CP2 Revision

theme: linked lists

linked lists

» dynamically created during program run-
time

» sequential collection of self-referential
elements (called nodes)

» elements are accessed linearly by
sequentially traversing the list from start
to finish

linked lists (2)

« number of nodes can grow or shrink dynamically
« each node resides in a separate place in memory (not continuous)

« Example: singly linked list node

typedef struct node

{
int data;
struct _nnde* next : iy
} node;
\p@inter to next list-node

linked lists (3)

« each list element (node) not only has a data member but
also a pointer connection (link) to the next list element

* lists are linear collections of data, i.e a list node always
has only one predecessor and only one successor

* by convention the final link in a list (link in last node) is
set to NULL

« list is accessed through a pointer to the first node of the
list (base pointer)

(singly) linked list construction

ermpty list element added
. M AL . M datal | e M OL

= 5

element added at head of list

. M data? * » datal . N AL

=

element added at head of list

. M data3 » ¥ dataZ » M datal . > BL

singly linked lists (3)

* by convention the functions for handling a
linked list are called

—insert for adding a list element
— delete for removing a list element
» sometimes two more functions are used
—ISEmpty to check if list is empty
— printList to print the whole list

linked list access

* by convention the functions for handling a
linked list are called

—insert for adding a list element
— delete for removing a list element
» sometimes two more functions are used
—ISEmpty to check if list is empty
— printList to print the whole list

linked list access (2)

« all functions can be implemented in different
ways

 one can use iterative or recursive methods for
list traversal

* list elements can be inserted at different
positions in the list
— head
— tail
— centre (in an ordered list)

typedef node* nodePtr;

int insert{nodePtr*, int) ;

inserting at head of list

e |-

;

new=4

¥ el=h5 | =
o M BL
el=5 |+

& 4

oL

k.

e3=4

k.

oL

k

el

5

k.

AL

typedef node* nodePtr;

int insert (nodePtr*,int) ;

inserting at tail of list

» ¥} new=4|+ M DL
hew=4

'

e3=

typedef node* nodePtr;

int insert (nodePtr*, int) ;

inserting into an ordered list

M el=5 |++—{0L

BL

L

;

L]
k

k

new=4,| ¢

el=5 | et—={0L

new=—4 | *1

& 4

e3=4 |+t el=5

X

b

deleting list elements

problems:
— remaining list must stay intact
— node memory must be freed (deallocateqd)

solution can be iterative or recursive

/* delete a list element (recursive solution) */
int delete(nodePtr *current, int wvalue)

{

nodePtr temp;

if (isEmpty (*current)) /* catch error, before it occurrs
return O;

if (value==(*current)->data) /* if the element is current node

{
temp=*current; /* get the address of current element
*current=(*current)->next; /* update the list structure
free (temp); /* free memory used by the data that is deleted
return value; /* 'report' back to the program

}

else /* keep searching the list for the element
return delete (& ((*current)->next),bvalue);

*/
*/
*/
*/
*/
*/

*/

problems with singly linked lists

» only one-directional (linear) sequential access

« worst case (of necessary) steps for finding
element is no. of list nodes in list n

doubly linked lists

« datastructure for bi-directional sequential
access

« functions are same as for singly linked lists
(with modifications)

 each node has 2 links:
— one to the next node (next link)
— one to the previous node (previous link)

allows traversing of linked list forwards and
backwards

doubly linked lists (2)

« next link of last node points to NULL
« previous link of first node points to NULL

Usually implemented like this:

struct _node

{
struct node *next; /* link to next */
struct _node *prev; /* link to previous */
int data; /* node data */

};

typedef struct _node node;

typedef node *nodePtr;

doubly linked lists (3)

* Inserting and deleting becomes more
complicated:
— 2 links must be reconnected correctly
— this means: addidional special cases

linked list based datastructures

e stacks
* gqueues

emulating stacks with linked lists

e FILO (first-in last-out) / LIFO (last-in first-out) datastructure

e data can only be added and/or removed from top of stack (head of
the list)

Functions used with stacks:

* push adds an element to top of the stack
(base of the list)
* pop removes an element from top of the stack

sometimes there is also a function
- top a pop immediately followed by a push

stack

Stack
FILO (firstin - last out)

push[] push[@ pop[™]
(base) base (base)

—

¥
HULL

Eg II EI
S [¢|Mlle—
|y

B¢ ¢
H
{.

int push(nodePtr* head, int data) int pop(nodePtr* head)
{ {
nodePtr newNode;

newNode= (nodePtr)malloc (sizeof (node));
if (newNode!=NULL)

nodePtr temp;

int retval;

{ temp=*head;
newNode->data=value; if (temp==NULL)
newNode->next=*head; return O;

*head=newNode;

} return 1; *head=temp—->next;

retval=temp-—>data;

else return O; free (temp) ;
} return retval;

emulating queues with linked lists

e FIFO (first-in first-out) datastructure
e data can only be entered at the end of the queue (tail of the lisi)

e data can only be removed from the start of the queue (head of the
list)

Functions used with queues:
* enqueue adds an element to end of queue

« dequeue removes an element from start of queue
(base of the list)

queues

Queue
FIFO (first in - first out)

(base)—>D[RULL
enqueue (base)-> [3[NULL
enqueue (base)-> [- 3[NULL

dequeue [l (base) - [NULL

* engueue - identical to list insert at tail
« dequeue - identical to stack’'s pop

a different kind of queue

circular buffer / ring buffer

* variation of the queue (list)
* no first or last element - tail points to head

 has static number of elements - does not grow
or shrink

— nodes are generated (allocated) at program start
— Nodes are freed at program end

circular buffers

Ring Buffer
FIFOQ (first in - first out)

a) initial state /"‘; c) element inserted M*/”Fo—l_l
7 o
- =
write | [] (4
- N
(xead) 0 | 60] (xead)—F 0 | o 1]
o A
b) element inserted @ /—)—:lv d) element removed @ (write |—)/—)|30_|—§v
(write) 11 |
-* -53 (xead)| 0+ | Fo] f‘
(xead)[? 0L| o | o |
o ¢ R

« 2 base pointers (write-pointer & read-pointer)
« writing: enter data & advance write pointer
« reading: advance read pointer & retrieve data

