
CP2 Exercise 7 04/12/2006

1. Re-examine the calendar programs from the previous exercises and extract the
most used functions from them into a separate source file with a separate header,
containing the necessary type definitions and prototypes (suggested filenames:
calendar.c & calendar.h). Then create a statically linked library libcal.a. Try building
the calendar exercises, using the newly created library.

Notes:
a) secure calendar.h using include guards to prevent multiple inclusion of the file
b) to link an executable with a library in the same directory, the current directory
must be added to the library path:
gcc -ansi prog.c -L. -lcal -o program
to add the current directory to the include path, the -I. option is necessary.

2. Similarly to the above exercise extract the functions from last week’s tree
exercises (insert, depth, printInOrder, printPreOrder, printPostOrder) into a separate
source file with a separate header, containing the necessary type definitions and
prototypes. Then create a statically linked library libtree.a. Then build the tree
exercises, using the newly created library.

Under unix-like systems (e.g. Linux) library files are usually archives containing one
or more C object files. These libraries are usually called libX.a, where X is a string
(the name of the library). The filename extension .a shows that it is an archive file.
To enable programs to access functions from objects contained within a library,
header files containing the prototypes of these functions must be provided.

Archives are created using the ar command:

syntax: ar [option] archive_filename [object_file(s)]
examples: ar -r libX.a file.o
 ar -r libX.a file1.o file2.o

(useful) ar options:
-r add or replace object files in the archive
-d delete specified object files from the archive
-x extract copies of specified object files from archive

