
CP2 Revision

theme: linked lists

linked lists

• dynamically created during program run-

time

• sequential collection of self-referential

elements (called nodes)

• elements are accessed linearly by

sequentially traversing the list from start

to finish

linked lists (2)

• number of nodes can grow or shrink dynamically

• each node resides in a separate place in memory (not continuous)

• Example: singly linked list node

linked lists (3)

• each list element (node) not only has a data member but

also a pointer connection (link) to the next list element

• lists are linear collections of data, i.e a list node always

has only one predecessor and only one successor

• by convention the final link in a list (link in last node) is

set to NULL

• list is accessed through a pointer to the first node of the

list (base pointer)

(singly) linked list construction

singly linked lists (3)

• by convention the functions for handling a

linked list are called

– insert for adding a list element

– delete for removing a list element

• sometimes two more functions are used

– isEmpty to check if list is empty

– printList to print the whole list

linked list access

• by convention the functions for handling a

linked list are called

– insert for adding a list element

– delete for removing a list element

• sometimes two more functions are used

– isEmpty to check if list is empty

– printList to print the whole list

linked list access (2)

• all functions can be implemented in different
ways

• one can use iterative or recursive methods for
list traversal

• list elements can be inserted at different
positions in the list
– head

– tail

– centre (in an ordered list)

deleting list elements
• problems:

– remaining list must stay intact

– node memory must be freed (deallocated)

• solution can be iterative or recursive

/* delete a list element (recursive solution) */

int delete(nodePtr *current, int value)

{

nodePtr temp;

if(isEmpty(*current)) /* catch error, before it occurrs */

return 0;

if(value==(*current)->data) /* if the element is current node */

{

temp=*current; /* get the address of current element */

*current=(*current)->next; /* update the list structure */

free(temp); /* free memory used by the data that is deleted */

return value; /* 'report' back to the program */

}

else /* keep searching the list for the element */

return delete(&((*current)->next),value);

}

problems with singly linked lists

• only one-directional (linear) sequential access

• worst case (of necessary) steps for finding

element is no. of list nodes in list n

doubly linked lists

• datastructure for bi-directional sequential

access

• functions are same as for singly linked lists

(with modifications)

• each node has 2 links:

– one to the next node (next link)

– one to the previous node (previous link)

• allows traversing of linked list forwards and

backwards

doubly linked lists (2)

• next link of last node points to NULL

• previous link of first node points to NULL

Usually implemented like this:
struct _node

{

struct _node *next; /* link to next */

struct _node *prev; /* link to previous */

int data; /* node data */

};

typedef struct _node node;

typedef node *nodePtr;

doubly linked lists (3)

• Inserting and deleting becomes more

complicated:

– 2 links must be reconnected correctly

– this means: addidional special cases

linked list based datastructures

• stacks

• queues

emulating stacks with linked lists

• FILO (first-in last-out) / LIFO (last-in first-out) datastructure

• data can only be added and/or removed from top of stack (head of
the list)

Functions used with stacks:
• push adds an element to top of the stack

(base of the list)

• pop removes an element from top of the stack

sometimes there is also a function

• top a pop immediately followed by a push

stack

int push(nodePtr* head,int data)

{

nodePtr newNode;

newNode=(nodePtr)malloc(sizeof(node));

if(newNode!=NULL)

{

newNode->data=value;

newNode->next=*head;

*head=newNode;

return 1;

}

else return 0;

}

int pop(nodePtr* head)

{

nodePtr temp;

int retval;

temp=*head;

if(temp==NULL)

return 0;

retval=temp->data;

*head=temp->next;

free(temp);

return retval;

}

emulating queues with linked lists

• FIFO (first-in first-out) datastructure

• data can only be entered at the end of the queue (tail of the list)

• data can only be removed from the start of the queue (head of the

list)

Functions used with queues:

• enqueue adds an element to end of queue

• dequeue removes an element from start of queue

(base of the list)

queues

• enqueue - identical to list insert at tail

• dequeue - identical to stack’s pop

a different kind of queue

circular buffer / ring buffer

• variation of the queue (list)

• no first or last element - tail points to head

• has static number of elements - does not grow

or shrink

– nodes are generated (allocated) at program start

– Nodes are freed at program end

• 2 base pointers (write-pointer & read-pointer)

• writing: enter data & advance write pointer

• reading: advance read pointer & retrieve data

circular buffers

