
CP2 Revision

theme: file access and unix programs

file access in C
basic access functionality:

• FILE *fopen(const char *filename, const char *mode);

This function returns a pointer to a file stream (or NULL if it fails) and takes two strings
as parameters. The first of these (filename) is the name of the file that is to be opened
and the second one (mode) determines the access mode which is to be used for
manipulating the file.

• int fclose(FILE *filepointer);

This function is used to close already open files – it returns 1 if file was closed or 0 if the
operation failed.

common mode switches for the fopen() function:

"r" read open a text file (ASCII) for reading

"w" write open a text file (ASCII) for writing

"a" append open a text file (ASCII) for appending

"rb" read binary open a binary file for reading

"wb" write binary open a binary file for writing

"ab" append binary open a binary file for appending

sequential file access
• int fgetc(FILE *file);

returns the next character from the opened file as an unsigned char; if an

error occurs or the end of the file is reached the EOF value is returned.

• char *fgets(char *string,int length,FILE *file);

returns the next "length-1" characters from the opened file into the string,
terminating it with \0; if the end of the line is reached before "length-1"

characters have been read, fgets terminates the string; if an error occurs or

the end of the file is reached NULL is returned.

• int fscanf(FILE *file,char* formatstring,...);

does a scanf of the next line from the file.

• int fputc(int character,FILE *file);

writes the character into the file; if an error occurs EOF is returned.

• int fputs(const char *string,FILE *file);

writes the string into the file; if an error occurs EOF is returned.

• int fprintf(FILE *file,char* formatstring,...);

does a printf into the file.

random file access
• size_t fread(void *buffer,size_t bytes,size_t quantity, FILE *file);

reads up to quantity elements of size bytes from file file into the memory associated with
buffer. Returns the actual number of read elements (which can be less than quantity).
feof and ferror can be used to determine a cause for 'missing' elements. If 0 elements

are read in, the buffer remains unchanged.

• size_t fwrite(const void *buffer,size_t bytes,size_t quantity,

FILE *file);

will write quantity elements of size bytes starting from memory address buffer into the file
(will position the read/write pointer to the end of the written block). Returns the number of
successfully written elements. If an error occurred, that value will be smaller than quantity.

• int fgetpos(FILE *file,fpos_t *pos);

finds the current read/write pointer position in file and copies its value into the variable that
pos points to. Returns 0 if successful.

• int fseek(FILE *file,long offset,int position);

is used for repositioning the read/write pointer within the file. It will be positioned offset

bytes from the given position, which can be defined using one of the three macros
SEEK_SET start of file
SEEK_CUR current position of read/write pointer
SEEK_END end of file
Returns 0 if successful.

random file access (2)

• long ftell(FILE *file);

returns the number of bytes from the start of the file until the current

read/write pointer position. Returns -1 if it fails.

• int fsetpos(FILE *file,const fpos_t *pos);

is used for positioning the read/write pointer within the file. It will be

positioned at the position contained in the variable that pos points to (the

positional value would be of the type used by the fgetpos function). Returns
0 if successful.

• void rewind(FILE *file);

resets any error and end-of-file marker for the file stream associated with file

and sets the read/write pointer to the start of the file. In effect this operation
is identical to:
fseek(file,0,SEEK_SET);

clearerr(file);

command-line arguments in C

• like all programs, C programs can receive command line arguments

from the shell that calls the program

• in a C program these arguments are passed into the program

through parameters in the program's main function

In the ANSI C standard this is done using 2 parameters:

1. an integer value which contains the number of arguments - by

definition this argument has the name argc (argument counter).

Note: there is at least one argument in every program, that

argument being the name of the program itself

2. an array of character strings each of which contains one of the

arguments - by definition this argument has the name argv

(argument vector).

the name of the program itself is always stored in argv[0] .

Syntax: int/void main(int argc,char *argv[])

command-line arguments (2)

• command line arguments are usually

interpreted at the start of a program

(variables that are used as flags for options

are set).

• this is often done as a large switch

statement which either evaluates the

argument counter (to allow access to a

specific argument) or which evaluates the

first character of an argument (to determine

what argument it is) within a loop stepping

through all arguments.

example:

a simple C program which prints out and numbers
all command-line arguments that are passed into it

from the shell.

#include<stdio.h>

void main(int argc,char *argv[])

{

int i;

for(i=0;i<argc;i++)

printf("argument %d is %s\n",i,argv[i]);

}

recap:

• passed into a C program through two parameters in the program's

main function:
int argc (argument counter)

char *argv[] (argument vector)

• there is at least one argument in every program, that argument being

the name of the program itself which is always stored in argv[0]

Syntax: int/void main(int argc,char *argv[])

case studies: unix programs

Unix filter programs
• programs that read data (from a file or the standard input), process

it (manipulation of one form or another) and produce some
resulting data output (written into a file or the standard output)

• examples:
grep - search a data stream for various keywords
sed - stream-editor manipulates/modifies data streams
cat - concatenates data streams
wc - wordcount: word- character- and line-counting

• other unix programs:
echo - prints ist input onto the standard output
touch - touches (updates) files

example: echo
a) print all output from the command-line arguments:
#include<stdio.h>

void main(int argc,char *argv[])

{

int i;

for(i=1;i<argc;i++)

printf("%s ",argv[i]);

printf("\n");

}

b) more complex - suppress newline if -n argument found:
#include<stdio.h>

void main(int argc,char *argv[])

{

int i,n=1;

for(i=1;i<argc;i++)

{

if(strcmp(argv[i],”-n”)==0) /* if -n argument is found */

n=0; /* set newline-flag to 0 */

else

printf("%s ",argv[i]);

}

if(n==1) printf("\n"); /* print newline if newline-flag is 1 */

}

example: grep

grep finds character sequences in files. As command line arguments
grep takes a string followed by a list of files to search in. If the string is
found in a file, grep prints the filename, the line number and the line
with the string.

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

/* my grep program */

int main(int argc, char *argv[])

{

FILE *f; /* the current file pointer */

int i,lineNr; /* file index and line number */

char line[256]; /* line of text */

if(argc<3) /* if too few arguments */

{

printf("not enough parameters!\n");

exit(EXIT_FAILURE); /* print error message and quit */

}

for(i=2;i<argc;i++) /* else cycle through all listed files */

{

f=fopen(argv[i],"r"); /* open file for reading */

example: grep (cont.)
if(f==NULL) /* if unable to open print error and ...*/

{

printf("Unable to open file %s\n",argv[i]);

continue; /* ... step on to the next file in loop */

}

else

{

for(lineNr=1;!feof(f);lineNr++) /* cycle through lines */

{

fgets(line,256,f); /* retrieve next line */

if(strstr(line,argv[1])!=NULL) /* search line for search-pattern */

printf("%s:%d:%s\n",argv[i],lineNr,line);

/* print result if successful*/

}

fclose(f); /* close file */

f=NULL;

}

}

printf("\n");

exit(EXIT_SUCCESS);

}

example: a simplified cat
#include<stdio.h>

int main(int argc,char *argv[]) /* a simple cat */

{

FILE *f; /* current file pointer */

int c,i; /* character and file conter */

f=stdin; /* first read from the standard input */

while((c=fgetc(f))!=EOF) printf("%c",c);

printf("\n"); /* a newline after every file */

for(i=1;i<argc;i++) /* cycle through list of files */

{

f=fopen(argv[i],"r"); /* open */

if(f!=NULL) /* if successful then read characters */

{

while((c=fgetc(f))!=EOF) printf("%c",c);

printf("\n");

fclose(f);

}

}

return 1;

}

case study: wc

wordcount filter wc: wc [options] [file(s)]

wc
reads data directly from ASCII files or from the standard input
and counts how many lines, words and/or characters have
been read in. Words are separated by white spaces.

wc
accepts three command line options -l, -w and -c. They are
used for determining whether just the number of lines (-l), the
number of words (-w) or the number of characters (-c) are to
be displayed.

(a full tutorial can be accessed at http://programming.swordfighter.co.uk)

simplified wc
#include<stdlib.h> /* simple wordcount */

#include<stdio.h>

void main(int argc,char *argv[])

{

char letter;

int e,words=0,lines=0,chars=0;

if(argc!=1)

{

perror("WRONG NUMBER OF PARAMETERS\n"); exit(EXIT_FAILURE);

}

while((letter=fgetc(stdin))!=EOF)

{

if(lines==0) /* find start of first word */

{

if(letter==' ' || letter=='\t') e=0;

else e=1;

}

chars++; /* increase character count */

if(letter=='\n') lines++;

if(e)

{

if(letter==' ' || letter=='\t')

{

e=0;

words++;

}

}

else if(letter!=' ' && letter!='\t') e=1;

}

printf("\t%d \t%d \t%d\n",lines,words,chars);

}

a more complex wc

Additions to the program that are necessary for evaluating optional command-line arguments:

int w=0,c=0,l=0,i,j,words,lines,chars;

...

if(argc>1)

for(i=1;argv[i][0]=='-';i++)

for(j=1;argv[i][j]!='\0';j++)

{

switch(argv[i][j])

{

case 'w':w=1; /* w found - set w to true */

break;

case 'c':c=1; /* c found - set c to true */

break;

case 'l':l=1; /* l found - set l to true */

break;

default: printf("UNKNOWN OPTION\n");

exit(EXIT_FAILURE);

}

}

After evaluating the optional command-line arguments all following arguments can be assumed
to be filenames.

case study: file access and

dynamic data structures

combining file access with dynamic

datastructures

questions to ask:

what would be the requirements in regard to datatypes used and
functions employed, necessary for saving a binary tree to a
file?

how would the algorithm that saves the binary tree out into a file
work if it should also be able to reload that tree into memory,
keeping the original tree structure intact?

how would the algorithm for loading the tree into memory work?

a binary tree

saving a tree to a file
• nodes cannot be saved directly as the dynamic links cannot be

guaranteed to be available when reloading…

solution: an intermediate datatype

typedef struct

{

char left;

char right;

int data;

} fileEntry;

• left and right members of the fileEntry are flags that mark if there is

a branch below the node (value 1) or if there is no branch (value 0)

• since the tree is going to have to be rebuilt from its root when the

saved tree is reloaded, the root node has to be saved first:

the algorithm for saving the tree is pre-order recursive

sample function for saving
int save(nodePtr root,FILE *outfile)

{

fileEntry entry;

if(root==NULL) return 0;

entry.data=root->data;

if(root->left!=NULL)

entry.left=1;

else

entry.left=0;

if(root->right!=NULL)

entry.right=1;

else

entry.right=0;

fwrite(&entry,sizeof(fileEntry),1,outfile);

save(root->left,outfile);

save(root->right,outfile);

return 1;

}

algorithm for saving the tree

1. copy current node
into fileEntry

2. store value 1 for
branches that
exist and value 0
for branches that
do not exist within
the fileEntry

3. write fileEntry to
file and traverse
the tree pre-order
to recursively
save it to file

loading a tree from a file

• dynamic links are not saved, but must be generated
through memory allocation while the tree is

reloaded

• left and right members of the fileEntry are flags

that mark if there is a branch below the node which
will direct the traversal path during the rebuilding

process of the tree

algorithm for loading the tree

1. copy current fileEntry

into a newly allocated
tree node

2. rebuild tree pre-order
by traversing into
branches that are
marked as existing
within the fileEntry

sample function for loading
int load(nodePtr *root,FILE *infile)

{

fileEntry entry;

nodePtr temp;

fread(&entry,sizeof(fileEntry),1,infile);

if((temp=(nodePtr)malloc(sizeof(node)))!=NULL)

{

temp->left=NULL;

temp->right=NULL;

temp->data=entry.data;

*root=temp;

}

else return 0;

if(entry.left==1)

if(load(&(temp->left),infile)==0) return 0;

if(entry.right==1)

if(load(&(temp->right),infile)==0) return 0;

return 1;

}

