
CP2 Exercise 14 12/02/2007

1. Using last week's example program as a reference point:
a) Change the displayed object into a triangle. Each of the triangle's end points should have a
 different colour.
hint: A RGB drawing colour in OpenGL is set using the function glColor3f(red,green,blue);
Once selected a colour will be used for all vertices that are drawn after the selection..

b) Create an outline (made up from line segments) for the displayed object. To be visible the line

segments should have a different colour than the object itself.
c) Create a second object (triangle or rectangle) next to the original one. You might need to

resize the original object to achieve this.

hint: A separate object within its own glBegin()-glEnd() block may have to be used to achieve the
outline effect. Line segments are drawn using the GL_LINE_LOOP constant as parameter for the
glBegin() statement. You may also need to initialize and use a depth buffer to prevent rendering
errors.

2. Using the previous exercise as a reference,
a) Experiment with different projection matrices (orthographic & perspective).
b) Change the program code so that a second viewport is added (the window size might need to

be changed, and the object will have to be rendered once for each viewport) and that the two
viewports have separate projection matrices:
One of the 2 viewports should be set to a perspective projection while the other one should be
set to an orthographic projection. Try out different values for the perspective projection to see
how the image is affected.

hint: For this you might want to use different Z-coordinates for the two displayed objects.

3. Write a minimalist GLUT program that draws three partially overlapping triangles that use flat
shading.
a) Blend the colours of the triangles. Experiment with different alpha values, blending factors
 and with the drawing order of the triangles.
hint: Flat shading is selected by setting the flat shade model – for this call
glShadeModel(GL_FLAT); You might want to try out what happens if the corner vertices are set
to different colours and if the shade model is set to GL_SMOOTH.

b) Display circles (created using a GL_TRIANGLE_FAN with 10 edges each) instead of

triangles.
c) Then change the program to use polygons instead of triangle fans as the drawing primitive.
hint: To calculate the X & Y co-ordinates for each corner of the circular polygon use the functions
cos(2*corner/PI) & sin(2*corner/PI) and off-set them to their correct positions.

4. Using the previous exercise as a reference,
a) draw the polygons using vertex and colour arrays.
b) change the program code so that only one vertex array is used (using different colour arrays

for each differently coloured circle and only one vertex array with the centre of the circular
polygon at the origin). The polygons should be moved to their different positions using the
glTranslatef(x,y,z) function.

hint: You may want to use the modelview matrix stacks.

