
 1

 RAG-DOLL IMPLEMENTATION IN MAYA

MASTERS THESIS

 SANJANA RAJENDRAN
N.C.C.A BOURNEMOUTH UNIVERSITY

September 5th, 2005

 2

Contents

1 Introduction …………………………………………………….4

2 PreviousWork …………………………………………………..6
 2.1.other ‘Pseudo’ ragdoll creation methods………………..6

3 Technical Background………………………………………….7

4 Solution………………………………………………………….9
 4.1.Creating the dynamic body……………………………...9
 4.2.Physical constraints…………………………………….12
 4.3.Creating the blast wave………………………………...12
 4.4.User Interface…………………………………………...15
 4.5.Problems faced………………………………………….15
 4.6.Procedures used…………………………………………16
 4.7.Tests……………………………………………………..17
 4.8.Known bugs……………………………………………..18

5 Conclusions and Future work ………………………………….19

6.References………………………………………………………..20

7. Appendices………………………………………………………22

 3

LIST OF FIGURES

1.1.A basic rag-doll…………………………………………………………..4

1.2.SmartStunts’ in Massive………………………………………………..5

1.3.Dynamic animation of a blast wave……………………………………6

1.4.Adaptive determination of the active region………………………….8

1.5.Adaptive dynamics of articulated characters…………………………9

4.1.The test skeleton used………………………………………………….10

4.2.The complete rag-doll………………………………………………….11

4.3.The physical constraints in the legs and arms……………………….12

4.4.The user interface window…………………………………………….15

4.5.Adding a character mesh………………………………………………16

4.6.Rendered images of rag-doll animation………………………………17

4.7.Rendered images with character mesh…………………………………18

 4

1.INTRODUCTION

Dynamic Animation is a new area of Computer Animation that is being increasingly used in
games and visual effects. It results in natural, realistic-looking motion of characters, which is
difficult to achieve by traditional key framing. The human body is complex and its tough to
anticipate and reproduce and reaction of human beings to forces and objects, by just key framing
alone. So lately the CG community has started to look at the possibilities of using physics in
character animations as well. This has resulted in something the game developers refer to as
rag doll behavior.

Rag doll, as the name implies, is the ability to let the characters be influenced by the
surrounding environment while apparently limp themselves, like rag dolls. The rag-doll by
itself does not produce any motion, but under the influence of forces and fields, it reacts in a
way a normal human would. rag doll behavior does not imply controlling the user controlled
characters with physics, it merely concerns simulating physical effects on lifeless characters
or lifeless limbs. Applying constraints to the rag-doll to specify how a normal human would
or wouldn’t move does this. These simulations can however be mixed with existing
animations. The main area of research however is the subject of shifting the character control
from the animations system to the physics system.

 Figure 1.1:A basic rag-doll(2)

The chief advantage ragdolls offer over traditional animations is that they allow much more
correct interaction with the surrounding environment. Where it would be absurd to try and hand-
craft custom animations for all conceivable circumstances, ragdolls fill in and generate a mostly-
correct interpretation of events on fly.However,the disadvantage is that since real-time physics
simumlations are computationally intensive,very simple structures are used to approximate the
characters and therefore small parts like fingers,toes etc often go unsimulated.

There are software like Endorphin which use Artificial-Intelligence driven behavior
routines and laws of physics to determine how the characters would move, to
dynamically animate human characters. Endorphin allows an animator to import

 5

animation or motion capture data, after which, the animator can override behavior of that
character at any moment and let AI behavior take over. Other packages like Massive also feature
dynamic animations called ‘SmartStunts’. With Smart Stunts it's possible for filmmakers to direct
the motions and possible reactions they want for virtual actors ahead of time with their real stunt
actors. Then, all of the reactions that follow in Massive are reactions that are completely in
character. In addition to human stunts, Massive allows completely arbitrary, non-human-specific
skeletons and the ability to animate a large number of things interacting realistically. There are
also various ways of implementing ragdoll models, which are described later on.
 Figure 1.2:’SmartStunts’ in Massive(3)

The inspiration behind the project arose on seeing a web page, which featured the use of
Softimage and Behavior to animate a group of characters responding to a blast wave. The
project used state machines in Behavior to use AI driven routines to animate the characters
dynamically. It was then decided to implement an identical scenario in Maya, where a
character could react to a blast wave dynamically. This led to the use of rag-dolls to turn the
character dynamic. The challenge lay in creating a mel script which could automate the
process for the user and convert a human skeleton into a physically-simulated ragdoll. This
script also sets the explosion fields according to the user’s requirements to dynamically
animate the character. Another challenge was also simulating the effect of the blast wave.
Various fields were tested on the character and finally it was decided to use the gravity field
itself, in different directions. Also to give it the momentum and effect of a blast wave, an
object simulating the blast wave was made to collide with the Rag-doll.

Figure 1.3:Dynamic animation of a blast wave(4)

 6

2.PREVIOUS WORK:

The traditional method of creating rag-dolls involves creating rigid body object for each of
the main bones and connecting them by hinge constraints to simulate a skeleton. One of the
drawbacks of this method was that some kind of additional constraining had to be added as
the rag-doll proved too flexible and inhuman-like.

2.1.OTHER PSEUDO RAGDOLL CREATION METHODS

Some of the other methods of creating ‘pseudo rag-dolls’ that have been used are as
follows(5):

• Verlet integration: used by Hitman: Codename 47 and popularized by Thomas Jakobsen,
this technique models each character bone as a point connected to an arbitrary number of
other points via simple constraints. Verlet constraints are much simpler and faster to
solve than most of those in a fully modelled rigid body system, resulting in much less
CPU consumption for characters.Verlet integration is also popularly used as a velocity-
less Cloth Simulation technique.This technique is most popularly used in the games
industry to achieve the ragdoll effect.

• Inverse kinematics post-processing: used in Halo, this technique relies on playing a pre-

set death animation and then using inverse kinematics to force the character into a
possible position after the animation has completed. This means that, during an
animation, a character could wind up clipping through world geometry, but after he has
come to rest, all of his bones will be in valid space.

• Blended ragdoll: this technique works by playing a pre-made animation, but constraining

the output of that animation to what a physical system would allow. This helps alleviate
the ragdoll feeling of characters suddenly going limp, but offers correct environmental
interaction as well. This requires both animation processing and physics processing, thus
making it even slower than traditional ragdoll alone

The former was finally chosen due to its computational effectiveness.

 7

David Basalla, a fellow Msc Computer Animation course mate, had previously implemented
a similar rag-doll model in Maya. One problem faced by the model was that due to adequate
constraints, the resulting motion was sometimes a bit too flexible. So one of the challenges
was adding more physical constraints including those for the elbows, feet and hands to
prevent the body from getting too flexible in unrealistic directions .The constraints act as a
‘check’ and perform the same role as that of an elbow or an knee in the human body.

Also subtle differences in the proxy objects were made to improve the performance of the
rag-doll. For example, the rag-doll was constructed so that the different cubes for the
different bones were of different size, true to a real body. Also the human body retains its
balance due to a certain balance in the masses of the different parts. For example, if the head
were heavier compared to the body, we would all topple over. Since, the torso and the pelvis
are the heavier parts, and the hands, legs and had lighter, the center of gravity remains within
the pelvis that enable us to function normally. So masses were assigned to different parts of
the body according to its size and weight, to give more of a sense of balance.

3.TECHNICAL BACKGROUND:

Mel (Maya Embedded Language) was chosen to implement the project as it not only had a
complete range of commands but also had a wide range of user-interface creation commands.
Mel is a relatively simple programming language, similar to C, controls all of Maya’s action
right from creating an object to selecting something. In fact, Maya’s dialog windows itself
are written in Mel. Typical cases where Mel is used are in cases, which involve a repetitive
use of some action or procedure. A simple script could be written for the same and the task is
accomplished by the click of a button. Therefore, every action performed by an user is a Mel
command and the result of the same is stored in the script editor. Once the script has been
written and compiled, it can be stored on the window shelf enabling easy access for the user
each time the script needs to be run.

Most of the research in Dynamic Animation has been in creating different types of dynamic
systems, saving computational time and also including mocap and extending that into
dynamic animation.

The sigraph paper “A Particle Dynamics System” by Zoran Ka ci¥c-Alesi Marcus
Nordenstam David Bullock of Industrial Light and Magic provided an insightful look into the
other methods of creating pseudo ragdolls. In this method, they create each bone as a Mass-
Spring model, consisting of numerous particles connected by springs and use an integration
technique to detect the movement of the character. According to the paper

“Our system is built on a spring-mass model. At the lowest level, the solver sees a world
consisting of a potentially large number of point masses, or centers of mass for rigid bodies,
connected with springs in an arbitrary configuration. While this may not be the most accurate
model of the world, it is simple and it works surprisingly well for many applications. At the
application level, the dynamics system is a module in a general 3D modeling and animation
system. At this level the world, or the scene, as we often call it, consists of many complex

 8

polygonal or B-Spline surface models animated using a combination of key frame animation,
procedural methods, deformations, simulation, and motion capture. The user has complete
control over every attribute that describes the objects in the scene, their motion, and
interaction ñ there is a graphical user interface for interactive control and a scripting language
that can achieve the same programmatically”.(1)

The paper quotes very good results using the Verlet Integration technique, which is widely
used in Molecular and Dynamic animation.

The paper “Adaptive Dynamics of Articulated Bodies” by Stephane Redon Nico Galoppo
Ming C. Lin, Department of Computer Science, University of North Carolina, published in
this year's sigraph also offers an interesting observation. This techniques saves computational
time by not simulating all the joints at all time and by choosing only certain joints that
contribute the most to the current state of the articulated body .The user can choose the
number of joints he wants to simulate depending on the accuracy desired, distance from the
camera etc. So in cases where there are a large number of characters very far away from the
character, the joints in the fingers etc can avoid getting simulated, thus saving computational
time.

The next figure shows an example of the adaptive selection of the set of active joints: (a) one of
the links of a 50-link pendulum is attached to a point in the environment through a spring; (b)
equilibrium state when 50 joints are active; (c) equilibrium state when 5 joints are active, without
adaptive determination of the active joints (breadth-first selection); (d) equilibrium state when 5
joints are active, with adaptive determination of the active joints by the adaptive dynamics
algorithm. (6)

The following figure shows a complex scene, where 200 human characters, represented by 17,800
rigid bodies and 19,000 degrees of freedom, are suddenly pushed away from the camera due to
applied forces. The adaptive dynamics algorithm allows an animator to progressively reduce the

 9

number of simulated joints in the characters as their distance to the camera increases, A in order
to improve the efficiency of the dynamics simulation.(7)

4.SOLUTION

The goal of the project was to convert a joint skeleton into a ragdoll and allow the user to
dynamically set a blast wave to simulate an explosion scenario. The focus was more on
realistic, human-like motion of the ragdoll rather than extending it for a crowd scene, which
was not possible due to time constraints.

There were two specific parts to the problem. They were:

• Creating the dynamic skeleton
• Creating the effect of the blast wave.

4.1.CREATING THE DYNAMIC BODY

The body was created from ‘proxy objects’, which were created according to the size of each
part of the human body. The proxy objects are then aligned to the skeleton by using Maya’s
‘orient’ command. The body was created and tested on a single skeleton and is specific to
that skeleton. One of the problems was trying to make a script flexible enough for different
skeletons, but due to time constraints, and the difficulty in achieving this, a single skeleton
was chosen and all the tests done on that.

 10

Figure 4.1:The test skeleton used

The main procedure in creating the body was traverse (string $joint, string $group
name). This procedure traversed through each joint in the skeleton and did the following:

• Checked if the joint was the root, if so, it turned on a root flag.
• If not, calculated the position of the joint and the position of the next joint.
• It then calculated the mid point between the 2 joints.
• The proxy object cube was then created according to the joint and scaled

according to the distance between the two and placed at the midpoint of the joints
and oriented according to the joint.

• Any extrusions for the knees or elbows were done depending on where it was
necessary

• A parent constraint was then done for the joint and the corresponding proxy
object using Maya’s parent Constraint command. This command is very
convenient as it has a flag called weight that can be 1 or 0 depending on
whether the constraint is on or off. The constraint is initially set to 0 so that
the skeleton follows the proxy objects. Since the proxy objects are active rigid
bodies, there react to forces and fields and the skeleton in turn moves with the
proxy objects, dragging the character mesh along with it, if any.

• A counter was increased and the function was called again and the same

procedure was repeated for the next joint .

 11

 Figure 4.2:The complete ragdoll

To traverse among all the joints in the skeleton and add distinct attributes, the joints were
then grouped using a group () procedure, which uses Maya’s group command to create an
empty group and add the attributes Width, Thickness, Length and State. The width, thickness
and length were provided to adjust the scale of the proxy object according to the size of the
character. Also an attribute called State was added so that the user can easily shift between
the normal animated state and the rag-doll state.

The proxy objects then needed to be connected by Hinge constraints. This was done by the
procedure create hinges (string $jointname, string $polyname, string $rootname), where
$jointname was the name of the specific joint, $polyname was the name of the block, and
$rootname was the name of the root joint. These constraints act like the joints connecting the
bones in the human body. The then needed to be rotated into place so that they allowed the
bone to bend in the right direction. They constraints act similar to a door hinge. Sometimes
there was a problem with the constraints of the arm not being oriented to the correct angle of
90 degrees, but strangely enough the rotations of the arm seemed to work fine.

It is then required to make the skeleton move according to the proxy skeleton. So a parent
constraint command is used to constraint the skeleton to the proxy objects so that it overrides
key frames and follows the proxy objects. There command also comes with a ‘weight’
attribute, which can be turned on or off to enable or disable the parent constraint. This
attribute is then connected to the State attribute added while creating the group of joints, for
the user to change between ragdoll and normal behavior.

Also, while scaling the blocks, it was required to know how wide the torso and pelvis needed
to be. This was calculated dynamically by calculating the distance between the two thigh
joints. The torso was made slightly bigger than this distance and the pelvis was made slightly
smaller than the torso to give balance to the ragdoll. This was accomplished using the get

 12

Distance () function, which determines which the thigh joints were, and obtained their world
space coordinates and then used distance formula to calculate the distance between the two
and returns the distance back to the main function.

4.2.PHYSICAL CONSTRAINTS

A major issue was constraints needed as even at this stage the ragdoll was too flexible and
unrealistic and would just topple over given any force. So physical constraints were applied
for a number of parts of the body by extruding out surfaces. For example a kneepad and
elbow were extruded out to prevent the bones from bending backwards. Also it was found
that some kind of constraining was needed for the foot too, as when the character was thrown
in an explosion, the foot often bent backwards. So a portion of the ankle was extruded down
to prevent the bending of the foot backwards.

 Figure 4.3:Physical constraints in the leg and arms

4.3.CREATING THE BLAST WAVE

The primary effect of any explosion is the blast wave that causes a discontinuous effect in
pressure, which in turn causes all the destruction that we normally associate with an
explosion. So the challenge lay in creating the effect of a blast-wave that would make the
rag-doll behave convincingly like it was caught in an explosion.

The obvious choice was a combination of fields, so the rag-doll was tested with radial and
Newton’s fields. But the resulting motion proved too dramatic and therefore other fields were
tested. Finally it was found that by using the Gravity field directions other than -y, the effect
of a blast wave could more or less be approximated. However, the effect was still of a person
being blown away by a strong gust and not of a blast wave which has a stronger and more
sudden impact. So a simple spherical object was made to collide with the rag-doll to provide
the impact and momentum that a blast wave has.

 13

A simple user interface was created which allowed the user to set the strength and location of
the explosion and also the start animation frame for dynamic animation. The y coordinate of
the location was maintained as zero to ensure the explosion occurs on the ground. A ratio was
then computed using the strength of the explosion and distance from the character. The idea
was that the closer the character was to the explosion, greater would be the impact of the
explosion on it. Therefore, the gravity fields were also increased according and the spherical
object depicting the blast wave was also scaled to increase the impact of collision. Similarly,
the more the strength of the explosion greater is the impact on the character. Thus it was
determined that the gravity values should be a combination of strength and distance values.
The values x and z directions of the gravity field were thus calculated using a formula

 Ratio=strength/distance

Where,

Strength=strength of the explosion as specified by the user, and
Distance=distance of the character from the explosion calculated by Distance formula.

The x and z directions of the gravity field were then calculated using the formula,

Dir x=x/(x+z), and dir z=z/(x+z), so that as the gravity along direction x increases, the
gravity along direction z decreases.

A problem was found at this junction whenever the character was not at the origin. Whenever
the character was moved away from the origin, the character was pulled towards the location
of the explosion. To avoid this problem, gravity fields were calculated as though the person
was always at the origin and the characters coordinates along the x and z directions were
subtracted from the location of the blast. So the coordinates of the character become

New coordinates of character=coordinates of the blast-old coordinates of the character

This ensured the calculation of the values of the magnitude of the x and z values of the
gravity field. The next step was the calculation of the direction, whether the values were
positive or negative. For this, a simple algorithm was developed; to determine which
coordinate the values belong in and determined the signs accordingly.

The algorithm was as follows:

• It was checked if the values fit in the (x,z) or (-x,z) or (x,-z) or (-x,-z) coordinates.
• If the value lay in the (x,z) coordinate, it was checked if the character lies in the

origin. If not, the coordinates of the character were subtracted from the location of the
blast to get the new location.

• In the (x,z) coordinate, x and z were simple calculated using the above mentioned
formulas. Since both are positive, and the character is imagined to be at the origin, the

 14

effect of the blast wave should be along the opposite direction .So both the signs were
reversed.

• In the (-x,-z) coordinate again, the direction would be position and therefore the signs
are not changed.

• In the (-x,z) and (x,-z) coordinates the positive or negative sign depends solely on
which value is greater. So it is checked if x or z is greater. If x < z then it is checked
which magnitude is greater using the abs function, which returns the absolute value.
If the magnitude of z is greater, the signs of the z and x values are reversed.

• The opposite happens in the other case where z is lesser. This time again the
magnitudes are compared and the signs are reversed only when the magnitude of x is
greater than the magnitude of z.

The pseudo code is as follows:

Case 1:

If(Location x and Location z >0)
{
Dirx=-(dirx)
Dirz=-(dirz)
}

Case 2:

If((locationx>0 && locationz<0) or (locationz>0&& location x<0))
{

If(locationx<0)
{
 if(magnitude of z > magnitude of x)
 {

 Dirx=-(dirx)
Dirz=-(dirz)
}

 }

 else
 {

 if(magnitude of x > magnitude of z)
 {

 Dirx=-(dirx)
Dirz=-(dirz)
}

 }
}

The values of direction x and direction z were then key framed at the start frame providing by
user. The state attribute of the ragdoll was also key framed to change from normal to

 15

dynamic mode at the start frame. This enabled the user to animate the character by hand and
convert it to ragdoll whenever desired.

4.4.USER INTERFACE

The user interface was kept simple and user-friendly. It simply requires the user to select the
root of the joint skeleton, and have a gravity field created called ‘gravity’ to run the script.
On running the script a window opens which allows the user to enter the strength of the
explosion, location of the explosion and start frame. There is also a simple procedure called
button action (), which transfers the values from the user interface to the program for
calculation.
 Figure 4.4:The-user-interface window

4.5.PROBLEMS FACED

One of the main problems faced was that sometimes the scene became too much
computationally intensive and thus caused Maya to freeze or close. Playing around with the
rigid solver settings generally solved this. Another major problem was the placement of the
proxy objects. Sometimes the objects would get too close and would cause rigid body
interpenetration, again causing Maya to freeze. Testing and re-positioning the blocks exactly
so that the physical constraints served their purpose but at the same time weren’t too closed
to the other blocks to cause collisions sorted out this problem.

Another difficultly was in making the detection of the joints dynamic which involved
multiple conditions in certain cases. These have been done in certain cases, but in certain
other cases, due to time constraints, the joints have been referred to by the name. This
confines the flexibility of the program to a large extent to the specific skeleton.

Overall, the rag-doll produces realistic and naturalistic motion under the influence of a blast
wave. The code could have been more dynamic and could possibly provided for other types
of skeletons as well.

Finally, the ragdoll was tested on a character mesh. The skeleton was sized according to the
character and a smooth binding was done. The root was then selected and the script runs to

 16

create the ragdoll. The proxy objects of the ragdoll can then be resized according to the
character during the width and height sliders. This then converts the character mesh into the
rag doll as the mesh is bound to the skeleton and follows the skeleton. The skeleton in turn is
parent constrained to the proxy skeleton. So the character mesh too follows the proxy
skeleton.
 Figure 4.4:Adding a character mesh

4.6.PROCEDURES USED

1. showMyWindow()-creates the user interface window
2. buttonaction (string $start,string $location,string $strength)-passes on the values of

strength,location and start animation frame from the window to the program
3. createGroup(string $root)-calls the group function to create the group
4. group()-creates a non-empty group and sets new attributes of width,height and state.
5. blast(float $locationx[],int $strength1,int $startframe)-sets the gravity fields to create

the explosion effect according to the strength and location of the explosion.
6. createhinges(string $jointname,string $polyname,string $rootname)-takes two proxy

objects and creates a hinge constraint and orients them accordingly.
7. traverse(string $joint ,string $groupname)-This is the main function.This traverses

through the group,creates the proxy objects,creates the hinge constraints and parent
constraints them to the joint.

8. getDistance(string $rootname)-returns the distance between the 2 thigh joints.

4.7.STRUCTURE

 showMyWindow()
 ⇓
 buttonaction()
 ⇓

 17

 blast()⇒createGroup()⇒group()
 ⇓

 createhinges ⇒ traverse()⇐getDistance()

4.8.TESTS:

A number of tests were conducted with the rag-doll itself and also after binding the rag-
doll to a character mesh. The dynamic simulation worked quite well and could almost
play back in real time. The major force would always be a gravity field but this could be
combined with other force fields as well, such as radials and drag fields. Sometimes
during testing, the fields would be too strong and the simulation would go wrong and
result in a disappearing character. With a character mesh sometimes there were strange
deformations because of the lack of proper painting of weights.

 Figure 4.5:Rendered images of ragdoll animation

 18

Figure 4.6:Rendered images with character mesh

 19

4.9.KNOWN BUGS:

The entire programming and testing was done with the skeleton facing the z axis so the script
works only if the skeleton faces either the positive or negative z axis.
When the location of the blast is given the same x and z value such as +5 and –5,a divide by
zero error occurs.
Sometimes, due to an unknown reason, when the script is run for the first time, an error
message ‘group1. Scalex not found’ is displayed in the script editor and only one proxy
object is created. This can be fixed by simply rerunning the script again and it normally
works fine.

Another problem, which sometimes arises when the character mesh is used, is that the arms
of the character cling together when the character falls as a result of the blast wave. A
possible reason for this could be unmirrored painting of weights for the character and could
be fixed by mirroring the weights.

5.CONCLUSION

The initial goal of the project was met. By using the Mel script it is possible to turn a
skeleton into a ragdoll, which responds to physical forces. But setting the explosion
parameters it is possible to simulate the effect of an explosion. A small animation
depicting an explosion surrounded by some characters were done.

The resulting simulation of the rag doll simulation in an explosion scene is realistic and life-
life. As mentioned earlier, it was initially planned to extend for a crowd scene, but as the
time ran out, the focus was shifted more towards the realism of the simulation for one
character .So the objective was more or less achieved. Of course, there are always room for
improvements and enhancements. One of the first things that could be done is extending the
same tool to work for a crowd scene. The challenges involved in this would be to make it
computationally feasible and yet work well. The tool could also be extended to suit more than

 20

one type of skeleton. One way of doing this would be to develop an interface that allows the
user to choose each pair of joints individually where the bone is to be created and then let the
tool perform calculations to create the proxy object.

The explosion settings have been calculated only for explosions on the ground due to time
constraints. This could be extended for explosions in air also. In this case, the y axis would
also have to be taken into consideration, and the gravity along the –y axis increased
according to the strength and distance of the explosion.

Another issue is that the tool currently uses key framing to tell the rag-doll to switch from
animated mode to dynamic mode. This could be turned automatic using Maya’s contact data,
which can sense if the rag doll is in contact with another object. But another problem arises
which is that the rag doll needs to become dynamic at least one frame before it comes in
contact with the object. So a bounding box is needed around the rag doll so collisions can be
detected earlier.

Other computationally cheaper techniques such as Verlet Integration, used widely in games,
as mentioned earlier could be looked into and perhaps certain features of the same be
adopted. Also, Adaptive Dynamic Simulation as mentioned in “Adaptive Dynamics of
Articulated Bodies” would certainly be a way to get better computation times and improve
performance. If a Spring-Mass model were to be used, an interface could be developed where
the user could specify how much percentile of the joints he wants to simulate depending on
which joints influence the simulation most. Or, the number of joints could automatically
decrease or increase depending on the distance from the camera.

6.REFERENCES

• (5)-Author: Wikipedia, the free encyclopedia,”Ragdoll Physics”, Available from:
http://en.wikipedia.org/wiki/Ragdoll_physics

Accessed on: 1st September 2005

• Author: Thomas Jakobsen,” Advanced Character Physics”, Available from:

http://www.gpgstudy.com/gpgiki/GDC%202001%3A%20Advanced%20Character%20P
hysics

Accessed on: 1st September 2005

• Author: Zordan, V. B., Majkowska, A., Chiu, B., Fast, M. Riverside Graphics Lab,

University of California, Riverside,” Dynamic Response for Motion Capture Animation”,
Available from :
http://www.cs.ucr.edu/rgl/projects/mocsim/mocsim.html

Accessed on: 1st September 2005

• (4)-”Behavioral Dynamics”, Available from:

 21

 http://web.archive.org/web/20040609173959/http://www.ykoga.com/

 Accessed on: 1st September 2005

• (6),(7)-Author: Stephane Redon, Nico Galoppo and Ming C. Lin, In ACM Transactions
on Graphics (SIGGRAPH 2005), 24(3),”Adaptive Dynamics of Articulated bodies”,
Available from:

http://cs.unc.edu/%7Eredon/AD/

Accessed on: 1st September 2005

• (2)-“Dynamic Rigging Tutorial”, August 2003,Available from :

 http://www.goldenxp.com/tutorials/ragdoll/page1.htm

Accessed on: 1st September 2005

• Author: Andy Nichols,Lecture by Endorphin

Torsten Reil, CEO, Natural Motion, Available from:

http://cs.unc.edu/%7Eredon/AD/

Accessed on: 1st September 2005

• (1)-Author: Zoran Ka ci¥c-Alesi Marcus Nordenstam David Bullock of Industrial Light
and Magic,Industrial Light and Magic , Eurographics/SIGGRAPH Symposium on
Computer Animation (2003) D. Breen, M. Lin (Editors)

Availlable from:
http://www.uni-weimar.de/~caw/papers/p7-kacic-
alesic.pdf#search='a%20particle%20dynamics%20system%20Industrial%20Light%20an
d%20Magic' Accessed on: 1st September 2005
Accessed on: 1st September 2005

• (3)Available from :http://www.massivesoftware.com/
Accessed on: 1st September 2005

