
CP2 Revision

theme: Software Development

programs for software development

• compiler implicitly invokes preprocessor and linker. It compiles C programs

and creates binary object files from them.

• preprocessor is usually called by compiler.

– prepare C sourcecode for compilation by acting on preprocessor directives:

text-substitution of macros and definitions

including header files

setting compiler switches (options)

– allows conditional compilation of sourcecode (also used for include guards)

• Linker links object files (& libraries) into an executable program

1. a good editor (syntax
highlighting etc.)

2. code generation programs
(compiler, preprocessor,linker)

3. project management tools
4. debugging aids
5. other utilities & tools

C header files

• ASCII text files with .h filename extension

• included into program sourcecode by C preprocessor before
compilation by C compiler

• used to define macros and constants

• contain function prototypes for external objects and libraries
so that the compiler knows the function heads (return types,
function names & parameter lists)

• to prevent multiple inclusion header files should be protected
by include guards

C object files

• binary files containing machine instructions with .o filename
extension

• linked into executable programs by linker

• not executable by themselves

• contained functions must be referenced in header files
(prototypes) for programs to be able to use them

• created by calling the C compiler with the -c option

C libraries
• collections of precompiled object files

• static libraries:

– archives containing one or more C object files.

– usually called libX.a, where X is a string (the name of the library). The

filename extension .a shows that it's an archive.

• linked into executable programs by linker

• linker option -l resolves name of library (-lX will link library libX.a)

creation of static C libraries:

• archives are created using the ar command:

Syntax: ar [option] archive_filename [object_file(s)]

Examples: ar -r libX.a file.o

ar -r libX.a file1.o file2.o

ar -p libX.a

• (useful) options for ar:

-r add or replace objectfiles in the archive

-d delete specified object files from the archive

-p prints the contents of the archive to the standard output

-x extract copies of specified object files from archive

project management

• the make utility program is the tool traditionally used for project management

in C application development

• make is useful for building multi-file projects

• make uses a so-called makefile to specify and store dependencies between

source-files, libraries and executables

• running make will build the project by (re-)compiling all source files that have

been updated (changed) and/or added since the last time that the project was

built

Syntax: make (by default the file "makefile" is used)

make target (target has to be defined within the makefile)

make -f mfilename (more information: man pages)

if make is called without the -f argument, the default makefile "makefile" will be used

makefiles
• makefiles contain (target) rules and (text substitution) macros

• lines beginning with a hash (#) are treated as comments

• macros are usually defined at the start of a makefile

• the definition of a macro in make has the syntax: macroname=string

• using a macro in the makefile will substitute it with the defined macro string

– Syntax: $macroname

– or ("safer" & easier to read): $(macroname)

• within a macro substitution specified characters can be replaced by using using the
operator :=

Example: MACRO = file1.o file2.o

– $(MACRO)

would be substituded with file1.o file2.o

– $(MACRO:.o=.c)

would be substituted with file1.c file2.c

To use the $ character as such in a makefile, it has to be written as $$!

makefiles (2)
• first target rule in a makefile is the default target rule which will be used if no other

target is specified in the command line used to invoke the make tool

• target rules have a head and a body:

in its simplest form the head of a rule is one line consisting of

1. the name of the rule (the target)

2. a colon ":"

3. (optionally) a dependency list of files and/or rules that are needed for the current target
rule to be satisfied (prerequisites)

• the body of a rule is a list of commands which are to be executed by the command-

line interpreter which is used to invoke the make command (shell)

1. each commands must be in a line starting with a <tab> (tabulator whitespace)

2. the body of a rule ends with the first line below the head of the rule which does not
begin with a <tab>

– Example:
compile: program.c

<tab> cc -ansi program.c -o program

• the output returned by each of the commands executed will be printed to the

standard output. This can be suppressed for each line of a target rule body by

putting the @ character between the <tab> and the shell command.

– Example:
message:

<tab> @ echo "This is a message"

makefile example

sample (basic) makefile

#

<- lines beginning with a hash '#' are

treated as comments by the make command

command-line for the final compiled version

link the 2 object-files into an executable

program: file1.o file2.o

cc file1.o file2.o -o program

generation of file1

file1.o: file1.c

cc -ansi -c file1.c

generation of file2

file2.o: file2.c

cc -ansi -c file2.c

makefile example (2)
sample (more complex) makefile

this time a few additional (target) rules and macros are used

first - define a few macros

OBJECTS = file1.o file2.o

PROGNAME = program

OUTPT = -o

OPTIONS = -ansi -c

COMPILER = cc

TEXT = If the line that you use for the macro \

is too long use the backslash to continue on the next line!

now add the targets (using the macros)

$(PROGNAME): $(OBJECTS)

$(COMPILER) $(OBJECTS) $(OUTPT) $(PROGNAME)

generation of file1

file1.o: file1.c

$(COMPILER) $(OPTIONS) file1.c

generation of file2

file2.o: file2.c

$(COMPILER) $(OPTIONS) file2.c

clean:

@echo remove object files

@rm $(OBJECTS)

other development tools

C program beautifier – cb / indent

This Unix filter program (Linux uses indent instead of cb) takes a C source file as its

input and prints it to the standard output with added indentation to make the

code easier to read and understand.

Syntax (cb): cb sourcecode.c

Syntax (indent): indent sourcecode.c

C program syntax & logic check – lint / splint

This utility program performs an extended syntax check on C program sources.

Unlike the C compiler lint not only detects syntax errors in programs but also

logical errors like unreachable code or infinite loops. Lint is also much stricter

than the C compiler. Lint warnings and errors are usually held in a much

plainer English than compiler errors and warnings. In Linux environments an

OpenSource version of lint called splint (http://www.splint.org) is used.

Syntax (lint): lint sourcecode.c

Syntax (splint): splint sourcecode.c

GNU runtime debugger (gdb)
• a tool which allows tracing a program’s progress during run-time. This makes

it relatively easy to find programming errors.
Command Line Syntax:gdb <program_name>

• breakpoints are places in a program at which the debugger will hold

execution of the program so that variables can be examined. Breakpoints are

set in the debugger:
break [file:] function

break [file:] line#

• program execution ist started using the run instruction. After a breakpoint

has been reached program execution is continued using the c instruction.

It is possible to trace a program run line by line:

– the next instruction steps over the next line of code in the program without

entering into function calls

– the step instruction executes the next line of code in the program, stepping into

function calls

• once a breakpoint has been reached, it is possible to view the values that are

currently held by variables:

– print <expression> prints the value held by the

– named variable expression

– display <expression> does the same for every program step and
breakpoint reached

• the debug run is ended using the quit instruction of the debugger.

