
Z. Pan et al. (Eds.): Transactions on Edutainment VI, LNCS 6758, pp. 164–181, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Sketch-Based Skeleton-Driven 2D Animation and Motion
Capture

Junjun Pan and Jian J Zhang

National Centre for Computer Animation, Media School,
Bournemouth University, UK

{pjunjun,jzhang}@bournemouth.ac.uk

Abstract. We present a novel sketch-based 2D animation technique, which
allows the user to produce 2D character animations efficiently. It consists of
two parts, sketch-based skeleton-driven 2D animation production and 2D
motion capture. The user inputs one image of the character and sketches the
skeleton for each subsequent frame. The system deforms the character and
creates animations automatically. To perform 2D shape deformation, a variable-
length needle model is introduced to divide the deformation into two stages:
skeleton driven deformation and nonlinear deformation in joint areas. It
preserves the local geometric features and global area. Compared with existing
approaches, it reduces the computation complexity and produces plausible
results. Because our technique is skeleton-driven, the motion of character can
be captured by tracking joints position and retargeted to a new character. This
facilitates the reuse of motion characteristics contained in existing moving
images, making the cartoon generation easy for artists and novices alike.

Keywords: sketch, skeleton, cartoon, 2D shape deformation, motion capture.

1 Introduction

Sketch-based animation has gained increasing popularity in the field of computer
graphics due to its intuitiveness and importance as a useful tool for character
modeling and animation. Many papers [1,2,3] have been published and several
techniques have been developed into commercial software, e.g. [4]. With the help of
sketch-based techniques, animators can translate their 2D drawings directly into 3D
models. Instead of handling the detail step by step, the modeler/animator can visualize
and evaluate the fast-prototyped models at an early stage, which can be further refined
with other 3D tools to meet the practical needs. However, compared with the progress
in 3D animation, 2D animation has not benefited as much from these advantages.
Most professional cartoon studios still produce huge amounts of animation (key-
frames and in-betweens) manually [5], which is a laborious and time-consuming
process. The generation of key-frames and in-between frames are the two most
important and labor intensive steps in 2D animation production. To best use the
animators time, the key-frames are drawn by skillful key-framers, while the in-
betweens by those who are less experienced and skillful, known as the in-betweeners.
Although some software tools, e.g. Animo, Toon Boom [6], have been helpful in

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 165

generating in-between frames, they often lack of ‘personality’ in comparison with
those created by a human in-betweener. The software-generated in-betweens have to
be tweaked by the animator to give back the ‘personality’ to the animation. In
practice, many in-betweens remain created manually.

Motivated by the skeleton-driven 3D animation techniques and some recent
progress in 2D deformations, e.g. [7], in this paper we present a new technique aiming
to improving the degree of automation for the production of 2D animation without
sacrificing the quality. Our method consists of two parts, Part 1: 2D animation
sequence generation and Part 2: motion capture and retargeting. Part 1 can be used
independently to create an animation sequence. If it is combined with Part 2, one can
easily reuse the ‘motion’ of an existing animation sequence and apply it to a different
character. The primary application of our technique is 2D animation production. But
it is also applicable to interactive graphical systems where the user can deform a 2D
shape directly by moving its skeleton. Since it is very simple to use, we anticipate that
this method is not only of interest to professional cartoon production houses, but also
to novices for creating 2D moving graphics.

The most important issue concerning Part 1 is to handle the complex shape
deformation of characters both realistically and efficiently. For a character at a given
orientation (for example, side view, front view or back view), we first generate its
skeleton by analyzing the geometry of the boundary curve. Similar to a 3D character,
the skeleton acts as the driving structure and controls the deformation of the character.
To deform a character, we introduce the so called variable-length needle model and
propose an algorithm called skeleton driven + nonlinear least squares optimization.
The idea is to divide the 2D shape deformation into two components. The first is
skeleton driven deformation, which is controlled purely by the corresponding segment
of the character skeleton; and the other is nonlinear least squares optimization, which
is to compute the deformation in the joint areas which are associated with the skeletal
joints. Our observation suggests during animation most complex deformation occurs
around the joint areas of a character. For the interest of computational efficiency, the
skeleton driven deformation is treated simply as a linear transformation. Only the
deformation in the joint areas is solved by nonlinear least squares optimization. To
ensure realistic deformation, properties such as boundary features and local area
preservation are maximized during animation. The property of global area
preservation is also easily achieved by the variable-length needle model. Therefore
once the first frame is given, the animator can easily create an animation sequence by
drawing the skeleton for each subsequent key-frame. The system will produce the
deformed character shape automatically, saving the animator from drawing the whole
frame.

Although large amounts of video, cartoon and traditional 2D moving images exist,
few effective approaches are available to make use of these abundant resources due to
the special characteristics and principles of 2D animation [8,9]. The main objective of
Part 2 is to patch this obvious gap. Because our cartoon production technique is
skeleton-based, we can naturally borrow the idea of motion capture from 3D
animation to capture the ‘motion’ of a 2D animation sequence. In 3D animation, the
skeleton length of a 3D character is usually constant during animation. However, in a
2D case, changing feature lengths in the form of squash and stretch is one of the most

166 J. Pan and J.J. Zhang

powerful and expressive principles of animation [8]. In this paper we will demonstrate
that with our method we can use the 2D skeleton to represent these important and
expressive transformations.

Retargeting the captured motion to a different character has been extensively
studied in 3D animation, e.g. [10]. We present a feature region based tracking
method, commonly used in computer vision, to extract the motion of 2D objects in
video or an image sequence. We apply a mixed optimization strategy coupled with
template matching and Kalman prediction. Once the user has located all the joint
regions of a character in the first frame, the system will track the motion of the joints
automatically in the subsequent frames. The captured motion information is then
retargeted to the predefined skeleton of a new 2D character to generate the
deformation (animation). What to be noted is tracking is well studied in computer
vision and our purpose here is not to develop a new tracking method. The novelty is
to use this technique to capture 2D motion, which up to now remains an unsolved
issue. To our knowledge, no effective 2D motion capture methods exist, which are
good enough for 2D animation production.

There are three key contributions in this paper:

1. We present a sketch-based skeleton-driven 2D animation technique for cartoon
characters. To produce a new key-frame, the user only needs to sketch the
skeleton.

2. To handle 2D shape deformation, we have developed a variable-length needle
model and introduced the skeleton driven + nonlinear least squares optimization
algorithm. Compared with other approaches, it is more efficient and able to
produce plausible deformation with squash-and-stretch effects.

3. We introduce a straightforward skeleton-based 2D motion capture method which
can extract the motion from cartoon, video and rendered moving image
sequences by tracking the motion of joints. Using both geometric and visual
features, it prevents self-occlusion and feature disappearance in moving images.

The remainder of this paper is organized as follows: the related work is discussed in
Section 2. Our sketch-based skeleton-driven 2D animation technique is described in
Section 3, while in Section 4 we describe the motion capture method. Section 5 gives
the experimental results and comparison with previous approaches. The limitations
and possible improvements in future will be discussed in Section 6.

2 Related Work

There is a significant body of previous work concerning 2D character animation
[7,11,12,13]. Here we only discuss the most relevant developments including 2D
shape deformation and motion capture.

2D shape deformation: Most recent 2D deformation techniques are control point
based. Although skeletons are incorporated into some commercial packages, the
purpose is primarily to help pose a character, not to deform or animate a character [6].
Igarashi et al. [7] designed an “as-rigid-as-possible” animation system which allows
the user to deform the shape of a 2D character by manipulating some control points.

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 167

To reduce the cost, the authors presented a two step deformation algorithm, which
simplifies it into two linear least-squares minimization problems. As it only
approximates the original problem, it can produce implausible results due to its linear
feature. Weng et al. [13] presented a 2D shape deformation algorithm based on
nonlinear least squares optimization. The authors used a non-quadratic energy
function to represent this problem, which achieves more plausible deformation
results. However, the iterative solution is computationally more costly. Schaefer et al.
[14] proposed a 2D shape deformation algorithm based on linear moving least
squares. It avoids input image triangulation and performs smooth deformation
globally. They also extended this point-based deformation method to line segments.
However, as the authors admitted, this method deforms the entire image with no
regard to the topology of the object. This weakness limits its use in 2D character
animation. Wang et al. [15] presented another 2D deformation technique based on the
idea of rigid square matching. Instead of using triangular meshes, they use uniform
quadrangular meshes as the control meshes. As the obtained deformation is quite
rigid, it is not a perfect fit for soft objects and the global area is not preserved.

All above methods employ global optimization. One disadvantage of such global
optimization is that the shape of all triangles needs re-computing even if a small pose
change happens. This is computationally expensive and is not necessary in many
cases. In our implementation, we divide the shape deformation into two components:
skeleton driven deformation and nonlinear deformation of the joint areas. The former
can be treated as a linear transformation and the latter is solved by nonlinear least
squares optimization, but only for local regions. This local optimization scheme
reduces the computation costs and can still achieve plausible deformation results.

Motion capture and retargeting: Most research on motion capture and retargeting
focuses on 3D animation [10,16]. Many effective algorithms have been developed and
benefited numerous applications including computer games and film special effects.
In contrast, little has been done for 2D animation. Bregler et al. [17] presented a
method to capture and retarget the non-rigid shape changes of a cartoon character
using a combination of affine transformation and key-shape interpolation. It is
effective in representing the qualitative characteristics (i.e. motion in this case). But it
is difficult to be precise. Therefore, although it can be useful for cartoon retargeting, it
is not easy for the animator to control the movement and deformation accurately. In
contrast, a skeleton-driven approach gives the animator better control of the
deformation during animation. Hornung et al. [18] presented a method to animate
photos of 2D characters using 3D motion capture data. Given a single image of a
character, they retarget the motion of a 3D skeleton to the character’s 2D shape in
image space. To generate realistic movement, they use “as-rigid-as-possible”
deformation [7] and take projective shape distortion into account. In comparison, our
method directly transfers the 2D motion data from an existing image sequence. We
don’t require 3D motion data. Also it does not need the user to manually specify the
correspondence between 2D and 3D poses of a character. Sykora et al. [19] proposed
an image registration method by combining locally optimal block matching with as-
rigid-as-possible shape regularization. It can be used to motion capture a 2D object.
However, the limitation is it cannot handle occlusion or large deformation.

168 J. Pan and J.J. Zhang

2D animation can be regarded as a consistent image sequence. Our approach,
which is influenced by several video based approaches [20,21,22], tracks the motion
of the character’s joints. However, since our system needs dealing with a variety of
characters with different shape and topology, the model-based tracking methods are
ineffective. We choose more general features: texture (colour) and geometry
information (position, velocity) of the joints to extract the motion of a character.
Comparing with the KLT tracker [20], not relying on good feature selection, our
algorithm directly tracks the interested feature regions (joints) for each frame.

3 Sketch-Based Skeleton-Driven 2D Animation

Our technique consists of five steps. We use a popular cartoon figure, mm (Fig. 1a),
to illustrate the technique.

(a) (b) (c) (d) (e)

Fig. 1. Initial preprocessing before deformation. (a) Original template model, (b) Silhouette
detection and discrete sampling, (c) Triangle mesh and curve skeleton, (d) Skeleton and
decomposition, (e) The variable-length needle model.

3.1 Silhouette Detection and Triangulation

The user first imports a 2D character serving as the original template model, which
can be represented by a BMP/JPEG image or vector graphics. The requirement is that
the boundary of the object should be represented by a closed polygon. For BMP/JPEG
images, we currently remove the background manually. Its silhouette is detected with
the marching squares algorithm [23], forming a closed polygon. Distributing discrete
points allows the polygon to be triangulated. Many triangulation algorithms exist.
Here we adopt the Constrained Delaunay triangulation algorithm. The sampling
density is adjustable at the user’s will to form sparser or denser meshes depending on
the requirements. To make sure a character shape is properly triangulated, we require
the template model should be expanded or the limb occlusion is solved beforehand.
This can be performed with image completion [24].

3.2 Skeletonization and Decomposition

The process of constructing a skeleton is called the skeletonization. The system first
generates a curve skeleton of the character with the 2D thinning algorithm [25]. To
produce an animation skeleton, the user locates the joints either on the curve skeleton
or the mesh vertices. The curve skeleton of the example character is shown in Fig. 3c.

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 169

Some end points of the curve skeleton branches (red points in Fig. 3c) can be used as
skeletal joints directly. After skeletonization, the system attaches every vertex to its
nearest skeleton segment. This is called the decomposition, which classifies the
vertices into different regions. Here we use a region growing algorithm described in
[26]. The decomposition result for the example cartoon character is shown in Fig. 3d.
In this figure, there are 16 skeleton segments, which have been colour-coded to
represent the associated vertex regions.

Based on the classification of all the vertices, we now classify the triangles into
two types, interior triangles and joint triangles. If the three vertices of a triangle are
of the same color, i.e. they are all associated with one skeleton segment, the triangle is
an interior triangle, otherwise the triangle is a joint triangle. Both types of triangles
are shown in Fig. 1. We also sort the vertices into three categories, silhouette vertices,
interior vertices and joint vertices illustrated in Fig. 2. Silhouette vertices form the
contour of an object. Except for silhouette vertices, if all the neighbor triangles of a
vertex are interior triangles, this vertex is an interior vertex; otherwise it is a joint
vertex.

Fig. 2. Illustration of our definition of different types of vertices and triangles

3.3 Shape Deformation

Shape deformation is crucial to the quality of animation and is an essential step of our
technique. The main objective for our algorithm design is both to minimize the
boundary change, interior shape distortion and computational overheads. We deform
a 2D character in two stages: skeleton driven deformation for each vertex region
(Stage 1) and nonlinear deformation for the joint areas (Stage 2). For Stage 1, since
the computation involves simple transformations, it incurs only a small overhead.
Stage 2 minimizes implausible deformations. Although the computation is more
complex, it involves only a small portion of the vertices.

3.3.1 Variable-Length Needle Model
Our Variable-Length needle model represents the geometry of the deformable object
using a collection of variable-length needles. Each needle links a vertex to its attached

interior triangle

joint triangle joint vertex

silhouette vertex

interior vertex

170 J. Pan and J.J. Zhang

skeleton segment. Each needle originates from the skeleton and extends outward in a
fixed angle. The vertex is at the end point of a needle. The length of a needle is the
Euclidean distance between the vertex and the corresponding skeleton segment. Fig.
1e illustrates the variable-length needles model.

3.3.2 Stage One: Skeleton Driven Deformation
In skeleton driven deformation, the geometry of all vertices is determined only by the
position of the corresponding skeleton segment. Because the points are close to the
skeletal segment, it is reasonable to regard the needles as being subject to the affine
transformations of the skeleton segment during animation. Rotation and scaling are
legitimate transformations here. During transformation, the length and direction of the
needles relative to the skeleton segment are unchanged, leading to fast computation of
the new coordinates of the mesh vertices.

Cartoon characters often exhibit significant squash-and-stretch deformations.
An advantage of using our needle model is that the area enclosed by the boundary can
be maintained by ensuring the change of the length of a needle to be reciprocal of
the change of the linked skeletal segment length. Because the needles cover the
character’s surface, this simple method effectively preserves the global area of the
character and express the squash-and-stretch effects. Fig. 3 demonstrates the effect of
global area preservation. One skeletal segment is used to deform the bottle.

Fig. 3. Deformation with (middle) and without (right) global area preservation. The original
object and variable-length needle model are shown on the left.

Fig. 4 illustrates the deformation process of a cartoon character. As can be seen in
Fig. 4c, d, the deformation is realistic. However, the texture and contour curve in
some joint areas are not sufficiently smooth, and some joint triangles even overlap.
This suggests that to minimize shape distortion, we need to concentrate on the joint
areas and ensure the deformation conforms to the original model. This forms the main
part of Stage two.

3.3.3 Stage Two: Nonlinear Deformation in Joint Areas
We employ two geometric entities as constraints to prevent shape distortion: rotation
and scale invariant (RSI) Laplacian coordinates [27] and edge lengths of the
triangular mesh. The former preserves the local shape feature of the contour curve and
the latter for local area preservation.

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 171

Let (V , E) be the 2D graph of a character’s mesh model, where V and E are the sets

of vertices and edges respectively. V can be divided into three subsets:
s

V which

contains k silhouette vertices,
p

V which contains m joint vertices, and
q

V which

contains n m k− − interior vertices.

a. RSI Laplacian coordinates
As the ordinary Laplacian coordinates do not account for rotation and scaling of the
curve, here we use rotation and scale invariant (RSI) Laplacian coordinates [27] to
handle the deformation of the silhouettes. Given that we are mainly interested in the
joint areas where visible distortions occur, we only need to constrain the silhouette

vertices in the joint areas, denoted by 'sV . To preserve the local features of the contour

curve, we need to minimize the following objective function:

2|| () () ||

i

i s

i
v V

T v T v
′∈

−∑ % (1)

where ()iT v stands for the RSI Laplacian coordinates of iv before deformation; ()
i

T v%

stands for the RSI Laplacian coordinates of iv after deformation.

b. Edge lengths
We use the following energy function to penalize edge length deviation for joint
triangles:

2

, ,(,)

||| | | |||
i j p

i j i j
v v V i j E

v v v v
∈ ∈

− − −∑ % % (2)

| |
i j

v v− is the edge length of i j
v v before deformation, and | |i jv v−% % is the edge

length of
i jv v after deformation.

Combining (2) and (3), our overall objective function can be rewritten in the
following matrix form:

2 2

1 2|| || ||||w w′ ′− +s s p pTV TV HV - HV% %

(3)

Assume the number of vertices in
's

V is 'k . ′s
V represents the coordinates of these

vertices. H is a | |pE m× matrix, which is used to compute the edge vectors of joint

triangles. The sum of weights: 1w and 2w are normalized to 1 and in our experiments

we used equal weightings for both terms. However, the user can adjust the weighting
to emphasize certain geometric properties.

172 J. Pan and J.J. Zhang

(a) (b) (c) (d) (e)

Fig. 4. Deformation process. (a) Sketched skeleton, (b) Deformed character displayed as a
variable-length needle model. The blue lines represent the skeleton of the original template
model before deformation, (c) Mesh and skeleton after the deformation of Stage one, (d)
Character after the deformation of Stage one, (e) Character after the deformation of Stage two.

This is a non-linear function and to solve the optimization problem efficiently, we
adopt the iterative Gauss-Newton method. The result is shown in Fig. 4e where both
the silhouette and texture inside the object are smoothly deformed compared with the
result of Stage one. For this particular example, the computation converges with 36
iterations. The number of iterations varies with many factors including the shape of
model, the number of vertices and the magnitude of the deformation. In our
experiment, the average number of iterations across all the examples is 35.

3.4 Depth Adjustment and Fine Tuning

Collision detection is a practical problem for the deformation of cartoon characters.
When different parts of a character overlap, if the depths are not assigned properly,
the overlapping parts may interpenetrate. Moreover, assigning static depth values for
vertices [7] does not work in all possible situations. In our system, we allow dynamic
depth adjustment through interaction. Upon the generation of a new deformed model,
we monitor the mesh for self-intersection and set an appropriate depth order to the
overlapping parts. When the user clicks any vertex in an overlapping part, all the
vertices in this decomposed region will have the same depth value as the clicked one.
Fig. 5a gives an example of depth adjustment.

Our system also allows the user to fine tune the local geometric details of the
model in two ways: sketch curves and point dragging. The sketch curves are used to
fine tune the silhouette of an object. Similar to the nearest neighbor method, we
search the start and end points of the silhouette segment along the object contour (the
shortest Euclidean distances from the start and end points respectively to the sketch
curve). For each vertex on the silhouette segment of the variable-length needle model,
we fix the angle between the needle and the skeleton segment, and change the length
of the needle to move its end point to the new position on the sketch curve. An
example is given in Fig. 5b where the profile of the right arm is altered with a sketch
curve. Point dragging is more straightforward. The user picks and drags any vertex to
reshape the character. It can be very useful to edit or generate detailed shape changes
after the skeleton-driven deformation is complete, such as facial expressions. Fig. 5c
shows two examples. The left one changes the face expression and the right one
creates a hedgehog hair.

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 173

 (a) (b) (c)

Fig. 5. Depth adjustment and fine tuning local geometric detail. (a) Deformed result before and
after depth adjustment, (b) Sketch curve fine tuning, (c) Deformation through point dragging.

3.5 In-Betweening

In-between frames are generated by interpolating the deformation produced from the
two stages discussed above, skeleton-driven deformation (stage 1) and non-linear
deformation in the joint areas (stage 2). Many interpolation techniques can be used. In
this Section, we explain how to generate the in-betweens given two key-frames.
Suppose fstart, fskeleton-driven and fend represent the shape of the initial frame before
deformation, the shape generated with the skeleton-driven deformation only and the
shape of the end frame, respectively. The computation of each in-between frame f(t)
consists of two elements. The first describes the skeleton-driven deformation which is
solved by spherical linear interpolation (slerp). The second element represents the
non-linear deformation which can be computed by the linear interpolation of the
geometry displacement between fskeleton-driven and fend . The formula can be described as
follows:

[0,1]
() slerp[(1)] ()start skeleton driven end skeleton driven

t
f t f t f t f f t− −
∈

= × − + × + − × (4)

4 Motion Capture and Retargeting

Based on the method proposed above, we have also developed an effective algorithm
to capture the motion of a 2D character. The basic idea is to track the joints using the
well developed computer vision techniques. Once the first frame is identified from a
moving image sequence, the curve skeleton is automatically extracted in the same
way as was described earlier. Based on this curve skeleton, the animator marks the
joints on the image. To capture the motion from the subsequent frames/images, the
key step is to track the positions of the joints. Because we are concerned with 2D
images/frames, it is reasonable to assume the texture of the joints unchanged between
any two adjacent frames. Our design therefore is to track the joint positions using
texture as the visual cue. It captures the motion of an original character and retargets
it to the target character. To ensure it works correctly, the image sequences and the
target character should satisfy the following preconditions:

1. The image sequence is consistent, i.e. the change between two adjacent frames is
relatively small.

2. The target character has the same topology and a similar pose to that of the original
character in the first frame.

174 J. Pan and J.J. Zhang

3. The pose of the original character in the first frame is roughly expanded. There is
no occlusion for all the joints.

What needs pointing out is that our motion capture method is not limited to cartoon
sequences only. It can capture a cartoon sequence, a video and a rendered 3D
animation image sequence (Fig. 12).

4.1 Tracking

For a given image sequence or video as input, the system first subtracts the
background for each frame [28]. The user then locates all the joints by marking small
rectangles on the original character to indicate the joint positions, using the
automatically generated curve skeleton as a guide. Fig. 6a shows an original
character to be tracked. The red rectangles represent the located joint regions.
Tracking and connecting all the joint positions in these frames lead to the generation
of the skeleton in the subsequent frames. To map the captured motion to a target
character (Fig. 6b), we require the target character to have a similar topology and pose
to those of the original character. Moving images of static objects can be relatively
easy to track with color information alone. But it is not sufficient for articulated
characters. This is because parts of a character may overlap from time to time where
color information disappears. In order to solve this problem, in addition to the color
feature as discussed, we also use the geometric feature. The geometric feature allows
the joint positions to be predicted in the next frame by estimating the velocity of the
joints.

(a) (b)

Fig. 6. Initial setup for motion capture. (a) Original character in the first frame and located
joints, (b) Target character and its decomposition results.

Assume n joints to be tracked in each frame, the positions of the rectangle centres
at frame t form a geometric feature vector

1 2[, , . . . , , . . .] T
t t t m t n t=G g g g g

1 1 2 2[(,) ,(,) ,...,(,) ,...(,)]T
t t m m t n n tx y x y x y x y= . For the visual feature, we use an n

dimensional feature vector
1 2

[, , . . . , , . . .] T

t t t m t n t
=C c c c c , where

mt
c is the

texture matrix of the m-th rectangle region. We track a joint (the centre of the

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 175

corresponding rectangle) between adjacent frames by searching the closest match in
the previous frame. Using the Bayes’ rule with a uniform a priori distribution case,

this process is equivalent to finding the maximum of (|)tP F Θ , where
t

F denotes

a feature vector of the character at frame t. Θ denotes the feature parameters
corresponding to the tracked result at frame t-1. Here the whole feature space is
divided into two sub-spaces: geometric and visual spaces as follows:

(|) (|) (|)c c g gt t tP P P=F Θ C Θ G Θ (5)

where (|)
c ctP C Θ and (|)g gtP G Θ are PDFs (probability density functions) corresponding

to the visual and geometric features respectively. Maximizing (|)tP F Θ can be

described as the following optimization problem, which is to minimize the sum of the
Mahalanobis distances in the sub-spaces, i.e.

1

min
n

mt
m

D
=
∑ (6)

s. t.
, ,mt c mt g mtD w D w Dα β= + , 2 2

, () ()mtg mt mt mtmtD x y yx= − + −

, () () ()c mt r mt g mt b mtD w RedDiff w GreenDiff w BlueDiff= + +c c c

where wα and wβ are the weights used to normalize the corresponding distances. In

our work, wα is 2
1 /(255) and wβ is 2(1/)r . r is the radius of the search range. ,c mtD

represents the measuring distance in RGB space. ,g mtD represents the distance between

the centre of moving rectangle and the position of the predicted joint region centre.
The Kalman filter is widely used for tracking as a subject of computer vision.

Since the interval between adjacent frames is small in our work, we treat it as a
uniformly accelerated motion in a time interval and use the following prediction

model to compute the centres of the joint regions (,)
m mt x yG

 1

2
, 1 , -1(,) (,) / 2

m mt t m m m t m tx y x y T T− −= + +G G V A (7)

 1 2, 1 [(,) (,)] /t tm t m m m mx y x y T− −− = −V G G

 1 2, 1 [(,) (,)] /t tm t m m m mx y x y T− −− = −A V V

where 1 (,)t m mx y−G , , 1 , 1,m t m t− −V A are the tracked centre position, velocity and

acceleration of the m-th joint at frame t-1. T is the interval between adjacent frames.
Fig. 7a illustrates the joint tracking result of the character in Fig. 6a. We select

four tracked frames in an 18 frame image sequence. As can be seen from frames 6,
12, 18, the problem of self-occlusion is effectively solved with our position
prediction algorithm.

176 J. Pan and J.J. Zhang

frame1 frame6 frame12 frame18

 (a)

 (b)

Fig. 7. Tracking and retargeting. (a) Joint tracking for the original character, (b) Deformed
target character.

This tracking method is not without limitations. Since the frame-by-frame tracking
is inherently subject to error accumulation, the accuracy is limited to a small number
of frames (around 30 in our experiments). One effective way to solve this problem is
to divide a large image sequence into a number of segments which consist of fewer
frames, and correct the tracking error for the first frame in each segment. Our system
allows the user interactively adjust the tracking result at any frame when necessary.

4.2 Retargeting

To retarget a captured motion to the new character, we first produce a skeleton as
described before. There is a lot of existing work on 3D animation, such as [10], which
is directly applicable to our case. In this paper however, we only implemented a
simple method to demonstrate the retargeting process. For a moving 2D character, a
skeleton can have both linear (length) and angular (orientation) displacements, i.e. a
skeleton segment can stretch / squash and rotate. The basic idea of our simple motion
retargeting is to map the captured increments of both length and orientation angle of a
skeletal segment, which can be computed by:

, , , 1 , , , 1/ ,m t m t m t m t m t m tl l l α α α− −Δ = Δ = − (7)

where ,m tl , ,m tα represent the length and orientation angle of the m-th skeleton

segment at frame t. For the target model, the length ,m tl′ and orientation angle ,m tα′ of

the m-th skeleton segment at frame t can be trivially computed by:

, , 1 , , , 1 ,,m t m t m t m t m t m tl l l α α α− −′ ′ ′ ′= Δ = + Δ (8)

Fig. 7b illustrates the retargeting result for the target character in Fig. 6b.

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 177

5 Experiments and Evaluation

We design two experiments to comparatively study the computational complexity and
visual performance of our deformation algorithm. The first is deforming a 2D flower
model with our algorithm into four similar postures to those in [13]. The results are
shown in Fig. 8. We test our algorithm on a 3.2GHz Pentium 4 workstation with 1GB
memory. Table 1 gives the comparison results. Since our deformation algorithm does
not perform nonlinear shape deformation for all triangles, it takes about a quarter of
the time. This is especially significant when performing larger and more complex
animations.

 (a)

(b)

Fig. 8. Flower model deformed by our algorithm and [13]. (a) Deformation results with [13],
(b) Deformation results with our algorithm (from left to right, original template, decomposition
result and deformed figures).

Table 1. Comparison of data statistics and timing

Cartoon model: Flower Method in [13] Our deformation algorithm

Boundary vertices 114 123
Interior vertices 256 27 (Joint vertices)

Precomputing time 22ms 9ms

Iteration time 0.589ms 0.143ms

The second experiment is to deform an elastic object both appeared in [7] and [15].
Two skeletal segments are used in our algorithm. Fig. 9 gives the results. As our
method preserves the global area, comparing with the result in [7] and [15], it can
express the squash-and-stretch effect of this elastic object naturally during
deformation.

 (a) (b) (c) (d)

Fig. 9. Comparing our algorithm with the approaches in [7] and [15]. (a) Original object and
decomposition result with skeleton, (b) Deformation result with our algorithm, (c) Deformation
result in [7], (d) Deformation result in [15].

178 J. Pan and J.J. Zhang

We also invited three animators to test our technique with two groups of
experiments. The first was used to evaluate the visual quality and performance of
animation production. The original characters were acquired from the Internet. Fig. 10
and the video give the results. The second group is to test our motion capture and
retargeting method. There are two experiments. The first (Fig. 11) is to track the joints
of a jumping cartoon man and retarget the motion to a new character. We treat the hat
and the man as two objects, and track them separately. The second one (Fig. 12) is to
track the joints of a 3D running horse (rendered as a 2D image sequence using Maya)
and retarget it into a cartoon gazelle.

 (a) (b)

 (c) (d)

 (e)

Fig. 10. Five groups of cartoon characters deformed by our algorithm. From left to right,
original template model, decomposition results with skeleton, deformed figures. (a) mm, (b)
Black cat sergeant, (c) Monkey king, (d) Spiderman, (e) Running horse.

The consensus from the animators showed that our method is more efficient than
the current practice adopted in many commercial cartoon production houses, as
sketching a skeleton is much faster than drawing a whole frame. In fact it is
encouraging to see that our design is consistent with their animation practice. To
create a key-frame, often the animator would first sketch a stick figure (i.e. the
skeleton) and then overlay the body shape on top guided by the stick figure. This
process is called the deep structure. Sketching the skeleton alone relieves them from
some of the time-consuming tasks, i.e. to draw the whole character body. They also
believe that our motion capture technique will make an animator’s life much easier
and have a positive impact on the cartoon production industry once a 2D motion
database is established.

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 179

 (a)

 (b)

Fig. 11. Motion of a jumping cartoon man retargeted to a new character. (a) Original cartoon
character, (b) Retargeted new character.

 (a)

 (b)

Fig. 12. Joint tracking of a running horse (a) and retargeting to a cartoon gazelle (b)

6 Discussion and Limitations

In this paper, we have presented a sketch-based skeleton-driven 2D animation
technique using sketches as the primary inputting means both for the creation and the
control of the animation artifacts. It consists of two main parts. The first is concerned
with the fast production of 2D character animation by sketching only the skeletons.
Comparing with the traditional cartoon production pipeline, drawing a skeleton is
much faster than drawing a whole frame. This allows denser key-frames to be drawn
by experienced animators. By reducing the interval between key-frames, in many
cases the in-between frames can be produced mainly by software without
compromising the realism, unlike the current practice where human in-betweeners are
the main workforce, which is often expensive.

Given an original image of a character and the sketched skeleton sequence, our
technique will generate a deformed character with different poses automatically. It is
faster and less labour-intensive than the existing production practice. Our theoretical

180 J. Pan and J.J. Zhang

contribution in this aspect includes a variable-length needle model, which
successfully preserves the global area of a character during animation, which is an
essential property for squash-and-stretch effect in cartoon animation; and the skeleton
driven + nonlinear least squares optimization algorithm, which is computationally
economic.
 The second part of our work is concerned with the development of a skeleton-based
2D motion capture technique. Once a skeleton is established in the first frame of a
moving image sequence, we track all the joint positions from each subsequent image
considering both geometric and visual features of the images. This 2D motion capture
technique can be applied to various types of moving images, including 2D cartoon
animation, videos and image sequences of rendered 3D animations.
 Our research also reveals some limitations of the developed method. The first
relates to the texture information of the template image. Because there is no 3D
information of a 2D character, large pose change can result in loss of correct texture
for subsequent frames. Although some research in matting, image completion and
texture synthesis [18,24,29,30] has attempted to resolve this issue, it is still an open
problem for all 2D deformation techniques. We plan to use image merging techniques
to tackle it in the future. The second limitation is the error accumulation in tracking.
Currently we correct the tracking error at the first frame of each sequence segment.
We plan to use a more robust tracking approach in the future. The third place to
improve is retargeting. Our current simple approach is only to demonstrate our motion
capture method. It would be desirable to incorporate a 3D animation technique (e.g.
[10]) to treat retargeting as a space-time optimization problem. The motion editing
techniques developed for 3D motions are also relevant.

Acknowledgments. This research is in part supported by EPSRC grant
EP/F030355/1.

References

1. Davis, J., Chuang, E., Slesin, D.: A sketching interface for articulated figure animation. In:
Proc. Eurographics/ SIGGRAPH Symposium on Computer Animation, pp. 320–328
(2003)

2. Thorne, M., Burke, D., Panne, M.: Motion Doodles: An interface for sketching character
motion. In: SIGGRAPH 2004 Conference Proceedings, pp. 424–431 (2004)

3. Li, Y.: 3D Character Animation Synthesis From 2D Sketches. In: Proceedings of the 4th
international Conference on Computer graphics and Interactive Techniques in Australasia
and Southeast Asia, pp. 81–90 (2006)

4. Igarashi, T., Matsuoar, S., Tanaka, H.: Teddy: a sketching interface for 3D freeform
design. In: Proceedings of ACM SIGGRAPH 1999, pp. 79–89 (1999)

5. Sykora, et al.: Sketching cartoons by example. In: Eurographics Workshop on Sketch-
Based Interfaces and Modeling, pp. 27–34 (2005)

6. ToonBoom:
http://www.toonboom.com/products/digitalpro/eLearning/
tipsTricks/2008

7. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM
Trans. Graphics 24(3), 1134–1141 (2005)

 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 181

8. Williams, R.: The Animator’s Survival Kit. Faber & Faber, London (2001)
9. Isaac, K.: Applying the 12 Principles to 3D Computer Animation. The Art of 3D Computer

Animation and Effects (2003)
10. Gleicher, M.: Retargeting motion to new characters. In: Proceedings of ACM SIGGRAPH

1998, pp. 33–42 (1998)
11. Hsu, S.C., Lee, I.H.: Drawing and animation using skeletal strokes. In: Proceedings of

ACM SIGGRAPH 1994, pp. 109–118 (1994)
12. Fekete, J., Bizouarn, E., Cournarie, E.: TicTacToon: A paperless system for professional

2D animation. In: ACM SIGGRAPH 96 Conference Proceedings, pp. 79–90. (1996)
13. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D Shape Deformation Using Nonlinear

Least Squares Optimization. The Visual Computer 22(9-11), 653–660 (2006)
14. Schaefer, S., Mcphail, T., Warren, J.: Image deformation using moving least squares. In:

SIGGRAPH 2006 Conference Proceedings, pp. 255–262. (2006)
15. Wang, Y., Xu, K., Xiong, Y., Cheng, Z.: 2D shape deformation based on rigid square

matching. Computer Animation and Virtual Worlds 19(3-4), 411–420 (2008)
16. Fayreau, L., Reveret, L., Depraz, C., Cani, M.P.: Animal gaits from video. In:

Eurographics/SIGGRAPH Symposium on Computer Animation, pp. 277–286 (2004)
17. Bregler, C., Loeb, L., Erika, Chuang, E. Deshpande, H.: Turning to the masters: motion

capturing cartoons. In: SIGGRAPH Conference Proceedings, pp 121–129. (2002)
18. Hornung, A., Dekkers, E., Kobbelt, L.: Character animation from 2D pictures and 3D

motion data. ACM Trans. Graph. 26(1), 1–9 (2007)
19. Sykora, et al.: As-Rigid-As-Possible Image Registration for Hand-drawn Cartoon

Animations. In: Proceedings of the 7th International Symposium on Non-Photorealistic
Animation and Rendering, pp. 25–33 (2005)

20. Kong, Y., Rosenfield, A.: Digital topology: Introduction and survey. Comp. Vision,
Graphics and Image Proc. 48(3), 357–393 (1989)

21. Drori, I., Cohen-or, D., Yeshurun, H.: Fragment-Basedimage completion. ACM Trans.
Graph. 22(3), 303–312 (2003)

22. Cornea, D., Silver, D., Min, P.: Curve-skeleton properties, applications and algorithms.
IEEE Transactions on Visualization and Computer Graphics 6(3), 81–91 (2006)

23. Shamir, A.: A Survey on Mesh Segmentation Techniques. Computer Graphics
Forum 27(6), 1539–1556 (2008)

24. 27. Sorkine, O., Lipman, Y., Cohen-OR, D., Alexa, M., Rossl, C., Seidel, H. P.: Laplacian
surface editing. In: Symposium on Geometry Processing, ACM SIGGRAPH/
Eurographics, pp. 179–188 (2004)

25. 28. Wang, J., Bhat, P., Colburn, A., Agrawala, M., Cohen, M.: Interactive Video Cutout.
In: SIGGRAPH 2004 Conference Proceedings, pp. 124–131. (2004)

26. Li, Y., Gleicher, M., Xu, Y.Q., Shum, H.Y.: Stylizing motion with drawings. In: ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 111–122 (2003)

27. Eitz, M., Sorkine, O., Alexa, M.: Sketch Based Image Deformation. In: Proceedings of
Vision, Modeling and Visualization, pp. 135–142 (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

