
CP2 Revision

theme: dynamic datatypes & data structures

structs

• can hold any combination of datatypes

• handled as single entity

struct <identifier>

{

<datatype> <member identifier>;

<datatype> <member identifier>;

…

};

structs (2)

• when declared, struct keyword must be used

struct myStruct myStructVariable;

• structure size is at least the size of the
sum of all member sizes

• structs can be pre-initialised

self-referential datastructures

• datastructures which can reference a variable

of its own kind (datatype)

• alternative name:

„recursive datastructures“

– has no direct correlation to recursive functions

– however can be effectively used with recursive

functions

• implemented using structures that have a

pointer to their own datatype as a member

self-referential structs

struct selfRef

{

struct selfRef *reference;

};

Dynamic Memory Allocation

• during program run-time memory from the

heap of the system RAM can be allocated

(reserved)

• allows programs to dynamically handle data

for which exact memory size requirements

were unknown at compile-time

• functions for dynamic memory allocation are

provided by ANSI C standard library (header

file stdlib.h must be included)

3 functions for DMA

• all DMA functions return void pointer to allocated memory or
NULL if allocation fails

• malloc
– simplest DMA function

– takes 1 parameter (wanted size in bytes)

• calloc
– for allocating arrays of same datatype

– takes 2 parameters: quantity and element size (in bytes)

– pre-initialises all elements to 0 (or NULL if pointers)

• realloc
– for changing size of dynamically allocated memory blocks

– takes 2 parameters: pointer to allocated memory and new required
size (in bytes)

– if pointer (1st parameter) is NULL, realloc acts like malloc

notes for using DMA

• memory that has been allocated during run-
time must be freed during run-time
– failure to do so results in memory leaks
– use function free (takes pointer to allocated

memory as parameter)

• allocated memory may have to be (type-)cast
to the target datatype to prevent compiler
warnings

Example:
int *array=(int*)malloc(4*sizeof(int));
/* generate an integer array with 4 elements */

applying DMA – dynamic arrays

When would it be useful to use a dynamic array?

• dynamically allocated during run-time

• can be used just like any other array

• elements can be accessed using the index

operator [i]

• data is held within a single continuous block in

memory

problems with arrays

• if too big it may be impossible to
allocate large enough continuous blocks
of memory

• dynamically resizing arrays can take a
long time

• array elements can only (really) be
added at or removed from end of array

linked lists
needed:

• a dynamic datastructure which can grow & shrink
at run-time

• elements to the datastructure insertable and
deletable at any position within the structure

linked lists are:

• dynamically created during program run-time

• sequential collection of self-referential elements
(called nodes)

• elements are accessed linearly by sequentially
traversing the list from start to finish

linked lists (2)

What is the conceptual difference to a
dynamic array?

• data not in single block of memory but each node
separately with link to next node

• elements cannot be accessed randomly but must be
accessed sequencially

• slower access than arrays but data can be
added/removed from anywhere within the list

linked lists - review
• singly linked list

– one directional sequential access

• stacks
– push : insert at head

– pop : remove from head

• queues
– enqueue : insert at tail

– dequeue : remove from head

• circular buffers
– two base pointers (read/write)

– no beginning and no end (predefined number of nodes)

• doubly linked lists
– bi-directional sequential access (2 pointers per node)

singly linked list

stack

• push - list insert at head

• pop - element removal at head

• top - pop & push

queues

• enqueue - identical to list insert at tail

• dequeue - identical to stack’s pop

• writing: enter data & advance write pointer

• reading: advance read pointer & retrieve data

circular buffers

doubly linked list

adds second link to singly linked list!

problems with singly linked lists
• only one-directional (linear) sequential access

• worst case (of necessary) steps for finding

element is no. of list nodes in list n

problems with doubly linked lists
• only bi-directional sequential access

• worst case (of necessary) steps for finding

element is no. of list nodes in list n

• average case (of necessary) steps for finding

element is half the no. of list nodes in list n/2

the answer: hash tables

• combination of linked list & dynamic array:

– array of links (pointers) into a linked list

structure

• method to optimise performance of large

linked lists

• links usually spaced evenly to allow fast

access to parts of linked list

• reduces some disadvantages of linear

datastructures

• procedure of generating a hash

table is called hashing

• simplest form would be to store

all elements with same
characteristics in a sub-list

• hashing function generates key

(correct position in hash table)
from analysing data element

• this key generation can be quite

complex if table is to be balanced

• if amount of data changes so that

hash table becomes unbalanced,

the necessity to recalculate the

hash table may arise.

• recalculating the hash table is

called rehashing

problems with linked lists
• only sequential access

solution: tree structures

• non-linear self-referential dynamic data
structures

• data elements are also called nodes

• tree nodes each contain two or more
links

another look at tree structures

• nodes referred to as branches

or leaves (if they do not branch

off into further nodes)

• base of a tree is called root

• a node / sub-tree below the root

is called child node

• The level of sub-branching in
a tree is called the depth (or

height) of the tree.

• nodes at the same depth (below

the root) are called siblings

binary trees

• each node contains links to up to 2 nodes

• all nodes except the root have exactly one

predecessor

binary trees - traversal
3 recursive algorithms for traversing a

binary tree:

InOrder
• traversing the tree in-order means that the

left branch of a node is processed first
before the node itself and then finally the
right branch;

PreOrder
• traversing the tree pre-order means that a

node itself is processed first before the left
branch and then finally the right branch;

PostOrder
• traversing the tree post-order means that

the left branch of a node is processed first
before the right branch and then finally the
node itself;

binary trees – breadth first traversal
• Breadth-first traversal of a tree means

that each level (of depth) of the tree is

searched one after the other.

• The algorithm is called “level-order”

traversal:

1. root is entered into a queue of current

level (of depth) nodes.

2. queue is emptied and nodes are

processed as they exit the queue and

all child nodes are added to a queue

of the next level of depth.

3. when the queue of the current depth is

empty it is replaced with the queue of

the next level of depth.

4. steps 2 and 3 are repeated until both

queues (current level of depth and

next level of depth) are empty.

binary trees - balancing

balanced (access optimised) trees

• a tree with same number of nodes in
each branch is called a balanced tree

• if depth of each branch is also the
same, it is called height-balanced

• balancing a tree reduces access times

– worst case: totally unbalanced tree (all

nodes on one side) – like singly linked list

binary trees – AVL trees

AVL trees
• According to Adelson-Velskii & Landis, a binary tree is perfectly

height-balanced if "the difference in the depth at each branch-node

of the tree is 1 or less".

• By that definition a tree can only be called balanced if the depth of

both branches of the root node as well as the depth of both

branches below any other node of the tree is either identical or only

differs by one.

• Having these so-called AVL-trees reduces the average access times

for the nodes in the tree: in a perfectly balanced binary tree

containing 1000 elements (about 2^10 elements, i.e. depth 10),

retrieving a single element will take no more than eleven

comparisons (best case). The worst case would be a completely

unbalanced tree resembling a singly linked list, which might require

up to 1000 comparisons in a tree containing 1000 elements.

binary trees – balancing (2)

• if all inner nodes have a number of children

that is identical to the tree’s out degree, the

tree is called a “full tree”

• if all leaves of the tree are situated at the

same level of depth (a full tree with a depth

difference of 0 between branches), the tree

is called a “complete tree”

– a complete tree is always an AVL tree

saving a tree to a file
• nodes cannot be saved directly as the dynamic links cannot be

guaranteed to be available when reloading…

solution: an intermediate datatype

typedef struct

{

char left;

char right;

int data;

} fileEntry;

• left and right members of the fileEntry are flags that mark if there is

a branch below the node (value 1) or if there is no branch (value 0)

• since the tree is going to have to be rebuilt from its root when the

saved tree is reloaded, the root node has to be saved first:

the algorithm for saving the tree is pre-order recursive

algorithm for saving the tree

• copy current node
into fileEntry

• store value 1 for
branches that
exist and value 0
for branches that
do not exist within
the fileEntry

• write fileEntry to
file and traverse
the tree pre-order
to recursively
save it to file

sample function for saving
int save(nodePtr root,FILE *outfile)

{

fileEntry entry;

if(root==NULL) return 0;

entry.data=root->data;

if(root->left!=NULL)

entry.left=1;

else

entry.left=0;

if(root->right!=NULL)

entry.right=1;

else

entry.right=0;

fwrite(&entry,sizeof(fileEntry),1,outfile);

save(root->left,outfile);

save(root->right,outfile);

return 1;

}

loading a tree from a file

• dynamic links are not saved, but must be generated
through memory allocation while the tree is

reloaded / rebuilt

• left and right members of the fileEntry are flags

that mark if there is a branch below the node which
will direct the traversal path during the rebuilding

process of the tree

algorithm for loading the tree

• copy current fileEntry

into a newly allocated
tree node

• rebuild tree pre-order
by traversing into
branches that are
marked as existing
within the fileEntry

sample function for loading
int load(nodePtr *root,FILE *infile)

{

fileEntry entry;

nodePtr temp;

fread(&entry,sizeof(fileEntry),1,infile);

if((temp=(nodePtr)malloc(sizeof(node)))!=NULL)

{

temp->left=NULL;

temp->right=NULL;

temp->data=entry.data;

*root=temp;

}

else return 0;

if(entry.left==1)

if(load(&(temp->left),infile)==0) return 0;

if(entry.right==1)

if(load(&(temp->right),infile)==0) return 0;

return 1;

}

