I −Mn−1M

−1
n ) is the velocity

matrix for frame n. This reasoning applies to any object moving due to a
varying matrix transformation. The matrix is used to calculate the velocity at
every grid point contained by the ellipsoid, which is then projected onto the
surface normal to prevent transverse motion of the object dragging the �uid
with it4, and �nally it is stored on the grid. This is performed for all points
within the ellipsoid, as it is desirable that velocities be de�ned inside objects as
well as outside them.

A similar method is used to set the velocities on the surface of static meshes.
This time, the velocities are painted onto the surface of the object by rasterizing
the triangles, and then extrapolated inside the object using an algorithm similar
to the fast marching method, where whenever a voxel is visited it is assigned
a velocity averaged from the cells the signed distance function was propagated
from. Dynamic meshes are treated in a similar fashion, only in this case the
velocities of each vertex are computed and interpolated across the triangles,
before being added on to the velocity computed with the transformation.

4.2.3 Coupling to the Fluid

Solid objects can be made to communicate their motion to the �uid via the
pressure �eld - this is accomplished by ignoring all pressures inside an object
and setting all pressure gradients measured across an object's surface to zero,
so that essentially any force applied to an object by the �uid is returned by the
object, and there is no net acceleration of the �uid across the object's surface.
This is done by directly replacing the gradients measured across the surfaces,
for example

pi+1,j,k−pi,j,k

∆x , with zero, both when setting up the linear system,
and when adding the pressure forces later on. Note that it may not necessarily
be possible to explicitly set the pressures inside the object so this is satis�ed, as
a solid cell can have more than one non solid neighbor, leading to two possibly
con�icting conditions on the cell's pressure.

4.3 Optimization

Initially, a sparse matrix was used to record the pressure equations for a par-
ticular grid. This requires approximately 4 �oating point numbers or 16 bytes
per voxel, and takes a large amount of memory. The maximum grid size that
could be simulated before this and other memory optimizations were carried out
was 217 by 217 by 217. Following [22], the system of equations can be divided
through by a number of factors, so that all the entries in the matrix become
integers. We can then store the elements of the matrix using a single byte per
voxel, as the diagonal elements only go up to six, and can be stored using 3
bits, and the entries on the three other bands we need to store are either 0 or

4Non viscous �uids behave as if they slide freely over the surface of solid objects, although
in reality the �uid velocity actually matches that of the object at the interface. However,
a boundary layer forms, where the �uid essentially lubricates itself, and in �uids with low
viscosity this layer is thin, and the �uid behaves as if it �ows freely past the object.
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1, and only need one bit each. After this optimization was implemented, it was
possible to push the grid size past 300 by 300 by 300.

4.4 Buoyancy and User De�ned Curves

The buoyancy of a particular element of the �ame is de�ned as a function
of the time since it crossed the reaction front, which is stored on a grid and
updated every frame using the semi Lagrangian advection algorithm. The time
dependence of the buoyancy is controlled using a piecewise linear lookup table.
This is implemented as a class, which has a list of data points passed to its
constructor, and has a �val(�oat fT)� method, which identi�es which two data
points the variable lies between, and linearly interpolates them. A potentially
slow part of this algorithm is determining the interval in which a point lies.
To accelerate this process, the lookup table class uses a binary search strategy.
In the constructor, it �rst sorts the data points in ascending order by their x
coordinates, and then permutes this list so it forms an interleaved binary tree,
stored in breadth �rst order. This tree has the property that any given node's
left child and all its descendants have an x coordinate less than that of the parent
node, and the node's right child and all its descendants have an x coordinate
greater than the parent node.

To evaluate the peicewise linear function for a variable, all the class then
needs to do is take the data point at the root, stored at position 0 in the array,
and test weather the coordinate we are evaluating the function at is greater or
less than the x coordinate of this data point. If it is greater, it moves to the
right child and repeats this procedure, and if not it repeats the procedure for
the left child. It repeats these steps until it reaches the bottom of the tree, at
which point it can identify the interval the evaluation point lies within, and then
linearly interpolate the data points. This algorithm is simple and fast, executes
in O(ln(n)) time, where n is number of points in the lookup table.

This kind of table is also used to de�ne the incandescent colours of the �ame,
again in terms of the time since the �uid crossed the reaction front, and also the
rate of smoke generation as a function of time, with the smoke density stored
on a di�erent data grid.

To generate a plausible lookup table for the buoyancy force, the method
in [7] was used. This is based on the fact that the rate of radiative heat loss
from an object is proportional to its temperature to the fourth power, and the
buoyancy of a volume of gas is proportional to its temperature. This gives
a di�erential equation for the buoyancy as a function of time, which can be
analytically solved.

5 Rendering Smoke and Flames

The most natural way to render volumetric phenomena like smoke and �ames
is by ray marching. In this technique, we integrate the light delivered to the eye
along a line through the volume, by walking along it in small steps.
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With smoke and �re, there are two components to the light which reaches
the eye along a given ray. The �rst is the light arriving directly from the
incandescent gas in the �ames. The second component is light from the �ames
and external sources which has been scattered in the direction of the eye by the
smoke - this can happen after one or more scattering events.

The �re was rendered using a volume shader in PRMan. In the shader, we
de�ne the ray the camera is looking down parametrically, in the form r(t) =
o + d̂t, where o is the origin of the ray (a point on the near clip plane), and
d is a unit vector de�ning its direction. The parameter variable, t, initially
ranges from 0 to a user de�ned maximum value, de�ning a line segment. The
line segment is �rst clipped to the bounding box of the �re, and then marched
along with a user de�ned step size, keeping track of two variables: the total light
radiated towards the eye, C (as a colour), and the visibility of the point we are
visiting, v, having been occluded by the smoke. At each step, these variables
are updated as follows:

vn = vn−1(1− ρ∆t)

Cn = Cn−1 + vn(S + I)∆t

Where ∆t is the user de�ned step size, ρ is the smoke density, I is the light
emitted by the incandescent gas, and S is the light scattered from the smoke.

The most challenging part of the volume shader is computing the scattered
light. This is a global illumination problem, depending on the geometry of the
surrounding smoke, and can be very computationally intensive. However, good
results can be achieved by making this proportional to the light received by
the point, computed using a renderman illuminance loop. Shadowing from the
smoke and other objects can be computed using deep shadow maps [25], and
dealt with within the illuminance loop.

The incandescent colour of the gas can be de�ned arbitrarily, using the same
peicewise linear lookup table class as used to de�ne the buoyancy curve. A good
colour curve can be calculated in a similar manner to the buoyancy curve, using
the same, or similar temperature values, and calculating the red, green and blue
values using planck's black body radiation formula, as in [7]. The volume data is
transferred to RenderMan using brickmaps, which are RenderMan's volumetric
textures. The saved grid data �le is �rst converted to a RenderMan point cloud
�le using a standalone program, and this is then converted to a brickmap using
the �brickmake� facility.

5.1 Computing Self Shadowing

An important visual cue in smoke is how it absorbs light and casts shadows on
itself - this is computed e�ciently using deep shadow maps[25]. A deep shadow
map, rather than containing a single z depth value per pixel as in a normal
shadow map, stores a peicewise linear function approximating the visibility of
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the light source as a function of depth. This shadow format is supported in
PRMan, and a convenient API exists for reading and writing deep shadow �les.

PRMan does not support automatic generation of deep shadows from volume
shaders, so a standalone program was written using the deep texture API. The
program takes in a previously rendered deep shadow map, which contains a
record of the camera and projection matrices of the light. It then reconstructs
the view volume and ray marches through the smoke, generating additional deep
shadow data and merging it with the original shadow as in [25], writing out a
new deep shadow map.

The �rst method of reconstructing the view volume was to directly invert
the light's projection matrix using the standard method (adjoint matrix divided
by determinant). However, this proved numerically unstable. The view volume
consists of two rectangles connected by a segment of a pyramid - using this
method, the angle between the sides of the back rectangle typically deviated
from a right angle by about two degrees. When the near clip plane was extremely
close to the camera, this deviation became much worse, making the view volume
unusable. This instability was improved by using QR decomposition to invert
the projection matrix. However, the errors still became serious when the near
clip plane was very close to the camera. A possible improvement would be to
factor the projection matrix into the light's camera matrix and a pure projection
matrix, and reconstruct the view volume using this information instead.

5.2 Rendering Light from the Flames

To render light from the �ames, another standalone program was used to ap-
proximate the incandescence of the �re with a cloud of point lights. A special
Renderman shader was written for these point lights, which used category strings
so as not to communicate with the volume shader (having the lights a�ect the
smoke would have made rendering very expensive). A problem when approxi-
mating volume illumination with point lights is that objects inside the volume
can develop bright spots, due to geometry being too close to any point lights
which get generated. To address this issue, the usual 1

r2 attenuation law, which
can grow arbitrarily large for small values of r, is modi�ed to include a light
radius term, c, becoming 1

(r+c)2 . This limits the brightness of the light, and

reduces the appearance of bright spots.
Two methods of generating the point lights were implemented. In the �rst

method, the points on the �re data grid were grouped using K-means clustering
[30], and a point light was exported for each group. The K-means clustering
algorithm identi�es clusters of points in a point cloud, where each cluster is
de�ned as the set of points closest to one of a number of centroid points. It
achieves this by giving the centroids initial positions, then �nding the set of
points closest to each centroid. For each set, it then �nds the �center of mass�
(in this case weighted by the luminescence of grid each data point), and moves
the centroid to the center of mass. It then repeats this process until the total
distance moved by the centroids per iteration is below a speci�ed tolerance.
This algorithm e�ectively identi�es isolated regions of incandescence, and can
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approximate a �ame e�ciently with a small number of light sources. Unfortu-
nately, a given incandescence data set has multiple equilibria, and this can lead
to popping artifacts in an animation.

The second method is based on the median cut algorithm proposed by Paul
Debevec in [31]. This method builds a KD tree from the volume data, where
the volume is recursively divided into two halves containing equal light energy
along axis aligned planes. For each volume, the �center of mass� is found, as in
the K means algorithm, and a light source is placed at this point, with a colour
equal to the total brightness in the volume.

The aim of implementing this algorithm was to avoid popping, so the split
axes are chosen prior to running the algorithm, rather than being decided based
on the longest axis of the cell as in [31] - ie the algorithm splits the volume �rst
on the x axis, the y axis then the z axis (or some user speci�ed permutation
of this) and then starts again. This way, all the positions of the light sources
are functions of integrals over the domain, and therefore adding a small per-
turbation to the incandescence data will change the positions of the lights by a
correspondingly small amount, meaning there are no discontinuities, which can
lead to popping. In the implementation of the median cut algorithm, a summed
volume table is �rst generated (a dataset in which each cell contains the sum of
the values in all the cells with all their grid coordinates less than those of the
cell), which is used to quickly �nd the median points of the cells.

A disadvantage of the median cut strategy is that, as it divides the volume
into cells of equal energy, it may incorrectly place a light source if there is a large
region of light emission, and a small but visually important region far away from
it. If the ratio of the energy in the larger region to that in the smaller region is
greater than the number of lights being used, it may group the smaller region
with part of the larger region, and place a light source half way between the two.
Despite this, the median cut strategy appears to generate better output than
k-means clustering, particularly for animations, although there are problems
with the k means clustering code which require work.

6 Results

This section shows stills from various tests animated and rendered using the
work done on this project. The scenes were set up and rendered using the
Houdini pipeline system described in Appendix A.
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Figure 3: A screenshot of an early test , showing a burning teapot �ying over
an undulating plane and a sphere. The reaction front is shown in blue, yellow
shows all �uid which crossed the reaction front less than half a second ago, and
an isosurface of the smoke density �eld is shown in grey.

Figure 4: A still from the same scene as in �gure 3, rendered using the smoke and
�re volume shader in RenderMan. Deep shadows have not been implemented
as yet.

25



Figure 5: This image shows one of the �rst renders using deep shadows on the
smoke, although a bug in the body force section of the simulator meant that
the behavior of the smoke and �re was incorrect.

Figure 6: A still from an animation of a Bunsen burner, in which fuel is injected
through a tube into the domain at high speed.
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Figure 7: Another object emitting smoke and �ames with deep shadows. Note
the realistic rolling of the smoke due to a bug �x in the body force code.

Figure 8: A still from the �rst test of the K means clustering algorithm for
generating lights to illuminate the surrounding geometry.
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Figure 9: This screenshot shows part of an animation of smoke interacting with
an object. The colour curve of the �ame has also been edited to give the �ame
a blue core, and the �ame can be seen illuminating the surrounding geometry,
using point lights generated using the K means clustering algorithm.

Figure 10: A screenshot of an animation with a high resolution �re simulation
applied to it. Model by Ritchie Moore, animation by Malcolm Childs.
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7 Current Problems

The simulator has been used to successfully create several animations, albeit
for demonstrative rather than artistic purposes, and having been re�ned over
the course of creating these animations, it allows for a good work �ow. The
user can preview the animation in OpenGL before rendering it properly, and
can also preview the rendering to some extent while editing the colours. There
are several problems which need �xing however.

The �rst problem is the boundary conditions for the edges of the domain. It
has been observed that these boundaries emit unnatural winds if �uid motion
occurs too close to them, presumably due to the fact that surfaces where the
pressure is constant are rarely found in nature. These winds can cause the
�ames to take on strange shapes, and can be quite strong, so it could be worth
researching di�erent kinds of boundary conditions which reduce this e�ect.

Another problem, which sometimes surfaces when the geometry is bad, is
the occasional appearance of cavities with narrow channels communicating with
the rest of the �uid, which the solver handles badly. These can cause the solver
to take a large number of iterations to converge, not converge at all, or in
some cases diverge, giving the �uid large, arbitrary velocities and rendering
a simulation useless. This problem can be addressed in part by adding code
which detects and plugs channels which are a single cell wide prior to the �ood
�ll - this only removes part of the problem though. It could be that situations
such as this require more sophisticated solver algorithms, and it would also be
worth improving the mesh voxelization code so it can handle bad geometry more
robustly. For now though, the artist should try and avoid these situations in
the geometry which is sent to the simulator, and make sure the polygon meshes
are closed, and avoid self intersections in the surface as much as possible.

8 Conclusion and Future Work

The aim of this project was to develop usable tools for the rendering and physi-
cally based simulation of �re, and to generate visually pleasing output. I believe
this objective has been ful�lled, and a potentially useful tool has been created.
Over the course of this project, the author has become acquainted with a wide
range of work in several �elds of computer graphics and has acquired large body
of knowledge about numerical simulation, computational linear algebra, and var-
ious algorithms which are of general use and applicability. A large amount of
code has been written which will potentially be useful in future, and numerous
problems have been encountered and overcome.

Creating a �uid simulator for computer animation is an enormous task, and
like most software projects it is never �nished. There are a large number of
things which could be implemented in future to improve the system, some of
which are:

• Attempting to extend the work of Elcott et al in [32] to work on cubic
grids. This paper elegantly eliminates the need for vorticity con�nement
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by explicitly conserving the circulation of �uid round all loops moving with
the �uid, a conservation law known as Kelvin's law. At the moment the
algorithm only works on tetrahedral meshes, but higher resolutions would
be achievable using cubic grids, because of their more e�cient memory
usage.

• Implement some kind of adaptivity in the simulation grid. This could
include using an adaptively re�ned octree, as in [33], and various other
additions like resizing the simulation grid when detailed motion occurs
near the edges, implementing grids which can move, and allowing di�erent
simulation grids to be coupled together.

• Memory optimizations for the solver, for example using run length encod-
ing to store the level set, which need not be de�ned everywhere, as in
[22].

• Using adaptive ray marching to render the �re. Currently, �xed steps
are taken along the rays, which can lead to problems when very thin,
bright layers of �re are encountered - something which often happens
when an object emits �re. A program could analyze the smoke and �re
data and output an axillary data grid which informs the ray marcher of
the maximum step it should take at any given point. This could greatly
increase the quality and speed of rendering, at the cost of some extra
storage space.

• Time restrictions have cut short investigations into the performance and
behavior of the point light generation algorithms, and it would be good to
continue with this. Also, it may be possible to write a more advanced light
shader using a RenderMan shade-op plugin, using a hierarchical approach
to integrate the illuminance over the �re domain.

• Advected textures to add detail to the smoke. With this technique, tex-
ture coordinates are stored and tracked on grids in the same way as with
other quantities like smoke, and are used to reference volume textures
or procedurally generated patterns when rendering. This is essential for
depicting larger scale phenomena.

• Control particles and particle based fuel emitters for increased artistic
control

Thanks:

Thanks to Joao Montenegro, Johannes Saam, Gerard Keating, Ian Stephenson
and John Macey for their help and suggestions, and to Malcolm Childs and the
Cave Troll team for letting me use their animation.
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Appendix A

Houdini Pipeline

Because of its elegant interface, excellent RenderMan exporter and con�gurabil-
ity, a pipeline was built in Houdini, to test the simulator and generate output.
It takes the form of a Houdini OTL, a package containing a number of custom
nodes and scripts, which can be installed in a Houdini scene �le.

The �rst thing that must be done before the pipeline can be used is to place
all the necessary programs and renderman shaders in a single directory. This
directory must contain the following executable:

DMFire

kmeanslight

medcutlight

pointconvert

smokeshadow

and the following RenderMan shaders:

volfire.slo

nosmokelight.slo

Houdini must now be informed of this directory by de�ning a variable called
�DMFIREPATH�. To do this, open up the Houdini text port, by pressing Alt+T
on the keyboard, and type the following:

set DMFIREPATH = <path>

Where <path> is the path where the �les have been placed. Now save a .hip
�le, and install OP�redomain.otl by choosing �Install Operator Type Library�
from the File menu.

You can now create a domain for the �uid simulation by going to obj level
and creating a �DM �re domain� node. Clicking on the Controls tab in the
parameter pane will reveal the interface shown in �gure 11.

This allows you to set various simulation parameters, like the frame range
to export, the dimensions of the domain and the size of the grid cells. You can
also use the transform tab to position and rotate the domain5. Once these pa-
rameters have been set up, create some nodes, either DMFire Ellipsoid, DMFire
Mesh or DMFire Dynamic Mesh, and put them in the simulation domain. The
mesh objects have a �SOP� �eld in their �Controls� tab, which must be point
to the polygon geometry you wish to de�ne the object, and all nodes have a
�burn� parameter, which indicates how much fuel the object emits. This uses
the geometric normals of the object to de�ne which direction to emit fuel in, so
if a burning object appears to be sucking in air in the simulation rather than

5Do not adjust the scale of the transform, as this may cause the simulation to behave
strangely.
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Figure 11: The Houdini OTL user interface

blowing fuel out, modify its geometry with a reverse SOP. Next create a new
directory where all the �les used by the simulator can go, and enter it into the
�Sim directory� box. Finally select a parameter �le, which is an XML �le with
the extension .lut, and de�nes properties of the �ame like colour curves and the
�ame speed, and press the Export Simulation button.

This will export several �les into the sim directory and launch the sim, a
screen shot of which is shown in �gure 12. The controls on the right can be
used to interactively adjust the parameters, and the �Rendering� button brings
up a render preview window, where the user can edit the colour curves and see
them rendered using ray marching. The �Curves� button allows editing of the
smoke and buoyancy curves. If you wish to save or load sets of parameters as
.lut �les, use the save and load options in the File menu.

Once the simulation has �nished, wind the timeline back at the bottom of
the 3D viewport and press the Play button to view the animation. The sim has
saved the smoke and �re data grids for all the frames to the sim directory, and
you can now go back into Houdini to render this data.

Scripts are de�ned in the OTL to set up render nodes to do this. First, you
must specify a camera using the �Camera Node� box. The OTL can automati-
cally set up deep shadows for you, and if you wish any light sources to cast deep
shadows, enter them in the �Deep shadow lights� box.

The user can also use the �Lights� tab (�gure 13) to generate lights to be
included in the render (these lights are not visible in the Houdini viewport).
To enable this, tick the �Rib Lights� box, and select the strategy and the pa-
rameters. The Light Gain parameter can be used to brighten or dim the lights,
and the Downsampling parameter reduces the resolution of the grids before the
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Figure 12: The simulator's user interface
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Figure 13: Lights tab in the Houdini user interface

algorithms are run, and can reduce processing time and memory consumption
for large simulations. Finally, go to rop level in Houdini and press L with the
mouse over on the network editor, to lay the render nodes out nicely. You can
then go to the DMFire node which all other nodes are feeding into, and render
your images.
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