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1. Introduction 
 
The aim of this Thesis is to document the technical 
considerations of the Start to Finish Feathers Solution 
(SFFS).  These considerations included, the research 
behind the subject matter and previous applications, the 
design choices, final implementations and the evaluation 
of the solution so far. 
 
Computer-Generated(CG) feathers has long been an area of 
trepidation for 3D artists as they try to convey 
photorealistic feathers and a mixture of solutions have 
been attempted, with varying success, but it has now been 
established that if close-up high-detail shots of 
creatures with feathers are required then a physically 
accurate approach is the most effective solution.  The 
reasons for this will be made clear in the Research 
section of this Thesis. 
 
CG feathers are closely related to the concepts of hair 
and fur, both of which have been tackled to high degrees 
of success in terms of photorealism and work flow 
efficiency.  Feathers seem to have proved a tougher 
challenge to researchers and visual effects companies, 
and few would say that this area has been successfully 
mastered yet.  Research has tended to focus on specific 
areas of feathers and not as a whole, while few visual 
effects companies have produced both photorealistic and 
efficient work flow solutions for feathers, as Mike 
Milne, Senior 3D CG Supervisor at Framestore CFC, 
explained in a talk given at the NCCA, Bournemouth. 
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2. Research 
 
2.a. The Structure of Feathers 
 
 
To understand how feathers move and appear close-up, it 
is important to analyse the physical properties of a 
feather.  Obviously feathers can vary greatly in 
appearance, but they are all made from a similar 
structure which can be seen in Figure 2.1. 
 
 

 
Figure 2.1 Feather Anatomy (Chen et al, 2002) 

 
 
The rachis or shaft of the feather supports the vanes 
(i.e. the blades) of the feather.  Within the vane of the 
feather, there are two lateral sets of barbs, 
interlocking the feather together.  On both sides of a 
barb are many barbules.  It is this structure that gives 
feathers their surface attributes that are recognised as 
feathers even though they can vary greatly from bird to 
bird.   
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Figure 2.2 Macaw Feather (Attenborough.D, 1980) 

 
 

Colour can be produced by structure.  Some feather 
filaments have walls so thin they split light like an oil 
film and change colour with their angle.  Some are filled 
with microscopic bubbles which reflect light.  Their 
colour will disappear if they are doused with liquid and 
return when dry.  Yet others, like the Macaw feather in 
Figure 2.2 contain pigments and retain their colour even 
when they are wet and viewed from any angle. 
 
 
 
2.b. Previous Work: Computer-Generated Feathers 
 
 
There is a small selection of research papers that relate 
to CG feathers.  The majority tend to concentrate on 
realistic feather creation without consideration of 
applying to an animated geometry and all the problems 
this can create.  Streit.L, and Heidrich.W, wrote a paper 
called ‘A Biologically-Parameterized Feather Model’, 
which suggests a control barb technique to set the 
structure of the feather and then uses interpolation to 
generate the rest of the feather detail.  This meant they 
could generate hundreds of barbs on a feather in real-
time while only storing the control vertices for a few 
key barbs. 
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Figure 2.3 Illustration of Control Barb parameters (Streit & Heidrich 

2002) 
 
 

When designing the feather, only key barbs were specified 
to define the curvature of the vane.  Any barb branching 
from the rachis between key barb locations is then 
interpolated from the key barbs found immediately above 
and below the branch location.   
 
Like the majority of research papers on feathers Streit & 
Heidrich (2002) do not then investigate how these 
feathers can then be applied to an animated geometry.  A 
paper that does take this into consideration is 
‘Modelling and Rendering of Realistic Feathers’, Chen et 
al (2002).  This paper tries to deal with every aspect of 
feathering a bird.  They employ a parametric L-system 
modelling tool, which allows the user to generate 
feathers of different shapes by adjusting a few 
parameters. 
 
 

 
Figure 2.4 Feather Modelling UI (Chen et al, 2002) 
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Chen et al (2002), go on to describe how they position 
the feathers on the geometry and how they solve the 
interpenetration between feathers, but this will be 
discussed in later sub-sections.  
 
Framestore CFC have had several years of experience in 
creating feathered creatures, probably most famously for 
the Harry Potter films.  Their last attempt was the 
Hippogriff character (Figure 2.5) in Harry Potter 3, 
which was half bird, half horse.  Mike Milne, Senior 3D 
CG Supervisor, explained in a talk to the NCCA, 
Bournemouth, that although they had evolved their 
proprietary techniques and software, to create extremely 
realistic images, the inefficiency of the process, meant 
that Framestore CFC spent so long on the feather shots 
that they only broke even on the contract for Harry 
Potter 3.  Many of the problems Framestore encountered 
were the same ones that seemed to keep appearing from the 
research conducted for this Thesis.  The recurring 
problems are: how to position the feathers on a moving 
and deforming creature, stopping feathers 
interpenetrating each other, avoiding feathers flicking 
out from the body when the geometry creases and how all 
this can be achieved within user and resource 
limitations.  These issues will be addressed in more 
detail in later sub-sections.  
   
 

 
Figure 2.5 Hippogriff Creature (Harry Potter 3, 2004) 

 
 
In 2000, Sony Imageworks created a feather R&D team, and 
its first task was to create feathers for the film, 
Stuart Little 2.  The R&D team had eight months to 
develop an effective feathering process and solve all of 
the problems, mentioned above.  As a dedicated team with 
plenty of time, they heavily researched the area and came 
up with improved and brand new techniques which solved 
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some of the problems mentioned and helped to add realism 
to the characters’ feathers.  These techniques along with 
the others already mentioned earlier in this section will 
now be discussed in the context of the main problems 
encountered with feathers. 
 
 
 
2.c. Specifying the Feather Positions 
 
 
Unlike hair and fur, feathers do not tend to be spread 
out evenly over a surface.  The areas around the head and 
neck of a bird tend to be more densely packed with small 
feathers than the wings where a few larger feathers cover 
the area.  This means that applying a fairly straight 
forward even density distribution algorithm is no good.  
Chen et al (2002), employed Turk’s algorithm, which is 
such an algorithm, but they adapted the technique to 
control vertex density based on the size of feathers. 
 
The route taken by Sony Imageworks, was an adapted 
particle repulsion technique.  Originally particle 
repulsion had be designed for even distribution over an 
implicit surface, but they needed to apply the technique 
to the skin of the bird, which was not described as an 
implicit surface, but rather as a series of connected 
NURBS patches.   
 
Alias’ Maya 3D Artisan Paint Tool provides a facility 
called Paint Scripts Tool.  This gives the user the 
ability to paint a surface with an attribute defined in a 
Maya MEL script. For example, you can paint geometry or 
particle emitters on your surfaces like you would paint a 
colour or texture in a painting program.  Maya Hair and 
Fur already uses this technique to apply to the surface 
geometry, because it allows the user to easily groom the 
creature quickly by painting the attributes onto the 
surface, rather than tweaking each individual feather by 
hand.  
 
 
 
2.d. Solving Interpenetration 
 
 
The human eye finds it very hard to make out an 
individual hair unless it’s looking for one, but with 
feathers, it can definitely observe individual shapes.  
Therefore, it is easy for the audience to detect if 
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feathers are interpenetrating each other, and thus 
destroy the illusion of the animation. 
 
Chen et al (2002), used a recursive collision detection 
technique on simplified geometry to stop the 
interpenetration between feathers.   
 

“To determine the final growing directions, we need to 
perform collision detection on the feathers based on 
simplified geometry and to adjust the feather growing 
accordingly. Because of the large number of feathers and 
the complex shape of a bird’s body, a collision detection 
between every pair of feathers is likely to be very 
expensive. To address this problem we adopt 2 strategies. 
First, we grow feathers in an orderly fashion according 
to the initial growing directions. Second we only 
consider local collisions between neighbouring feathers 
because collisions rarely happen between feathers far 
away from each other. We implement these two strategies 
using a recursive collision detection algorithm.” (Chen 
et al, 2002) 
 

 
Figure 2.6 Recursive Collision for eliminating interpenetration (Chen 

et al 2002) 
 
 

The solution Sony Imageworks originally came up with to 
solve interpenetration, was called one-dimensional volume 
deformation or 1DVD.  1DVD remembered, for all of the key 
curves, how far they were from the surface of the base 
model.   
 

“Starting with the bird in open pose, 1DVD remembers all 
the distance and the offsets beginning with a given curve 
and going to the next control vortex. Applied to the 
animation, the key curves are now ‘locked’ so that, as 
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the skin moves, the feathers stay aligned with the 
movement of the skin.” (Armstrong E, et al 2002) 
 

1DVD did create its own set of problems.  Most 
specifically, when the bird turns its head, the skin 
should stretch diagonally across.  They did not want the 
feathers to rotate when the neck was turned, but with 
1DVD, all the key curves turn to align them selves with 
where they were.  The other problem with 1DVD is that it 
only takes into account the centre of the feather.  The 
curve only describes what happens to the shaft of the 
feather, not what happens on either side of the feather. 
 

“Software Developer Jeff Chan came up with 2DVD, or two-
dimensional volume deformation.  Whereas 1DVD controls 
the key curves and their offsets from the skin, 2DVD 
keeps track of every feather over the entire surface of 
that groomed bird, we can remember all the offsets of the 
individual CVs of the feathers including extra dimensions 
of the width of the feather, which allows us to keep them 
conformed to the skin, so they won’t rotate off.” 
(Armstrong E, et al, 2002) 
 

With 2DVD when the bird turns its head, the feathers 
actually slide along maintaining their offset, but to 
different points on the surface, which means the feathers 
don’t twist. 
 
 
 
2.e. Controlling the Motion 
 
 
Although not a heavily documented problem, flicking 
feathers can plague some animations.  Flicking feathers 
occur when the normals of the surface geometry change 
direction dramatically from frame to frame (Figure 2.7).  
This normally occurs around creases and joints in the 
creature’s skin.  The feathers root position is normally 
dictated by the surface normal at that point and if it 
changes greatly then the feather appears to flick out 
from the body, destroying the illusion.  Therefore some 
sort of dynamic feather is necessary in order to cope 
with these changes as opposed to a static feather. 
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Figure 2.7 Flicking Feather Problem (SFFS Early Test) 

 
 

Another important consideration is how the feathers react 
with the surrounding environment.  For example, if the 
feathers are attached to a bird then there is a good 
chance it will be flying at some stage, so the feathers 
have to react to wind and other movement from the bird.  
If the feathers are applied without any dynamics then 
they will appear to be rigid and stuck on to the 
creature. 
 
 
 
2.f. Work Flow and Resource Considerations 
 
 
With feathers comes large amounts of geometry, and with 
large amounts of geometry comes hardware considerations.  
The 3D artist has to be able to groom the feathers in 
real-time and interact with the model in the viewport.  
Therefore it is important to leave as much of the 
geometry creation until the very last moment.  When 
rendering large amounts of geometry a common problem is 
to run out of memory, so Pixar introduced a set of 
render-time primitive generation capabilities.  Renderman 
procedural primitives are user-provided subroutines which 
manipulate private data structures containing geometric 
primitives that the renderer knows nothing about.  By 
creating a Procedural Primitive DSO the feather detail 
can be created at render-time and based on bounding box 
data passed to the renderer.  This means that render 
should be maximised for speed while dramatically reducing 
the likelihood of running out of RAM. 
 
When the demand for hair and fur first started to appear 
in the visual effects market Pixar decide to create a 
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Curve primitive which was intended to be fast and 
efficient for use where hundreds of thousands or millions 
of thin stokes are required.  As such, they are flat 
ribbons that are defined only by a single curve, which is 
their spine.  This makes it a perfect choice of the 
feather detail as they can be varied in width along the 
spine.   
 
 

 
Figure 2.8 Rendering with Curves (Renderman Documentation) 

 
 
 
 
2.g. Deep Shadow Maps 
 
 
Feathers to some extent, but not as much as hair, gain 
their appearance from self-shadowing.  To ray trace the 
shadows is still not really a practical solution for 
large amounts of frames, and traditional shadow maps 
produce rather harsh results, which look unrealistic.  In 
2000, Pixar realised a paper called Deep Shadows Maps.  
The technique they introduced produced fast, high quality 
shadows for primitives such as hair, fur and smoke.  
Unlike traditional shadow maps, which store a single 
depth at each pixel, deep shadow maps store a 
representation of the fractional visibility through a 
pixel at all possible depths. 
 

“Deep Shadow maps have several advantages. First, they 
are pre-filtered, which allows faster shadow lookups and 
much smaller memory footprints than regular shadow maps 
of similar quality. Second, they support shadows from 
partially transparent surfaces and volumetric objects 
such as fog. Third, they handle important cases of motion 
blur at no extra cost.” (Lokovic & Veach, 2000) 
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Figure 2.9 Hair Rendered with & without self-shadowing (Lokovic & 

Veach, 2000) 
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3. Overview of Solution 
 
3.a. Pipeline Diagram 
 
 

 
Figure 3.1 SFFS Pipeline Diagram 

 
 

 
 
3.b. Design Choices: Intended Environment 
 
 
The aim of the SFFS project was to create a 
photorealistic, efficient suite of tools/techniques that 
could be used within the visual effects industry in order 
to create feathered creatures.  Like every visual effect, 
having control over the whole process is crucial to 
making it work. 
 
The pipeline has been designed to be used with Alias’ 
Maya and Pixar’s Photorealistic Renderman (PRman).  The 
reason being that they both provided good API’s for 
software development and are both the primary tools used 
within the visual effects industry, so they were the 
natural choice to utilise.  The solution was developed 
and tested on both the Linux Red Hat and Microsoft 
Windows operating systems, but could easily be adapted 
for different platforms and Renderman compliant renderers 
that support dynamic shared libraries. 
 
One of the first considerations at the start of the 
feathering process, is the type of geometry that the 
feathers will be applied to.  SFFS has been designed to 
work with both NURBS and Polygon models, as these are the 
most popular way of modelling at present, but sub-
division surfaces has started to become increasingly used 
recently.  The model itself does not necessarily need to 
be created within Maya, but as long as all the surface 
properties have been imported correctly then the process 
should work in exactly the same way. 
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The generation of the rachis and the barbs at different 
stages has two purposes.  Firstly, it makes the grooming 
of the feathers with the paint tool interactive in real-
time, whereas, tests with the barbs included, proved too 
slow to be workable.  Secondly, once the barbs have been 
generated it can be quite hard to distinguish the 
direction of each individual feather, so grooming would 
then be much harder.  Although the barb solving and 
collisions probably could have been implemented in MEL, 
the decision was taken to use the C++ API, based on the 
performance benefits when dealing with large amounts of 
geometry and testing loops. 
 
Using a painted texture to define the colour of the 
feathers is not a new concept.  It allows an artist to 
happily spend plenty of time painting the image 
separately while work on feathering the bird is on going, 
so therefore reducing the chance of a bottle neck in the 
pipeline. 
 
As mentioned earlier in this section and based on the 
research conducted for this thesis, PRman, provided a 
suitable way of generating the feather detail at render-
time and a way of applying a realistic surface property 
to the feathers via a shader.  This is by no means the 
only way of achieving the final image, openGL being 
another possible solution, but for the reasons already 
stated the Renderman Interface was chosen.     
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4. Painting the Feathers 
 
 
4.a. Maya’s Paint Scripts Tool 
 
 
The Paint Scripts Tool is based on the concept of a two-
dimensional array of numeric values super-imposed on a 
NURBS or polygonal surface. This array is either defined 
by the vertex positions of the surface or an arbitrary 2D 
grid that is evenly spaced in the surface parameter 
space. This array of numbers can be thought of as a 2D 
grayscale image, where each pixel corresponds to an array 
position and the grayscale value corresponds to the 
number associated with that array position. The scripts 
associated with the Paint Scripts Tool determine how 
Maya’s Artisan interprets this array of numbers. Artisan 
calls the script when it needs to know the number 
assigned to one of the array positions as described 
above. Artisan also calls the script when it changes a 
number assigned to one of the array positions. 
 
The Paint Scripts Tool is defined by a set of MEL 
procedures. The names of the MEL procedures display in 
the Setup section of the Tool Settings editor. You can 
also set up the MEL procedures using the artUserPaintCtx 
MEL command, which means the paint tool will be instantly 
ready for the user to use without having to worry about 
entering all the individual procedures into the Setup 
section, therefore allowing a non technical artist to 
work the tool.  SFFS achieves this using the script 
paintRachisTool.mel. 
 
 
 
4.b. paintRachisTool 
 
 
Since the rachis painting requirements are very similar 
to that of Maya’s hair system, it made sense to use the 
global hair paint context ($PaintHairAttrToolCtx).  This 
sets the tool up with the necessary features to groom the 
rachis and the paintRachisTool script then directs the 
tool to the necessary procedures to paint the rachis onto 
the desired surface (see Appendix A.1.). 
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Figure 4.1 Paint Rachis Tool Setup Section 

 
 
 
 

4.c. rachisCurvePaint 
 
 
The rachisCurvePaint script is the heart of the tool, 
which sets up the User Interface for the tool and 
contains the procedures to interact with Artisan to allow 
the painting process.  It acts as both the creator of the 
feather systems and the grooming tool which is used to 
groom the feathers into the desired style.  If there are 
no feather systems attached to the selected surface then 
the tool sets up to create a new feather system with the 
first stoke.  The feather system uses Maya’s hair 
dynamics to control the movement of the rachis.  This not 
only enables the feathers to move with inertia from the 
motion of the creature, but since it is particle driven 
it can be effected by external fields such as wind, 
gravity and turbulence (see Appendix A.2.).  
 
Once a feather system has been created then the user has 
the choice of creating more follicles for that particular 
feather system or to start to a new feather system. 
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Figure 4.2 Creating Follicles for the Feather System 

 
 

The user can add and remove any of the follicles at any 
time up until the generation of the barbs. The follicles 
are actually generated by passing parameters from the 
rachisPaintCurve script to the createFeatherCurveNode 
script, which is covered in the next section. 
 
In order to groom the feathers the paint tool also has to 
allow for the user to change the attributes of the 
follicles and rachis.  The user has the choice of 
changing the rotational position of the follicle (roll, 
inclination, polar), the scale of the rachis and the 
stiffness of the rachis, which are all controlled by the 
editFollicle and editFollicleValue procedures.  The user 
just has to adjust the value of the paint attribute in 
order to affect the desired grooming method. 
 
 

Mark Newport  19 



 
Figure 4.3 Grooming the Rachis Curves 

 
 

 
 
4.d. createFeatherCurveNode 
 
 
The createFeatherCurveNode script is actually responsible 
for the generation of the feather follicles, the rachis’, 
and the set up of the dynamics for each feather.  The 
follicle details are passed to the createFeatherCurveNode 
procedure, which then attaches the follicle to the target 
surface based on these parameters, while also setting the 
dynamic attributes of the follicles.  These can obviously 
be changed by hand by the user, but the set up has to be 
based on the most suitable attributes for realistic 
feathers (see Appendix A.3.). 
 
The rachis description is then processed by the 
drawLineCmd procedure, which sets the control vertices of 
the rachis curve in local space, which is then converted 
into world space by the follicle, based on the input 
geometry (see Appendix A.4.).  
 
The result is a large amount of cubic curves attached to 
the creatures surface, but in order to work further down 
the pipeline the curves had to be grouped into a logical 
order which could then be accessed by the barb curves to 
create a proper feather structure, which could be 
exported to a RIB file. 
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Figure 4.4 Feather System Groupings 
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5. Generating the Barbs 
 
 
5.a. controlBarbs Node 
 
 
The control barbs strategy documented in the Research 
section of this thesis (section 2.b.), was used in 
generating the barbs.  This meant that there was actually 
a different node created for each of the eight barbs 
(four each side).  It was important that each of the 
barbs started at exactly the same parametric position 
along the rachis curve as the Renderman DSO was dependent 
on these positions being 0.2, 0.3, 0.8 and 1.0.  In order 
to achieve this, the pointOnCurve node was used to plug 
into the controlBarbs node and this gave the correct 
parametric position for the root of the barb on the 
rachis curve. 
 
It was also necessary to scale the size of the barbs 
based on the size of the rachis, so the barbs appeared to 
be proportional to the rachis size. Another utility node 
called the curveInfo node was used to get the length of 
the curve even when it started bending. 
 
 

 
Figure 5.1 Hypergraph Input Connections for controlBarb node 

 
 

The sole purpose of the controlBarb node is to set the 
initial positions of the four control vertices that make 
up the barb curve.  An algorithm to achieve this was 
attempted but without success, so the positions are 
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incremented by hard-coded amounts and scaled by the 
length in order to achieve a realistic barb shape. 
  
 

 
Figure 5.2 Control Barbs 

 
 
The barb’s control vertices would then be set as 
attributes within the controlBarb node and passed onto 
the barbSolver node. The positions are then adjusted to 
take into account the surface geometry. 
 
 
 
5.b. barbSolver Node 
 
 
In order for the barbs to be positioned more 
realistically, they needed to be aware of the surface 
geometry.  This had two effects.  Firstly, it helped the 
feathers to take the shape of the surface when compacted 
against it.  Secondly, it provides a more natural growing 
direction and adds randomisation to the feathers. 
 
To achieve this, the information about the surface needed 
to be plugged into the barbSolver and the solution came 
from the closestPointOnMesh (for Poly) and 
closestPointOnSurface (for NURBS) nodes.  With the use of 
these nodes the control vertex could be sent out and the 
closest point of the surface geometry was returned along 
with the surface normal.  The closestPointOnSurface node 
at present does not have a surface normal attribute, so 
this would need to be rewritten if a NURBS geometry was 
the intended surface. 
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Figure 5.3 Hypergraph Input Connections for barbSolver node 

 
 

Once the barbSolver has the closest points on the surface 
to each of the barb control vertices, then it can 
establish whether each control vertex is inside or 
outside of the surface geometry.  If the control vertex 
is outside the surface geometry then the position is set 
based on the predefined hard-coded increments, which are 
adjusted based on the surface normal.  If the barb 
control vertex is inside the surface geometry then this 
means there is the likelihood that the barb’s curve will 
pierce the skin, which would appear rather odd.  To 
combat this, the barbSolver keeps adjusting the x 
component of the barb control vertex (assuming the 
creature is pointing along the x-axis), until it is no 
longer inside the surface geometry (see Appendix A.5.).  
Figure 5.4 shows how this works in practice.  The 
feathers top row of barbs initially want to grow in a 
vertically upwards direction, but the shape of the 
geometry forces them to take on its surface shape. 
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Figure 5.4 Barbs Compacting Against Surface Geometry 

    
 
Now the barbSolver node has calculated the new positions 
of all the control vertices for a particular barb, then 
it needs to pass the curve data to the featherCollision 
node, in order to solve the interpenetration between 
feathers.  In order to make this process as tidy as 
possible, rather than sending the featherCollision node 
hundreds of point attributes, the curve data is sent as 
FnNurbsCurveData. M
 
  

 
 

5.c. featherCollision Node 
 
 
The first consideration the featherCollision node needed 
to make was what actually defined a feather.  All the 
inputs to the node were curve attributes, but this in 
itself gave no clue as to what a feather was and what 
each feather was doing on the surface.  In order to 
achieve the concept of feathers the featherStructure 
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class was created.  Each featherStructure instance would 
have an index and a location, which would be used to test 
for neighbouring feathers, as unlike the Chen et al 
(2002) paper, the feathers needed to be able to be 
created in any order the user wanted. 
 
It was the responsibility of the Feathers class to 
construct the feathers systems and then solve the 
interpenetration between the feathers.  Each vertices was 
passed from the input curve data attributes and converted 
into featherStructures, which could then be indexed and 
the location calculated from the average of all the 
points.  The location only has to be an estimate, since 
it was only a way of rejecting feathers that were too far 
away to possibly interpenetrate the testing feather.  It 
was important to conduct this test, as highlighted by 
Chen et al (2002), as the testing of every feather 
against every other feather was a very expensive process. 
 
One of points made by Kaufman.D,(2002), in the paper 
about Sony Imageworks R&D on feathers was that the 1DVD 
and 2DVD processes came out of necessity from a 
restriction of movement from traditional collision 
detection between feathers.  Although not actually 
specified, the restrictions appeared to be referring to 
how the feathers could become rigid and pushed from the 
body when solving the interpenetration by boundary-based 
collision detection.  Although the 2DVD is a very 
interesting solution to the interpenetration problem it 
was never a practical method to implement in the time 
frame for this project, considering it took a team of 
highly experienced people eight months to fully develop, 
so a far simpler method was needed. 
 
The method designed to solve the problem, was based on 
the idea of checking every control vertex (not the root 
control vertex of each barb, as this could not move 
without the rachis) of a feather against a control vertex 
on another feather.  If the testing vertex was measured 
to be very close to another control vertex of a feather 
then it might be a contender of interpenetration and was 
moved in the direction back towards the root of the barb.  
It was a possibility that the control vertex was not 
actually causing an interpenetration, by just being 
close, but by moving it back towards the root of the barb 
made little difference.  If this was the case then the 
adjustment would only be a small amount due to it quickly 
being outside the distance deemed close.  A control 
vertex that was the wrong side on the other hand, would 
take more cycles of the loop to adjust as it was forced 
back towards the root of the barb and this movement would 
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be more noticeable (see Appendix A.6.).  On some 
occasions the control vertex may be impossible to adjust 
beyond the threshold distance because the two points’ 
root positions might be very similar, but if the 
interpenetration occurred very close to the rachis then 
it would be far less likely to be visible to the human 
eye than an interpenetration occurring towards the tip. 
 
One failure of this method is that it does rely on the 
groomer of the feathers to make sure no extreme 
interpenetrations occur like the one shown in Figure 5.5, 
otherwise the control vertices will be outside the 
distance threshold and then deemed to be without need of 
adjustment. 
 
 

 
Figure 5.5 Extreme Interpenetration between Feathers 

 
 
The decision to output curve data to nurbsCurve nodes was 
based on the fact the the user could then manipulate the 
points by hand if they so desired.  Another option would 
have been to drawn them in openGL, which would have 
benefited the performance, but then the direct 
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manipulation of the curves via Maya’s standard tools 
would not have been possible. 
 
In order to output a varying amount of curves from the 
feathersCollision node the use of a MArrayDataBuilder was 
necessary.  The MArrayDataBuilder element was added to 
the array every time a loop for one of the barb curves 
was executed.  Each MArrayDataBuilder element contained 
another MFnNurbsCurveData which once plugged into a 
nurbsCurve node created the barb in Maya. 
 
 

 
Figure 5.6 Hypergraph Output Connections for featherCollision node 

 
 

 
 
5.d. addBarbs 
 
 
The reasons for creating the barbs separately from the 
rachis have already been stated.  It is the job of the 
addBarbs procedure to create all the nodes that go into 
making up the barb process and make all the necessary 
hypergraph connections.  Once the procedure has worked 
out how many feathers it is dealing with and what the 
target surface geometry is, it then loops through each 
feather creating the nodes for the barb generation. 
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5.e. assignFeatherColours 
 
 
To assign colours to the feathers a common technique of 
painting directly onto the geometry was used.  The artist 
could use Maya’s 3D Paint Tool or any other 3D paint 
package to paint the desired colour for the feathers in 
certain regions on the geometry.  By using this 
technique, it gave the artist quick, predictable results, 
which they would feel very comfortable with. Figure 5.7 
shows an example of this painting process. 
 
 

 
Figure 5.7 Painting on the Colour of the Feathers 

 
 

At present to assignFeatherColours procedure needs the 
texture image to be a predefined name and resolution, but 
this can be easily updated to allow the user to input the 
texture file’s details.  The assignFeatherColours 
procedure loops through each of the feather follicles and 
based on the u and v parameters of the follicle it works 
out which pixel in the texture file corresponds to the 
position of the follicle on the geometry.  It then uses 
the iffPixel procedure to return the colour of that 
particular pixel and sets the follicle colour to this. 
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6. Rendering the Feathers 

 
 
6.a. RIB Export 
 
 
The decision to use PRman was explained in section 3.b, 
but the feather curves could not just be exported 
normally using Pixar’s Maya to Renderman (MTOR) tool, 
since it would create an incompatible RIB format with 
what was needed for the input to the procedural primitive 
DSO.   
 
To solve this problem another MEL procedure was created 
called writeFeathersRIB, which cycled through each frame 
of the animation and exported the RIB file in the desired 
format.  The DSO needed the curves in a set order, so it 
could interpolate the missing barbs correctly, and to 
make the render more efficient the DSO uses the bounding 
box information to delay the reading of the RIB data 
until absolutely necessary, instead of reading all the 
RIB data into memory at the start.  
 
Another requirement that be exported, was the colour and 
surface normal of the feather follicle.  These were 
necessary in order to shade the feathers properly, and 
will be discussed in more detail in section 6.c..  
 
At present the writeFeathersRIB script is only set up for 
the testing scene with a predefined camera and light 
position.  It would not take much to introduce the 
calculations for the camera and light positions into the 
procedure and once this has been done, it should be able 
o cope with any Maya scene information.    t
 
 
 
6.b. Feather Detail Procedural Primitive DSO 
 
 
The Feather Detail DSO was used to generate the majority 
of the feather structure at render-time.  As discussed 
earlier, this provided an increased efficiency for work 
flow performance, since a large proportion of the 
geometry did not exist until the very last stage of the 
pipeline.  It also meant that it reduced the amount of 
RAM required, a problem highlighted in the Research 
section.  This was achieved by delaying the reading of 
the RIB data until the bounding box was reached. 
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The DSO is sent its input in the form of a string via the 
RIB. The DSO takes the data string from the RIB and 
converts it to dynamically allocated blind data.  In this 
particular case the string was a list of the control 
points that made up each control barb.  The DSO was 
reliant on the order of the points provided by the RIB, 
since that data allocation process was always the same. 
 
The DSO starts at the parametric position 0.2 (position 
of the first barbs) along the rachis and then makes small 
increments up of the rachis applying a barb at each 
position based on an interpolation of the control barbs 
either side of it.  A straight interpolation between each 
of the four points that made up the barb would not have 
produced a satisfactory result, since if the rachis was 
bent in any direction, the barbs would no longer be 
attached to the rachis.  Since all the barbs and the 
rachis where Bezier curves of degree 3, De Casteljau’s 
Algorithm (see Appendix A.7.) could be used to find out 
the point on the rachis curve and then use this point as 
the root position for the barb.  The result of this meant 
that however much the rachis bent, the barb would always 
stay attached to the rachis. 
 
 

 
Figure 6.1 De Casteljau’s Algorithm 

 
 

Once the control vertices for the barb have been 
determined they are sent to the drawCurve function, which 
then outputs the curve as a Renderman RiCurve primitive 
that gets thinner towards the tip.  The benefits of the 
RiCurves primitive have been discussed in section 2.f, 
but the nature of the Curves primitive is that it always 
faces the camera, which causes a problem when being 
shaded.  The solution to this problem is discussed in the 
next section. 
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6.c. Renderman Shader 
 
 
Since the surface properties of hair and feathers are 
similar, a search for an existing hair shader was 
conducted as there seemed little chance of a feather 
shader based on RiCurves already existing.  The RiCurves 
was an important factor because this primitive consists 
of many small micro-polygons falling along a specified 
curve with their normals pointing directly towards the 
camera (like a 2-dimensional ribbon always oriented 
towards the camera), making it shade differently to other 
primitives.  One such shader was found in a presentation 
given by Bredow, R. (Sony Picture Imageworks, 2000) on 
the Fur in Stuart Little.  The shader provided in the 
notes was actually developed by Hanson, C. and Bruderlin, 
A.  
 
Some of the parts of the shader were not applicable to 
feathers, such as clumping, and therefore were removed to 
increase performance, but the most useful part was how 
they obtained a shading normal at the current point on 
the hair, which was not just forward facing.  This was 
achieved by mixing the surface normal vector at the base 
of the hair with the vector at the current point on the 
hair.  The amount with which each of these vectors 
contributes to the mix is based on the angle between the 
tangent vector at the current point on the hair and the 
surface normal vector at the base of the hair.  The 
smaller this angle, the more the surface normal 
contributes to the shading normal. 
 
The test renders conducted for this project were intended 
to be similar to that of a bird of prey, which meant that 
the shininess of hair would not be appropriate.  To solve 
this problem the specular levels were reduced, by 
reducing the global variable Ks, but still allowing the 
specular only to hit in certain parts of the curves, 
based on the v global variable.  After testing and based 
on pictures of feathers from the research it was decided 
that the base colour of the feather passed via the RIB 
should be more prominent towards the root of the barbs, 
so the root colour was set to pure white, allowing the 
base colour to totally dominant once added to the 
calculations.  The tip colour was, in contrast to human 
hair, was set to a dark grey, so the base colour would 
appear to fade out towards the edges. 
 
The test animation contained 750 feathers of varying 
sizes and each 1K frame averaged about 40 seconds on a 
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single Intel Pentium 4 2.2GHz processor with 768MB of 
RAM.  This speed can be considered extremely good, as 
once sent to a multi cpu renderfarm an entire shot could 
be rendered in a matter a minutes, thus allowing small 
alterations and continuous updated versions, essential 
control for a visual effect. 
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7. Conclusion and Future Work 
 
 
The success of the Start to Finish Feathers Solution has 
to be measured by several factors, but most important, is 
the quality of the final images it produces.  These have 
been very successful and have fulfilled the ambitions of 
the original aim of this project.  The testing geometry 
was chosen because it provided a fully rigged, deforming 
skin that had a large array of movement and produced 
creases around the joints.  The SFFS managed to work 
successfully in these demanding conditions and was 
capable of providing a photorealistic animation as a 
result (see Feathers_Solution_Demo.m2v provided on CD and 
Appendix B). 
 
Another important consideration as stated in section 3, 
was the efficiency of the solution in a high pressure 
working environment of a visual effects company.  Having 
the potential of applying the feathers to both NURBS and 
polygon meshes is a key issue, since it provides no 
restrictions to the modellers.  Having a restriction of 
geometry type can affect the creative process, while also 
possibly rendering other propriety animation tools 
useless.  Once the pipeline has been set in place, it 
does not require a Technical Director to be involved in 
the process, which means it leaves him/her free to do 
other jobs.  A specialist feather groomer could look 
after the feathering process from start to finish, hence 
the name.  The majority of the work involves the user 
painting things onto the surface of the geometry and 
playing around with a few of the dynamics settings to get 
optimum realism.  This is not a demanding task and could 
be best achieved by most intermediate users of Maya with 
very little or no knowledge of Renderman.  Once the barbs 
have been created and the feathers assigned, the job of 
the groomer is done, until they get the results of the 
render back.  Obviously, with the feather detail 
generated at render time, the groomer will never know 
exactly what the result is going to be, but with 
experience would come a good predictions of results. 
 
The performance of the process can be considered good as 
the testing was done successfully on below industry 
standard machines.  There was no bottle neck in the 
pipeline where the user had to sit and wait for a 
considerable amount of time up until the rendering 
process.   One area of concern was the use of Maya’s 
closestPointOnMesh node, which appeared to use large 
amounts of memory, when the mesh was highly detailed 
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(i.e. large poly count), but this did not actually slow 
the process down, though it could restrict the number of 
feathers applied in extreme circumstances.  
 
The testing of the pipeline has shown that the concepts 
used can provide a successful solution to the problem of 
feathers, but it is by means it a perfect solution 
without the need of development. 
 
An area of improvement in barb generation process would 
be to allow the user paint barb attributes, as at present 
there is no way of editing the barbs.  This would be 
useful because it would allow the user to specify the 
look of the feathers rather than the programmer. 
 
One area not explored due to the close-up nature of the 
testing was a level of detail method built into the 
procedural primitive DSO.  This could work by using less 
curves to generate the feather detail based on the 
distance from the camera, thereby reducing render times. 
 
An improvement to the shader would be the ability to 
create the stylish patterns that some feathers contain, 
as established in the research.  This could be generated 
procedurally or texture-based, but it would provide a 
more realistic look for the feathers, rather than just a 
blend of one colour into another.  
 
For areas of the geometry where there would be high 
levels of rotational deformation, such as a bird’s 
turning neck, the two-dimensional volume deformation 
technique used by Sony Imageworks, mentioned in section 
2.d, would be a very useful development to the current 
solution.  It would not be a simple task, but the 
framework for the current solution would allow for such 
computations without the need to re-write parts of the 
existing pipeline.   
 
Further testing on a variety of different creatures and 
body shapes is still necessary in order to better gauge 
the overall usefulness of the SFFS, but the results 
achieved so far meet the requirements of the original aim 
well and provide a platform for the solution to be 
further developed in several different ways.      
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Appendix A: Code Extracts 
 
A.1. Code Extract from paintRachisTool.mel 
 
string $cmd; 
 
$cmd  = "artUserPaintCtx -e"; 
// Tool Setup Cmd 
$cmd += " -tsc \"rachisCurvePaint\""; 
// Tool Cleanup Cmd 
$cmd += " -tcc \"cleanupRachisPaint\""; 
// Initialise Cmd 
$cmd += " -ic \"initRachisPaint\""; 
// Finalise Cmd 
$cmd += " -fc \"finishRachisPaint\""; 
// Set Value Cmd 
$cmd += " -svc \"setRachisPaintValue\""; 
// Get Value Cmd 
$cmd += " -gvc \"getRachisPaintValue\""; 
// Get Array Attribute Cmd 
$cmd += " -gac \"\" -cc \"\" -gsc \"\""; 
$cmd += $gPaintHairAttrToolCtx; 
eval $cmd; 
 
 
A.2. Code Extract from rachisCurvePaint.mel 
 
if($gRachisCurveFeatherSys == "") 
{ 
 $gRachisCurveStartIndex[0] = 0; 
 string $m =`createNode -n "FeatherSystemX#" transform`; 

$gRachisCurveFeatherSys = `createNode -p $m -n "FeatherSystem#" hairSystem`; 
 int $numHsys = size( $gRachisCurveFeatherSystems ); 
 $gRachisCurveFeatherSystems[$numHsys] = $gRachisCurveFeatherSys; 
 connectAttr time1.outTime ($gRachisCurveFeatherSys + ".currentTime"); 
} 
 
 
 
A.3. Code Extract from createFeatherCurveNode.mel 
 
// Set follicle positional and dynamic attributes 
string $foll = `createNode follicle`; 
 
// Set parameteric positions 
setAttr ($foll + ".parameterU" ) $u; 
setAttr ($foll + ".parameterV" ) $v; 
// Set simulation method so feathers are dynamic 
setAttr ($foll + ".simulationMethod") 2; 
// Point locked at both ends 
setAttr ($foll + ".pointLock") 3; 
// Get Transform  
string $tforms[] = `listTransforms $foll`; 
string $follDag = $tforms[0]; 
int $attachedToSurface = false; 
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if( $surface != "" && objExists( $surface ) ) 
 { 
        // Determine type of the target surface and apply world 
        // matrix and geometry data types to follicle attributes 
        string $nType = `nodeType $surface`; 
        connectAttr ($surface + ".worldMatrix[0]") ($foll + ".inputWorldMatrix"); 
        if( "nurbsSurface" == $nType ) 
        {  
 connectAttr ($surface + ".local") ($foll + ".inputSurface"); 
        }  
        else if( "mesh" == $nType ) 
        { 
 connectAttr ($surface + ".outMesh") ($foll + ".inputMesh"); 
 // For poly need currentUV set 
 string $currentUVSet[] = `polyUVSet -q -currentUVSet $surface`; 
 setAttr ($foll + ".mapSetName") -type "string" $currentUVSet[0]; 
 int $isValidUv = getAttr( $foll + ".validUv" ); 
 if( !$isValidUv ) 
            { 
     delete $follDag; 
     return ""; 
 } 
        }  
 
 connectAttr ($foll + ".outTranslate") ($follDag + ".translate"); 
 connectAttr ($foll + ".outRotate") ($follDag + ".rotate"); 
 // Stop accidental editing via channels menu 
 setAttr -lock true  ($follDag + ".translate"); 
 setAttr -lock true  ($follDag + ".rotate"); 
} 
 
 
A.4. Code Extract from createFeatherCurveNode.mel 
 
// Cubic curve 
string $cmd = "curve -d 3"; 
int $i; 
float $fac = $curveLength/(float)($numCvs-1); 
for( $i = 0; $i < $numCvs; $i++ ) 
{ 
      $cmd += (" -p 0 0 " + ((float)$i * $fac)); 
} 
return $cmd; 
 
… 
 
connectAttr ($surface + ".worldMatrix[0]") ($foll + ".inputWorldMatrix"); 
 
 
 
A.5. Code Extract from barb1solver.cpp 
 
// Base growth direction on surface normal 
if(mnormal[0]>=0.0) 
{ 
 // If second CV is outside closest point on skin 
 if(mposition2x>=mclosest2[0]) 
 { 
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  // Set the second CV position 
  MPoint cv1(mrootPosition1-(1-mnormal[0]), 
mrootPosition2+(0.25*mscale+mnormal[1]), mrootPosition3+(0.15*mscale)); 
  // Apply second CV to vertices array 
  vertices.append( cv1 ); 
 } 
 else 
 { 
  // Make sure the second CV is not inside closest point on skin 
  while(mposition2x<mclosest2[0]) 
  { 
   mposition2x = mposition2x+0.05f; 
  } 
  // Set the second CV position 
  MPoint cv1( mposition2x, mposition2y, mposition2z); 
  // Apply second CV to vertices array 
  vertices.append( cv1 ); 
 } 
… 
 
 
A.6. Code Extract from feathers.cpp 
 
// Check distance between cvs 
float dist = distanceBetween(feathers[r].barbs[d]->cv[e]->position, 
point1); 
unsigned int breakloop = 0; 
while(dist<0.2 && breakloop < 6) 
{ 
 // Move the cv back towards the root of the curve based on the 
vector direction 
 Point3D vec = vectorToRoot(feathers[r].barbs[d]->cv[0]-
>position, feathers[r].barbs[d]->cv[e]->position); 
 Point3D steps = vec/5; 
        
 feathers[r].barbs[d]->cv[e]->position+=steps; 
 // Calculate bew distance between cvs 
 dist = distanceBetween(feathers[q].barbs[b]->cv[e]->position, 
feathers[r].barbs[d]->cv[e]->position); 
 breakloop++; 
} 
 
 
A.7. Code Extract from feather_detail.c 
 
// De Casteljau Algorithm 
float PointOnBezier(float t, float cv1, float cv2, float cv3, float 
cv4) 
{ 
 float ab, bc, cd, abbc, bccd, result; 
 ab = lerp(cv1, cv2, t); 
 bc = lerp(cv2, cv3, t); 
 cd = lerp(cv3, cv4, t); 
 abbc = lerp(ab, bc, t); 
 bccd = lerp(bc, cd, t); 
 result = lerp(abbc, bccd, t); 
 return result; 
} 
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Appendix B: Test Images 

 
 

 
Animated Deformable Poly Mesh to Test SFFS on 

 
 
 

 
Control Barbs Generated in Maya 
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Feather Detail generated by DSO at Render-time 

 
 
 

 
Final Image with Renderman Shader applied 
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