

Start to Finish Feathers Solution

(SFFS)

Masters Thesis

Mark Newport

N.C.C.A Bournemouth University

26 August 2005

Contents

1. Introduction 4

2. Research 5

a. The Structure of Feathers 5
b. Previous Work: Computer-Generated Feathers 6
c. Specifying the Feather Positions 8
d. Solving Interpenetration 9
e. Controlling the Motion 11
f. Work Flow and Resource Considerations 12
g. Deep Shadow Maps 13

3. Overview of Solution 15
 a. Pipeline Diagram 15
 b. Design Choices: Intended Environment 15

4. Painting the Feathers 17
 a. Maya’s Paint Scripts Tool 17
 b. paintRachisTool 17
 c. rachisCurvePaint 18
 d. createFeatherCurveNode 20

5. Generating the Barbs 22
 a. controlBarbs Node 22
 b. barbSolver Node 23
 c. featherCollision Node 25
 d. addBarbs 28
 e. assignFeatherColours 29

6. Rendering the Feathers 30
 a. RIB Export 30
 b. Feather Detail Procedural Primitive DSO 30
 c. Renderman Shader 32

7. Conclusion and Future Work 34

References 36

Appendix A: Code Extracts 38

Appendix B: Test Images 41

Mark Newport 2

List of Figures

2.1 Feather Anatomy (Chen et al, 2002)

2.2 Macaw Feather (Attenborough.D, 1980)

2.3 Illustration of Control Barb parameters (Streit & Heidrich, 2002)

2.4 Feather Modelling UI (Chen et al, 2002)

2.5 Hippogriff Creature (Harry Potter 3, 2004)

2.6 Recursive Collision for eliminating interpenetration (Chen et al
2002)

2.7 Flicking Feather Problem (SFFS Early Test)

2.8 Rendering with Curves (Renderman Documentation)

2.9 Hair Rendered with & without self-shadowing (Lokovic & Veach,
2000)

3.1 SFFS Pipeline Diagram

4.1 Paint Rachis Tool Setup Section

4.2 Creating Follicles for the Feather System

4.3 Grooming the Rachis Curves

4.4 Feather System Groupings

5.1 Hypergraph Input Connections for controlBarb node

5.2 Control Barbs

5.3 Hypergraph Input Connections for barbSolver node

5.4 Barbs Compacting Against Surface Geometry

5.5 Extreme Interpenetration between Feathers

5.6 Hypergraph Output Connections for featherCollision node

5.7 Painting on the Colour of the Feathers

6.1 De Casteljau’s Algorithm

Mark Newport 3

1. Introduction

The aim of this Thesis is to document the technical
considerations of the Start to Finish Feathers Solution
(SFFS). These considerations included, the research
behind the subject matter and previous applications, the
design choices, final implementations and the evaluation
of the solution so far.

Computer-Generated(CG) feathers has long been an area of
trepidation for 3D artists as they try to convey
photorealistic feathers and a mixture of solutions have
been attempted, with varying success, but it has now been
established that if close-up high-detail shots of
creatures with feathers are required then a physically
accurate approach is the most effective solution. The
reasons for this will be made clear in the Research
section of this Thesis.

CG feathers are closely related to the concepts of hair
and fur, both of which have been tackled to high degrees
of success in terms of photorealism and work flow
efficiency. Feathers seem to have proved a tougher
challenge to researchers and visual effects companies,
and few would say that this area has been successfully
mastered yet. Research has tended to focus on specific
areas of feathers and not as a whole, while few visual
effects companies have produced both photorealistic and
efficient work flow solutions for feathers, as Mike
Milne, Senior 3D CG Supervisor at Framestore CFC,
explained in a talk given at the NCCA, Bournemouth.

Mark Newport 4

2. Research

2.a. The Structure of Feathers

To understand how feathers move and appear close-up, it
is important to analyse the physical properties of a
feather. Obviously feathers can vary greatly in
appearance, but they are all made from a similar
structure which can be seen in Figure 2.1.

Figure 2.1 Feather Anatomy (Chen et al, 2002)

The rachis or shaft of the feather supports the vanes
(i.e. the blades) of the feather. Within the vane of the
feather, there are two lateral sets of barbs,
interlocking the feather together. On both sides of a
barb are many barbules. It is this structure that gives
feathers their surface attributes that are recognised as
feathers even though they can vary greatly from bird to
bird.

Mark Newport 5

Figure 2.2 Macaw Feather (Attenborough.D, 1980)

Colour can be produced by structure. Some feather
filaments have walls so thin they split light like an oil
film and change colour with their angle. Some are filled
with microscopic bubbles which reflect light. Their
colour will disappear if they are doused with liquid and
return when dry. Yet others, like the Macaw feather in
Figure 2.2 contain pigments and retain their colour even
when they are wet and viewed from any angle.

2.b. Previous Work: Computer-Generated Feathers

There is a small selection of research papers that relate
to CG feathers. The majority tend to concentrate on
realistic feather creation without consideration of
applying to an animated geometry and all the problems
this can create. Streit.L, and Heidrich.W, wrote a paper
called ‘A Biologically-Parameterized Feather Model’,
which suggests a control barb technique to set the
structure of the feather and then uses interpolation to
generate the rest of the feather detail. This meant they
could generate hundreds of barbs on a feather in real-
time while only storing the control vertices for a few
key barbs.

Mark Newport 6

Figure 2.3 Illustration of Control Barb parameters (Streit & Heidrich

2002)

When designing the feather, only key barbs were specified
to define the curvature of the vane. Any barb branching
from the rachis between key barb locations is then
interpolated from the key barbs found immediately above
and below the branch location.

Like the majority of research papers on feathers Streit &
Heidrich (2002) do not then investigate how these
feathers can then be applied to an animated geometry. A
paper that does take this into consideration is
‘Modelling and Rendering of Realistic Feathers’, Chen et
al (2002). This paper tries to deal with every aspect of
feathering a bird. They employ a parametric L-system
modelling tool, which allows the user to generate
feathers of different shapes by adjusting a few
parameters.

Figure 2.4 Feather Modelling UI (Chen et al, 2002)

Mark Newport 7

Chen et al (2002), go on to describe how they position
the feathers on the geometry and how they solve the
interpenetration between feathers, but this will be
discussed in later sub-sections.

Framestore CFC have had several years of experience in
creating feathered creatures, probably most famously for
the Harry Potter films. Their last attempt was the
Hippogriff character (Figure 2.5) in Harry Potter 3,
which was half bird, half horse. Mike Milne, Senior 3D
CG Supervisor, explained in a talk to the NCCA,
Bournemouth, that although they had evolved their
proprietary techniques and software, to create extremely
realistic images, the inefficiency of the process, meant
that Framestore CFC spent so long on the feather shots
that they only broke even on the contract for Harry
Potter 3. Many of the problems Framestore encountered
were the same ones that seemed to keep appearing from the
research conducted for this Thesis. The recurring
problems are: how to position the feathers on a moving
and deforming creature, stopping feathers
interpenetrating each other, avoiding feathers flicking
out from the body when the geometry creases and how all
this can be achieved within user and resource
limitations. These issues will be addressed in more
detail in later sub-sections.

Figure 2.5 Hippogriff Creature (Harry Potter 3, 2004)

In 2000, Sony Imageworks created a feather R&D team, and
its first task was to create feathers for the film,
Stuart Little 2. The R&D team had eight months to
develop an effective feathering process and solve all of
the problems, mentioned above. As a dedicated team with
plenty of time, they heavily researched the area and came
up with improved and brand new techniques which solved

Mark Newport 8

some of the problems mentioned and helped to add realism
to the characters’ feathers. These techniques along with
the others already mentioned earlier in this section will
now be discussed in the context of the main problems
encountered with feathers.

2.c. Specifying the Feather Positions

Unlike hair and fur, feathers do not tend to be spread
out evenly over a surface. The areas around the head and
neck of a bird tend to be more densely packed with small
feathers than the wings where a few larger feathers cover
the area. This means that applying a fairly straight
forward even density distribution algorithm is no good.
Chen et al (2002), employed Turk’s algorithm, which is
such an algorithm, but they adapted the technique to
control vertex density based on the size of feathers.

The route taken by Sony Imageworks, was an adapted
particle repulsion technique. Originally particle
repulsion had be designed for even distribution over an
implicit surface, but they needed to apply the technique
to the skin of the bird, which was not described as an
implicit surface, but rather as a series of connected
NURBS patches.

Alias’ Maya 3D Artisan Paint Tool provides a facility
called Paint Scripts Tool. This gives the user the
ability to paint a surface with an attribute defined in a
Maya MEL script. For example, you can paint geometry or
particle emitters on your surfaces like you would paint a
colour or texture in a painting program. Maya Hair and
Fur already uses this technique to apply to the surface
geometry, because it allows the user to easily groom the
creature quickly by painting the attributes onto the
surface, rather than tweaking each individual feather by
hand.

2.d. Solving Interpenetration

The human eye finds it very hard to make out an
individual hair unless it’s looking for one, but with
feathers, it can definitely observe individual shapes.
Therefore, it is easy for the audience to detect if

Mark Newport 9

feathers are interpenetrating each other, and thus
destroy the illusion of the animation.

Chen et al (2002), used a recursive collision detection
technique on simplified geometry to stop the
interpenetration between feathers.

“To determine the final growing directions, we need to
perform collision detection on the feathers based on
simplified geometry and to adjust the feather growing
accordingly. Because of the large number of feathers and
the complex shape of a bird’s body, a collision detection
between every pair of feathers is likely to be very
expensive. To address this problem we adopt 2 strategies.
First, we grow feathers in an orderly fashion according
to the initial growing directions. Second we only
consider local collisions between neighbouring feathers
because collisions rarely happen between feathers far
away from each other. We implement these two strategies
using a recursive collision detection algorithm.” (Chen
et al, 2002)

Figure 2.6 Recursive Collision for eliminating interpenetration (Chen

et al 2002)

The solution Sony Imageworks originally came up with to
solve interpenetration, was called one-dimensional volume
deformation or 1DVD. 1DVD remembered, for all of the key
curves, how far they were from the surface of the base
model.

“Starting with the bird in open pose, 1DVD remembers all
the distance and the offsets beginning with a given curve
and going to the next control vortex. Applied to the
animation, the key curves are now ‘locked’ so that, as

Mark Newport 10

the skin moves, the feathers stay aligned with the
movement of the skin.” (Armstrong E, et al 2002)

1DVD did create its own set of problems. Most
specifically, when the bird turns its head, the skin
should stretch diagonally across. They did not want the
feathers to rotate when the neck was turned, but with
1DVD, all the key curves turn to align them selves with
where they were. The other problem with 1DVD is that it
only takes into account the centre of the feather. The
curve only describes what happens to the shaft of the
feather, not what happens on either side of the feather.

“Software Developer Jeff Chan came up with 2DVD, or two-
dimensional volume deformation. Whereas 1DVD controls
the key curves and their offsets from the skin, 2DVD
keeps track of every feather over the entire surface of
that groomed bird, we can remember all the offsets of the
individual CVs of the feathers including extra dimensions
of the width of the feather, which allows us to keep them
conformed to the skin, so they won’t rotate off.”
(Armstrong E, et al, 2002)

With 2DVD when the bird turns its head, the feathers
actually slide along maintaining their offset, but to
different points on the surface, which means the feathers
don’t twist.

2.e. Controlling the Motion

Although not a heavily documented problem, flicking
feathers can plague some animations. Flicking feathers
occur when the normals of the surface geometry change
direction dramatically from frame to frame (Figure 2.7).
This normally occurs around creases and joints in the
creature’s skin. The feathers root position is normally
dictated by the surface normal at that point and if it
changes greatly then the feather appears to flick out
from the body, destroying the illusion. Therefore some
sort of dynamic feather is necessary in order to cope
with these changes as opposed to a static feather.

Mark Newport 11

Figure 2.7 Flicking Feather Problem (SFFS Early Test)

Another important consideration is how the feathers react
with the surrounding environment. For example, if the
feathers are attached to a bird then there is a good
chance it will be flying at some stage, so the feathers
have to react to wind and other movement from the bird.
If the feathers are applied without any dynamics then
they will appear to be rigid and stuck on to the
creature.

2.f. Work Flow and Resource Considerations

With feathers comes large amounts of geometry, and with
large amounts of geometry comes hardware considerations.
The 3D artist has to be able to groom the feathers in
real-time and interact with the model in the viewport.
Therefore it is important to leave as much of the
geometry creation until the very last moment. When
rendering large amounts of geometry a common problem is
to run out of memory, so Pixar introduced a set of
render-time primitive generation capabilities. Renderman
procedural primitives are user-provided subroutines which
manipulate private data structures containing geometric
primitives that the renderer knows nothing about. By
creating a Procedural Primitive DSO the feather detail
can be created at render-time and based on bounding box
data passed to the renderer. This means that render
should be maximised for speed while dramatically reducing
the likelihood of running out of RAM.

When the demand for hair and fur first started to appear
in the visual effects market Pixar decide to create a

Mark Newport 12

Curve primitive which was intended to be fast and
efficient for use where hundreds of thousands or millions
of thin stokes are required. As such, they are flat
ribbons that are defined only by a single curve, which is
their spine. This makes it a perfect choice of the
feather detail as they can be varied in width along the
spine.

Figure 2.8 Rendering with Curves (Renderman Documentation)

2.g. Deep Shadow Maps

Feathers to some extent, but not as much as hair, gain
their appearance from self-shadowing. To ray trace the
shadows is still not really a practical solution for
large amounts of frames, and traditional shadow maps
produce rather harsh results, which look unrealistic. In
2000, Pixar realised a paper called Deep Shadows Maps.
The technique they introduced produced fast, high quality
shadows for primitives such as hair, fur and smoke.
Unlike traditional shadow maps, which store a single
depth at each pixel, deep shadow maps store a
representation of the fractional visibility through a
pixel at all possible depths.

“Deep Shadow maps have several advantages. First, they
are pre-filtered, which allows faster shadow lookups and
much smaller memory footprints than regular shadow maps
of similar quality. Second, they support shadows from
partially transparent surfaces and volumetric objects
such as fog. Third, they handle important cases of motion
blur at no extra cost.” (Lokovic & Veach, 2000)

Mark Newport 13

Figure 2.9 Hair Rendered with & without self-shadowing (Lokovic &

Veach, 2000)

Mark Newport 14

3. Overview of Solution

3.a. Pipeline Diagram

Figure 3.1 SFFS Pipeline Diagram

3.b. Design Choices: Intended Environment

The aim of the SFFS project was to create a
photorealistic, efficient suite of tools/techniques that
could be used within the visual effects industry in order
to create feathered creatures. Like every visual effect,
having control over the whole process is crucial to
making it work.

The pipeline has been designed to be used with Alias’
Maya and Pixar’s Photorealistic Renderman (PRman). The
reason being that they both provided good API’s for
software development and are both the primary tools used
within the visual effects industry, so they were the
natural choice to utilise. The solution was developed
and tested on both the Linux Red Hat and Microsoft
Windows operating systems, but could easily be adapted
for different platforms and Renderman compliant renderers
that support dynamic shared libraries.

One of the first considerations at the start of the
feathering process, is the type of geometry that the
feathers will be applied to. SFFS has been designed to
work with both NURBS and Polygon models, as these are the
most popular way of modelling at present, but sub-
division surfaces has started to become increasingly used
recently. The model itself does not necessarily need to
be created within Maya, but as long as all the surface
properties have been imported correctly then the process
should work in exactly the same way.

Mark Newport 15

The generation of the rachis and the barbs at different
stages has two purposes. Firstly, it makes the grooming
of the feathers with the paint tool interactive in real-
time, whereas, tests with the barbs included, proved too
slow to be workable. Secondly, once the barbs have been
generated it can be quite hard to distinguish the
direction of each individual feather, so grooming would
then be much harder. Although the barb solving and
collisions probably could have been implemented in MEL,
the decision was taken to use the C++ API, based on the
performance benefits when dealing with large amounts of
geometry and testing loops.

Using a painted texture to define the colour of the
feathers is not a new concept. It allows an artist to
happily spend plenty of time painting the image
separately while work on feathering the bird is on going,
so therefore reducing the chance of a bottle neck in the
pipeline.

As mentioned earlier in this section and based on the
research conducted for this thesis, PRman, provided a
suitable way of generating the feather detail at render-
time and a way of applying a realistic surface property
to the feathers via a shader. This is by no means the
only way of achieving the final image, openGL being
another possible solution, but for the reasons already
stated the Renderman Interface was chosen.

Mark Newport 16

4. Painting the Feathers

4.a. Maya’s Paint Scripts Tool

The Paint Scripts Tool is based on the concept of a two-
dimensional array of numeric values super-imposed on a
NURBS or polygonal surface. This array is either defined
by the vertex positions of the surface or an arbitrary 2D
grid that is evenly spaced in the surface parameter
space. This array of numbers can be thought of as a 2D
grayscale image, where each pixel corresponds to an array
position and the grayscale value corresponds to the
number associated with that array position. The scripts
associated with the Paint Scripts Tool determine how
Maya’s Artisan interprets this array of numbers. Artisan
calls the script when it needs to know the number
assigned to one of the array positions as described
above. Artisan also calls the script when it changes a
number assigned to one of the array positions.

The Paint Scripts Tool is defined by a set of MEL
procedures. The names of the MEL procedures display in
the Setup section of the Tool Settings editor. You can
also set up the MEL procedures using the artUserPaintCtx
MEL command, which means the paint tool will be instantly
ready for the user to use without having to worry about
entering all the individual procedures into the Setup
section, therefore allowing a non technical artist to
work the tool. SFFS achieves this using the script
paintRachisTool.mel.

4.b. paintRachisTool

Since the rachis painting requirements are very similar
to that of Maya’s hair system, it made sense to use the
global hair paint context ($PaintHairAttrToolCtx). This
sets the tool up with the necessary features to groom the
rachis and the paintRachisTool script then directs the
tool to the necessary procedures to paint the rachis onto
the desired surface (see Appendix A.1.).

Mark Newport 17

Figure 4.1 Paint Rachis Tool Setup Section

4.c. rachisCurvePaint

The rachisCurvePaint script is the heart of the tool,
which sets up the User Interface for the tool and
contains the procedures to interact with Artisan to allow
the painting process. It acts as both the creator of the
feather systems and the grooming tool which is used to
groom the feathers into the desired style. If there are
no feather systems attached to the selected surface then
the tool sets up to create a new feather system with the
first stoke. The feather system uses Maya’s hair
dynamics to control the movement of the rachis. This not
only enables the feathers to move with inertia from the
motion of the creature, but since it is particle driven
it can be effected by external fields such as wind,
gravity and turbulence (see Appendix A.2.).

Once a feather system has been created then the user has
the choice of creating more follicles for that particular
feather system or to start to a new feather system.

Mark Newport 18

Figure 4.2 Creating Follicles for the Feather System

The user can add and remove any of the follicles at any
time up until the generation of the barbs. The follicles
are actually generated by passing parameters from the
rachisPaintCurve script to the createFeatherCurveNode
script, which is covered in the next section.

In order to groom the feathers the paint tool also has to
allow for the user to change the attributes of the
follicles and rachis. The user has the choice of
changing the rotational position of the follicle (roll,
inclination, polar), the scale of the rachis and the
stiffness of the rachis, which are all controlled by the
editFollicle and editFollicleValue procedures. The user
just has to adjust the value of the paint attribute in
order to affect the desired grooming method.

Mark Newport 19

Figure 4.3 Grooming the Rachis Curves

4.d. createFeatherCurveNode

The createFeatherCurveNode script is actually responsible
for the generation of the feather follicles, the rachis’,
and the set up of the dynamics for each feather. The
follicle details are passed to the createFeatherCurveNode
procedure, which then attaches the follicle to the target
surface based on these parameters, while also setting the
dynamic attributes of the follicles. These can obviously
be changed by hand by the user, but the set up has to be
based on the most suitable attributes for realistic
feathers (see Appendix A.3.).

The rachis description is then processed by the
drawLineCmd procedure, which sets the control vertices of
the rachis curve in local space, which is then converted
into world space by the follicle, based on the input
geometry (see Appendix A.4.).

The result is a large amount of cubic curves attached to
the creatures surface, but in order to work further down
the pipeline the curves had to be grouped into a logical
order which could then be accessed by the barb curves to
create a proper feather structure, which could be
exported to a RIB file.

Mark Newport 20

Figure 4.4 Feather System Groupings

Mark Newport 21

5. Generating the Barbs

5.a. controlBarbs Node

The control barbs strategy documented in the Research
section of this thesis (section 2.b.), was used in
generating the barbs. This meant that there was actually
a different node created for each of the eight barbs
(four each side). It was important that each of the
barbs started at exactly the same parametric position
along the rachis curve as the Renderman DSO was dependent
on these positions being 0.2, 0.3, 0.8 and 1.0. In order
to achieve this, the pointOnCurve node was used to plug
into the controlBarbs node and this gave the correct
parametric position for the root of the barb on the
rachis curve.

It was also necessary to scale the size of the barbs
based on the size of the rachis, so the barbs appeared to
be proportional to the rachis size. Another utility node
called the curveInfo node was used to get the length of
the curve even when it started bending.

Figure 5.1 Hypergraph Input Connections for controlBarb node

The sole purpose of the controlBarb node is to set the
initial positions of the four control vertices that make
up the barb curve. An algorithm to achieve this was
attempted but without success, so the positions are

Mark Newport 22

incremented by hard-coded amounts and scaled by the
length in order to achieve a realistic barb shape.

Figure 5.2 Control Barbs

The barb’s control vertices would then be set as
attributes within the controlBarb node and passed onto
the barbSolver node. The positions are then adjusted to
take into account the surface geometry.

5.b. barbSolver Node

In order for the barbs to be positioned more
realistically, they needed to be aware of the surface
geometry. This had two effects. Firstly, it helped the
feathers to take the shape of the surface when compacted
against it. Secondly, it provides a more natural growing
direction and adds randomisation to the feathers.

To achieve this, the information about the surface needed
to be plugged into the barbSolver and the solution came
from the closestPointOnMesh (for Poly) and
closestPointOnSurface (for NURBS) nodes. With the use of
these nodes the control vertex could be sent out and the
closest point of the surface geometry was returned along
with the surface normal. The closestPointOnSurface node
at present does not have a surface normal attribute, so
this would need to be rewritten if a NURBS geometry was
the intended surface.

Mark Newport 23

Figure 5.3 Hypergraph Input Connections for barbSolver node

Once the barbSolver has the closest points on the surface
to each of the barb control vertices, then it can
establish whether each control vertex is inside or
outside of the surface geometry. If the control vertex
is outside the surface geometry then the position is set
based on the predefined hard-coded increments, which are
adjusted based on the surface normal. If the barb
control vertex is inside the surface geometry then this
means there is the likelihood that the barb’s curve will
pierce the skin, which would appear rather odd. To
combat this, the barbSolver keeps adjusting the x
component of the barb control vertex (assuming the
creature is pointing along the x-axis), until it is no
longer inside the surface geometry (see Appendix A.5.).
Figure 5.4 shows how this works in practice. The
feathers top row of barbs initially want to grow in a
vertically upwards direction, but the shape of the
geometry forces them to take on its surface shape.

Mark Newport 24

Figure 5.4 Barbs Compacting Against Surface Geometry

Now the barbSolver node has calculated the new positions
of all the control vertices for a particular barb, then
it needs to pass the curve data to the featherCollision
node, in order to solve the interpenetration between
feathers. In order to make this process as tidy as
possible, rather than sending the featherCollision node
hundreds of point attributes, the curve data is sent as
FnNurbsCurveData. M

5.c. featherCollision Node

The first consideration the featherCollision node needed
to make was what actually defined a feather. All the
inputs to the node were curve attributes, but this in
itself gave no clue as to what a feather was and what
each feather was doing on the surface. In order to
achieve the concept of feathers the featherStructure

Mark Newport 25

class was created. Each featherStructure instance would
have an index and a location, which would be used to test
for neighbouring feathers, as unlike the Chen et al
(2002) paper, the feathers needed to be able to be
created in any order the user wanted.

It was the responsibility of the Feathers class to
construct the feathers systems and then solve the
interpenetration between the feathers. Each vertices was
passed from the input curve data attributes and converted
into featherStructures, which could then be indexed and
the location calculated from the average of all the
points. The location only has to be an estimate, since
it was only a way of rejecting feathers that were too far
away to possibly interpenetrate the testing feather. It
was important to conduct this test, as highlighted by
Chen et al (2002), as the testing of every feather
against every other feather was a very expensive process.

One of points made by Kaufman.D,(2002), in the paper
about Sony Imageworks R&D on feathers was that the 1DVD
and 2DVD processes came out of necessity from a
restriction of movement from traditional collision
detection between feathers. Although not actually
specified, the restrictions appeared to be referring to
how the feathers could become rigid and pushed from the
body when solving the interpenetration by boundary-based
collision detection. Although the 2DVD is a very
interesting solution to the interpenetration problem it
was never a practical method to implement in the time
frame for this project, considering it took a team of
highly experienced people eight months to fully develop,
so a far simpler method was needed.

The method designed to solve the problem, was based on
the idea of checking every control vertex (not the root
control vertex of each barb, as this could not move
without the rachis) of a feather against a control vertex
on another feather. If the testing vertex was measured
to be very close to another control vertex of a feather
then it might be a contender of interpenetration and was
moved in the direction back towards the root of the barb.
It was a possibility that the control vertex was not
actually causing an interpenetration, by just being
close, but by moving it back towards the root of the barb
made little difference. If this was the case then the
adjustment would only be a small amount due to it quickly
being outside the distance deemed close. A control
vertex that was the wrong side on the other hand, would
take more cycles of the loop to adjust as it was forced
back towards the root of the barb and this movement would

Mark Newport 26

be more noticeable (see Appendix A.6.). On some
occasions the control vertex may be impossible to adjust
beyond the threshold distance because the two points’
root positions might be very similar, but if the
interpenetration occurred very close to the rachis then
it would be far less likely to be visible to the human
eye than an interpenetration occurring towards the tip.

One failure of this method is that it does rely on the
groomer of the feathers to make sure no extreme
interpenetrations occur like the one shown in Figure 5.5,
otherwise the control vertices will be outside the
distance threshold and then deemed to be without need of
adjustment.

Figure 5.5 Extreme Interpenetration between Feathers

The decision to output curve data to nurbsCurve nodes was
based on the fact the the user could then manipulate the
points by hand if they so desired. Another option would
have been to drawn them in openGL, which would have
benefited the performance, but then the direct

Mark Newport 27

manipulation of the curves via Maya’s standard tools
would not have been possible.

In order to output a varying amount of curves from the
feathersCollision node the use of a MArrayDataBuilder was
necessary. The MArrayDataBuilder element was added to
the array every time a loop for one of the barb curves
was executed. Each MArrayDataBuilder element contained
another MFnNurbsCurveData which once plugged into a
nurbsCurve node created the barb in Maya.

Figure 5.6 Hypergraph Output Connections for featherCollision node

5.d. addBarbs

The reasons for creating the barbs separately from the
rachis have already been stated. It is the job of the
addBarbs procedure to create all the nodes that go into
making up the barb process and make all the necessary
hypergraph connections. Once the procedure has worked
out how many feathers it is dealing with and what the
target surface geometry is, it then loops through each
feather creating the nodes for the barb generation.

Mark Newport 28

5.e. assignFeatherColours

To assign colours to the feathers a common technique of
painting directly onto the geometry was used. The artist
could use Maya’s 3D Paint Tool or any other 3D paint
package to paint the desired colour for the feathers in
certain regions on the geometry. By using this
technique, it gave the artist quick, predictable results,
which they would feel very comfortable with. Figure 5.7
shows an example of this painting process.

Figure 5.7 Painting on the Colour of the Feathers

At present to assignFeatherColours procedure needs the
texture image to be a predefined name and resolution, but
this can be easily updated to allow the user to input the
texture file’s details. The assignFeatherColours
procedure loops through each of the feather follicles and
based on the u and v parameters of the follicle it works
out which pixel in the texture file corresponds to the
position of the follicle on the geometry. It then uses
the iffPixel procedure to return the colour of that
particular pixel and sets the follicle colour to this.

Mark Newport 29

6. Rendering the Feathers

6.a. RIB Export

The decision to use PRman was explained in section 3.b,
but the feather curves could not just be exported
normally using Pixar’s Maya to Renderman (MTOR) tool,
since it would create an incompatible RIB format with
what was needed for the input to the procedural primitive
DSO.

To solve this problem another MEL procedure was created
called writeFeathersRIB, which cycled through each frame
of the animation and exported the RIB file in the desired
format. The DSO needed the curves in a set order, so it
could interpolate the missing barbs correctly, and to
make the render more efficient the DSO uses the bounding
box information to delay the reading of the RIB data
until absolutely necessary, instead of reading all the
RIB data into memory at the start.

Another requirement that be exported, was the colour and
surface normal of the feather follicle. These were
necessary in order to shade the feathers properly, and
will be discussed in more detail in section 6.c..

At present the writeFeathersRIB script is only set up for
the testing scene with a predefined camera and light
position. It would not take much to introduce the
calculations for the camera and light positions into the
procedure and once this has been done, it should be able
o cope with any Maya scene information. t

6.b. Feather Detail Procedural Primitive DSO

The Feather Detail DSO was used to generate the majority
of the feather structure at render-time. As discussed
earlier, this provided an increased efficiency for work
flow performance, since a large proportion of the
geometry did not exist until the very last stage of the
pipeline. It also meant that it reduced the amount of
RAM required, a problem highlighted in the Research
section. This was achieved by delaying the reading of
the RIB data until the bounding box was reached.

Mark Newport 30

The DSO is sent its input in the form of a string via the
RIB. The DSO takes the data string from the RIB and
converts it to dynamically allocated blind data. In this
particular case the string was a list of the control
points that made up each control barb. The DSO was
reliant on the order of the points provided by the RIB,
since that data allocation process was always the same.

The DSO starts at the parametric position 0.2 (position
of the first barbs) along the rachis and then makes small
increments up of the rachis applying a barb at each
position based on an interpolation of the control barbs
either side of it. A straight interpolation between each
of the four points that made up the barb would not have
produced a satisfactory result, since if the rachis was
bent in any direction, the barbs would no longer be
attached to the rachis. Since all the barbs and the
rachis where Bezier curves of degree 3, De Casteljau’s
Algorithm (see Appendix A.7.) could be used to find out
the point on the rachis curve and then use this point as
the root position for the barb. The result of this meant
that however much the rachis bent, the barb would always
stay attached to the rachis.

Figure 6.1 De Casteljau’s Algorithm

Once the control vertices for the barb have been
determined they are sent to the drawCurve function, which
then outputs the curve as a Renderman RiCurve primitive
that gets thinner towards the tip. The benefits of the
RiCurves primitive have been discussed in section 2.f,
but the nature of the Curves primitive is that it always
faces the camera, which causes a problem when being
shaded. The solution to this problem is discussed in the
next section.

Mark Newport 31

6.c. Renderman Shader

Since the surface properties of hair and feathers are
similar, a search for an existing hair shader was
conducted as there seemed little chance of a feather
shader based on RiCurves already existing. The RiCurves
was an important factor because this primitive consists
of many small micro-polygons falling along a specified
curve with their normals pointing directly towards the
camera (like a 2-dimensional ribbon always oriented
towards the camera), making it shade differently to other
primitives. One such shader was found in a presentation
given by Bredow, R. (Sony Picture Imageworks, 2000) on
the Fur in Stuart Little. The shader provided in the
notes was actually developed by Hanson, C. and Bruderlin,
A.

Some of the parts of the shader were not applicable to
feathers, such as clumping, and therefore were removed to
increase performance, but the most useful part was how
they obtained a shading normal at the current point on
the hair, which was not just forward facing. This was
achieved by mixing the surface normal vector at the base
of the hair with the vector at the current point on the
hair. The amount with which each of these vectors
contributes to the mix is based on the angle between the
tangent vector at the current point on the hair and the
surface normal vector at the base of the hair. The
smaller this angle, the more the surface normal
contributes to the shading normal.

The test renders conducted for this project were intended
to be similar to that of a bird of prey, which meant that
the shininess of hair would not be appropriate. To solve
this problem the specular levels were reduced, by
reducing the global variable Ks, but still allowing the
specular only to hit in certain parts of the curves,
based on the v global variable. After testing and based
on pictures of feathers from the research it was decided
that the base colour of the feather passed via the RIB
should be more prominent towards the root of the barbs,
so the root colour was set to pure white, allowing the
base colour to totally dominant once added to the
calculations. The tip colour was, in contrast to human
hair, was set to a dark grey, so the base colour would
appear to fade out towards the edges.

The test animation contained 750 feathers of varying
sizes and each 1K frame averaged about 40 seconds on a

Mark Newport 32

single Intel Pentium 4 2.2GHz processor with 768MB of
RAM. This speed can be considered extremely good, as
once sent to a multi cpu renderfarm an entire shot could
be rendered in a matter a minutes, thus allowing small
alterations and continuous updated versions, essential
control for a visual effect.

Mark Newport 33

7. Conclusion and Future Work

The success of the Start to Finish Feathers Solution has
to be measured by several factors, but most important, is
the quality of the final images it produces. These have
been very successful and have fulfilled the ambitions of
the original aim of this project. The testing geometry
was chosen because it provided a fully rigged, deforming
skin that had a large array of movement and produced
creases around the joints. The SFFS managed to work
successfully in these demanding conditions and was
capable of providing a photorealistic animation as a
result (see Feathers_Solution_Demo.m2v provided on CD and
Appendix B).

Another important consideration as stated in section 3,
was the efficiency of the solution in a high pressure
working environment of a visual effects company. Having
the potential of applying the feathers to both NURBS and
polygon meshes is a key issue, since it provides no
restrictions to the modellers. Having a restriction of
geometry type can affect the creative process, while also
possibly rendering other propriety animation tools
useless. Once the pipeline has been set in place, it
does not require a Technical Director to be involved in
the process, which means it leaves him/her free to do
other jobs. A specialist feather groomer could look
after the feathering process from start to finish, hence
the name. The majority of the work involves the user
painting things onto the surface of the geometry and
playing around with a few of the dynamics settings to get
optimum realism. This is not a demanding task and could
be best achieved by most intermediate users of Maya with
very little or no knowledge of Renderman. Once the barbs
have been created and the feathers assigned, the job of
the groomer is done, until they get the results of the
render back. Obviously, with the feather detail
generated at render time, the groomer will never know
exactly what the result is going to be, but with
experience would come a good predictions of results.

The performance of the process can be considered good as
the testing was done successfully on below industry
standard machines. There was no bottle neck in the
pipeline where the user had to sit and wait for a
considerable amount of time up until the rendering
process. One area of concern was the use of Maya’s
closestPointOnMesh node, which appeared to use large
amounts of memory, when the mesh was highly detailed

Mark Newport 34

(i.e. large poly count), but this did not actually slow
the process down, though it could restrict the number of
feathers applied in extreme circumstances.

The testing of the pipeline has shown that the concepts
used can provide a successful solution to the problem of
feathers, but it is by means it a perfect solution
without the need of development.

An area of improvement in barb generation process would
be to allow the user paint barb attributes, as at present
there is no way of editing the barbs. This would be
useful because it would allow the user to specify the
look of the feathers rather than the programmer.

One area not explored due to the close-up nature of the
testing was a level of detail method built into the
procedural primitive DSO. This could work by using less
curves to generate the feather detail based on the
distance from the camera, thereby reducing render times.

An improvement to the shader would be the ability to
create the stylish patterns that some feathers contain,
as established in the research. This could be generated
procedurally or texture-based, but it would provide a
more realistic look for the feathers, rather than just a
blend of one colour into another.

For areas of the geometry where there would be high
levels of rotational deformation, such as a bird’s
turning neck, the two-dimensional volume deformation
technique used by Sony Imageworks, mentioned in section
2.d, would be a very useful development to the current
solution. It would not be a simple task, but the
framework for the current solution would allow for such
computations without the need to re-write parts of the
existing pipeline.

Further testing on a variety of different creatures and
body shapes is still necessary in order to better gauge
the overall usefulness of the SFFS, but the results
achieved so far meet the requirements of the original aim
well and provide a platform for the solution to be
further developed in several different ways.

Mark Newport 35

References

Armstrong, E et al. Stuart Little 2:Let the Feathers Fly.
Presentation Course Notes from SIGGRAPH ’02. 2002

Apodaca, A. and Gritz, L. Advanced Renderman. Morgan
Kaufmann, 2000.

Attenborough, D. Life on Earth. Published by Collins,
1980.

Bredow, R. Fur in Stuart Little. Presentation Course
Notes. Sony Pictures Imageworks.
http://www.185vfx.com/resources/coursenotes.html, visited
07/05.

Carner, C and Hong, Q. Elastic Paint: A Particle System
for Feature Mapping with Minimum Distortion. Research
Paper from State University of New York at Stony Brook,
2003.

Chen, Y et al. Modelling and Rendering of Realistic
Feathers. In Computer Graphics (SIGGRAPH ’02
Proceedings), volume 21, pages 630-636, 2002.

Framestore CFC Harry Potter 3. 3DA Interview with David
Lomas, CG Supervisor.
http://www.3dyanimacion.com/entrevistas/entrevistas.cfm?l
ink=framecfchp3eng01, visited 07/05.

Gould, D. Complete Maya Programming. Morgan Kaufmann
Publishers, 2003.

Harry Potter and the Prisoner of Azkaban. Warner Bros
Entertainment, 2004.

Harvey, A. Grooming Furry Surfaces of Arbitary Topology.
In Computer Graphics (SIGGRAPH ’03 Proceedings), pages 1-
1, 2003.

Kajiya, J. and Kay, T. Rendering fur with three
dimensional textures. In Computer Graphics (SIGGRAPH ’89
Proceedings), volume 23, pages 271-280, 1989.

Lokovic, T. and Veach, E. Deep Shadow Maps. In Computer
Graphics (SIGGRAPH ’00 Proceedings), pages 385-392, 2000.

Mark Newport 36

http://www.185vfx.com/resources/coursenotes.html
http://www.3dyanimacion.com/entrevistas/entrevistas.cfm?link=framecfchp3eng01
http://www.3dyanimacion.com/entrevistas/entrevistas.cfm?link=framecfchp3eng01

Maya API Classes Documentation, Alias Systems Corp,
Toronto, Canada.
Parent, R. Computer Animation Algorithms and Techniques.
Morgan Kaufmann, 2002.

Renderman Documentation (RAT 5.5, PRMAN 11.0), Pixar
Animation Studios, Ca, USA.

Streit, L and Heidrich, W. A Biologically-Parameterized
Feather Model. In EuroGraphics ’02 Proceedings, Volume
21, Number 3, 2002.

Streit, L and Heidrich, W. Generating Feather Coats
Using Bezier Curves. Research Paper from Dept. of
Computer Science University of British Columbia, 2002.

Walter, M. and Franco, C. Modelling the Structure of
Feathers. In Brazilian Symposium on Computer Graphics
and Image Processing Proceedings. 2001

Zhang, J. ZJProgramming.com.
http://www.zjprogramming.com/, visited 07/05.

Mark Newport 37

http://www.zjprogramming.com/

Appendix A: Code Extracts

A.1. Code Extract from paintRachisTool.mel

string $cmd;

$cmd = "artUserPaintCtx -e";
// Tool Setup Cmd
$cmd += " -tsc \"rachisCurvePaint\"";
// Tool Cleanup Cmd
$cmd += " -tcc \"cleanupRachisPaint\"";
// Initialise Cmd
$cmd += " -ic \"initRachisPaint\"";
// Finalise Cmd
$cmd += " -fc \"finishRachisPaint\"";
// Set Value Cmd
$cmd += " -svc \"setRachisPaintValue\"";
// Get Value Cmd
$cmd += " -gvc \"getRachisPaintValue\"";
// Get Array Attribute Cmd
$cmd += " -gac \"\" -cc \"\" -gsc \"\"";
$cmd += $gPaintHairAttrToolCtx;
eval $cmd;

A.2. Code Extract from rachisCurvePaint.mel

if($gRachisCurveFeatherSys == "")
{
 $gRachisCurveStartIndex[0] = 0;
 string $m =`createNode -n "FeatherSystemX#" transform`;

$gRachisCurveFeatherSys = `createNode -p $m -n "FeatherSystem#" hairSystem`;
 int $numHsys = size($gRachisCurveFeatherSystems);
 $gRachisCurveFeatherSystems[$numHsys] = $gRachisCurveFeatherSys;
 connectAttr time1.outTime ($gRachisCurveFeatherSys + ".currentTime");
}

A.3. Code Extract from createFeatherCurveNode.mel

// Set follicle positional and dynamic attributes
string $foll = `createNode follicle`;

// Set parameteric positions
setAttr ($foll + ".parameterU") $u;
setAttr ($foll + ".parameterV") $v;
// Set simulation method so feathers are dynamic
setAttr ($foll + ".simulationMethod") 2;
// Point locked at both ends
setAttr ($foll + ".pointLock") 3;
// Get Transform
string $tforms[] = `listTransforms $foll`;
string $follDag = $tforms[0];
int $attachedToSurface = false;

Mark Newport 38

if($surface != "" && objExists($surface))
 {
 // Determine type of the target surface and apply world
 // matrix and geometry data types to follicle attributes
 string $nType = `nodeType $surface`;
 connectAttr ($surface + ".worldMatrix[0]") ($foll + ".inputWorldMatrix");
 if("nurbsSurface" == $nType)
 {
 connectAttr ($surface + ".local") ($foll + ".inputSurface");
 }
 else if("mesh" == $nType)
 {
 connectAttr ($surface + ".outMesh") ($foll + ".inputMesh");
 // For poly need currentUV set
 string $currentUVSet[] = `polyUVSet -q -currentUVSet $surface`;
 setAttr ($foll + ".mapSetName") -type "string" $currentUVSet[0];
 int $isValidUv = getAttr($foll + ".validUv");
 if(!$isValidUv)
 {
 delete $follDag;
 return "";
 }
 }

 connectAttr ($foll + ".outTranslate") ($follDag + ".translate");
 connectAttr ($foll + ".outRotate") ($follDag + ".rotate");
 // Stop accidental editing via channels menu
 setAttr -lock true ($follDag + ".translate");
 setAttr -lock true ($follDag + ".rotate");
}

A.4. Code Extract from createFeatherCurveNode.mel

// Cubic curve
string $cmd = "curve -d 3";
int $i;
float $fac = $curveLength/(float)($numCvs-1);
for($i = 0; $i < $numCvs; $i++)
{
 $cmd += (" -p 0 0 " + ((float)$i * $fac));
}
return $cmd;

…

connectAttr ($surface + ".worldMatrix[0]") ($foll + ".inputWorldMatrix");

A.5. Code Extract from barb1solver.cpp

// Base growth direction on surface normal
if(mnormal[0]>=0.0)
{
 // If second CV is outside closest point on skin
 if(mposition2x>=mclosest2[0])
 {

Mark Newport 39

 // Set the second CV position
 MPoint cv1(mrootPosition1-(1-mnormal[0]),
mrootPosition2+(0.25*mscale+mnormal[1]), mrootPosition3+(0.15*mscale));
 // Apply second CV to vertices array
 vertices.append(cv1);
 }
 else
 {
 // Make sure the second CV is not inside closest point on skin
 while(mposition2x<mclosest2[0])
 {
 mposition2x = mposition2x+0.05f;
 }
 // Set the second CV position
 MPoint cv1(mposition2x, mposition2y, mposition2z);
 // Apply second CV to vertices array
 vertices.append(cv1);
 }
…

A.6. Code Extract from feathers.cpp

// Check distance between cvs
float dist = distanceBetween(feathers[r].barbs[d]->cv[e]->position,
point1);
unsigned int breakloop = 0;
while(dist<0.2 && breakloop < 6)
{
 // Move the cv back towards the root of the curve based on the
vector direction
 Point3D vec = vectorToRoot(feathers[r].barbs[d]->cv[0]-
>position, feathers[r].barbs[d]->cv[e]->position);
 Point3D steps = vec/5;

 feathers[r].barbs[d]->cv[e]->position+=steps;
 // Calculate bew distance between cvs
 dist = distanceBetween(feathers[q].barbs[b]->cv[e]->position,
feathers[r].barbs[d]->cv[e]->position);
 breakloop++;
}

A.7. Code Extract from feather_detail.c

// De Casteljau Algorithm
float PointOnBezier(float t, float cv1, float cv2, float cv3, float
cv4)
{
 float ab, bc, cd, abbc, bccd, result;
 ab = lerp(cv1, cv2, t);
 bc = lerp(cv2, cv3, t);
 cd = lerp(cv3, cv4, t);
 abbc = lerp(ab, bc, t);
 bccd = lerp(bc, cd, t);
 result = lerp(abbc, bccd, t);
 return result;
}

Mark Newport 40

Appendix B: Test Images

Animated Deformable Poly Mesh to Test SFFS on

Control Barbs Generated in Maya

Mark Newport 41

Feather Detail generated by DSO at Render-time

Final Image with Renderman Shader applied

Mark Newport 42

