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ABSTRACT

Partial differential equations (PDEs) are powerful tools for the generation of free-form surfaces. In this paper,
techniques of surface representation using PDEs of different orders are investigated. In order to investigate the real-
time performance and capacity of surface generation based on the PDE method, the forms of three types of partial
differential equations are put forward, which are the second, mixed and fourth order PDEs. The closed form
solutions of these PEDs are derived. The advantages and disadvantages of each of them are discussed. A number of
examples are given to demonstrate the use and effectiveness of the techniques.
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INTRODUCTION

Free-form surface representation is one of the most important topics of computer graphics and computer-aided
geometric design. To model a complex object in a graphical scene, three forms of representations are commonly
used. There are polygonal representations, parametric surfaces and implicit surfaces. Among them, parametric
surfaces, such as spline surfaces, are the most popular form adopted in many modelling and design software
systems.

Surfaces created using the solutions of partial different equations also have their unique merits in surface and object
representation. A solvable partial differential equation corresponds to a family of solutions. This property allows
certain shape requirements to be met and to generate a family of free-form surfaces. In addition, adjustable
parameters can be introduced which provide further degrees of freedom for shape modification. This characteristic
is especially attractive for the design of a family of products whose shapes do not differ fundamentally.

At the beginning of this decade, this surface representation method was first proposed by Bloor et al. (Bloor 1990).
The fourth order partial differential equation with one vector-valued parameter was used. This equation was applied
to represent a number of designs, including the hull of a yacht (Bloor 1990), an engine inlet port (Bloor 1995), and
an aircraft fuselage (1996).

Activated by the fact that the vector-valued parameter in the PDE can effectively affect the shape of the surfaces to
be generated, You and Zhang proposed a more general fourth order PDE for the blending of primary surfaces (You
1999b) and the generation of free form surfaces (You 2000a). Instead of having one parameter, this new equation
has three vector-valued parameters.

So far as virtual reality and computer animation are concerned, fast surface generation is crucially important. This
is even more apparent when the graphical scenes of such applications become increasingly complicated. Although
modelling quality should not be compromised, some sort of adaptive strategy as for how algorithms are chosen will
certainly be constructive. Considering the limitations and performance of different PDEs, we will investigate
surface generation mechanisms using PDEs of different orders. Generally speaking, the higher the order a PDE has,
the more powerful and flexible it is for surface generation, but the poorer the computational performance it has.
The second order PDEs whose solutions involve only half of the unknown constants of those of the fourth order
PDEs, are clearly computationally more efficient. But the second order PDEs lack the ability of considering the
tangential boundary conditions and therefore have difficulty in shape control. If quality and performance are both
important, the weakness of the second order PDE may be improved by using mixed order partial differential



equations. In this paper, we will introduce the techniques of free-form surface creation using the second, mixed and
fourth order partial differential equations. We will also discuss their advantages and disadvantages.

SURFACE GENERATION WITH THE SECOND ORDER PDES

The second order PDE we are proposing takes the form of
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force functions.

The boundary conditions for the generated surface can be generally written as

u=0 X =g, (u)

u=1 X =, (v) @

To demonstrate the use of this second order PDE (1) under boundary conditions (2), in the following, we will
construct a vase-like object. Such a PDE may or may not have closed form solutions of the partial differential
equations depending on the boundary conditions it is subject to. If a closed form solution exists, such a solution
usually is the best in terms of resolution performance and computational accuracy. For those boundary conditions
which prevent a closed form solution from being developed, the PDE will be solved using the series method (Zhang
2000) combined with the weighted residual techniques (You 2000b).

In this example, both the upper opening and bottom of the object are described with petaloid curves. The
mathematical equations of these two curves are

u=0 x=rcosaV+r,cosa,Vv
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where r;, a; (i=1, ..., 4) and hq are the design parameters.

Eq. (1) under the boundary conditions (3) can be solved by the separation of variables. For doing this we assume
that the solutions of Eq. (1) have the form of

X=(q,(u)cosa,v+q,,(u)cosa,v
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Substituting Eq. (4) into Eq. (1) and making use of the boundary conditions (3), we obtain the following general
solutions for the homogeneous equations of Eq. (1),
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The vector-valued parameters s and t in Eq. (1) will have significant influence on the shape of the surface. Taking
a =2r,a,=16zr, n=1,1,=01,r,=06, r, =0.06, and h, = 3.6, we obtain the surface in Figure
la)when s, =s, =1, t, =t, = 0.5 and obtain the surface in Figure 1b) when s, =s, =1, t, =t =01.
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Figure 1. Surface generation with different vector-valued parameters in the second order PDE



The functional boundary conditions also have substantial effects on the shape of the surface. To demonstrate this,
we only take the first term of X and Yy components in Eq. (3), i.e., setting I, =T, = 0. Keeping the other

parameters unchanged, we obtain the shape in Figure 2a) when S, = S, = 5,1, = ty =0.2, and the shape in
Figure 2b) when s, =s, =1,t, =t =05.

a) b)
Figure 2 Surface generation with different functional boundary conditions in the second order PDE

The force functions in Eq. (1) are another powerful tool for the manipulation of the surface geometry. In order to
examine how these force functions affect the shape of the surface, let us consider the following force functions

p, = (P, + pyu)cosv
p, = (P, + p,u)sinv )
p, =0

For simplicity, we still only take the first term of the X and y components of Eq. (3), i.e. setting I, =1, =0.
The introduction of the force functions leads to the following solutions
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With the above expressions, if we use the same geometric parameters as before and taking the vector-valued
parameters to be S, =S, =5, t, =t, = 0.2, we obtain the surface in Figure 3a) when p, =—1and p, =0;
surface in Figure 3b) when p, =—0.5 and p, =0; surface in Figure 3c) when p, =1.5 and p, =—4; and
surface in Figure 3d) when p, =—-3.1and p, =5.
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Figure 3 Surface generation with force functions in the second order PDE

It is clear that for each q; (i =X, Y¥; j=1, 2) in Eq. (4), there are only two unknown constants in comparison

with four unknown constants in the solutions of the fourth order PDEs (You 1999b). Therefore, the computing time
is halved or the speed is approximately doubled. In situations where speed is a crucial issue, this is no doubt an
advantage. However, this second order PDE has a weak point, i.e. there is not enough flexibility to meet the
tangential boundary conditions that again affects the shape of the surface. In addition, it can cope with fewer
parameters than the PDEs of higher order. In order to create more complex shapes, the mixed order PDE is
proposed in the following section.

SURFACE GENERATION WITH THE MIXED ORDER PDES

The inflexibility of the second order PDE proposed above can be improved by a mixed order PDE, so that the
tangents at the boundaries can be accommodated. The x and y components of Eq. (1) are kept unchanged but its z
component is replaced by a fourth order PDE. This mixed order PDESs can be written as
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Accordingly, the boundary conditions (2) can be modified as

u=0 X=0,(u)
a
E: 93(U)
(10)
u=1 X=0,(u)
a
E: 9, (U)

where g, (u) and g, (u) are vector-valued functions, and g, (u) and g, (u) are scalar functions.

In order to compare the second order PDEs with the mixed order PDEs for surface representation, we use the same
boundary conditions of X and Y components as we did with Eq. (3). But new boundary conditions are introduced

for the Z component. They are

u=0 z=nh,
u=1 z=0 ()
20

Without considering the force functions, the solutions of X and Yy components of Eq. (9) are the same as those of
Eq. (5). However, the solutions of Z component subject to boundary conditions (11) is now given by

z=h, +h{u—(3h, +2h))u® + (2h, + h))u® (12)
Using the same parameters as the previous examples, we here examine how the tangential boundary conditions of
Z component affects the shape of the surface. When s, =s =1, t, =t = 0., setting h; = —10 creates the
surface shown in Figure 4a) and hé =—0.01 produces the surface in Figure 4b). When S, =S, =1,

t, =t, =01, setting h; = —10 generates the surface given in Figure 4c) and hj = —0.01 produces the surface

in Figure 4d). Comparing these pictures with those in Figure 1, it is evident that by using the mixed order PDEs (9),
the tangential boundary conditions of Z component enable more shapes to be created. This is done by choosing
different values of the first derivative of the Z component with respect to the U parameter.
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Figure 4 Surface generation using the mixed order PDEs

SURFACE GENERATION WITH THE FOURTH ORDER PDES

From the above results, we have learned that by changing the vector-valued parameters in the partial differential
equations and the boundary conditions, more variety of surfaces can be produced. Extending along this line, a
fourth order PDE will be more powerful and flexible. Similar to those used in (You 1999a and Zhang 1999), the
following fourth order PDE will provide more degrees of freedom not only to meet the tangential boundary
conditions, but to allow the creation of much more variety of different shapes using the vector-valued parameters.

J*x 7' x 7'
SéU4+t0'Uzd/2+Wd/4 =p(u,v) (13)

where W = [WX W, WZ]T is a vector-valued parameter.



Adding to Eq. (2), the new boundary conditions can be expressed as

u=0 X =g, (u)
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where g, (u) (i=1, 2, 3, 4) are the vector functions.

In order to demonstrate the application of Eq. (13) in surface representation, especially its ability to produce
different designs with the adjustable parameters, s, t and w, let us consider the production of a family of pot-like
objects. Both the upper opening and bottom profile of the surface are circles whose radii are r, and I,
respectively. The height and the middle radius of the surface are hl and T, respectively. Based on the given

geometric dimensions, we specify the boundary conditions as follows,
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where h§, h/, 7,, 1, are the constants that are used to adjust the tangential boundary conditions.
The general solutions of Eq. (13) have two forms, which can be formulated as
x = (ce™" +c,e™” +ce™ +c,e”)cosv
y = (ce™" +ce™™ +c,e™ +ce”)sinv fors,w, <ty and s w, <t; (16)
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and
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two equations into the boundary conditions (15).
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In the above closed form solutions, by changing the functional and tangential boundary conditions as well as the
vector-valued parameters, we are able to obtain a family of surfaces whose share fundament features but are of
different shapes. In Table 1, we list five combinations of the parameters where NOC stands for the case number and
NOF for the figure number in Figure 5.

Table 1 Different combinations of boundary conditions and vector-valued parameters

NOC

hl

hl

NOF 'y i |y | |, [P |0 s, [t W s |t |Ww,
1 a 04 |03 |08 |2 |05 |05 |6 |6 |1 |3 |1 [t |3 |1
2 b 02 |08 |07 |2 |01 oL |6 |6 |1 |16 |60 |1 |16 |60
3 c 0.4 03 |02 2 2.5 2.5 6 6 1 6 1 1 6 1
4 d 0.4 03 |08 3 0.3 0.3 15 |15 |1 15 1 1 15 1
5 e 02505 |03 |3 |05 |30 [15 |9 [1 |3 |2 [1 |3 |2

a)

b)

c)
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Figure 5 Surface generation using the fourth order PDEs

What is worth pointing out is that the powerfulness and the flexibility of this fourth order PDE Eq.(13) do not just
stop here. As a matter of fact, it is able to produce free-form surfaces of much greater complexity. Illustrated in
figure 6 are two such examples created using the same PDE

a) b)

Figure 6 Surfaces of more complexity

DISSCUSSION AND CONCLUSION

Partial differential equations are powerful tools for the generation of free-form surfaces. Compared with the
conventional surface modelling approaches, the PDE based approach is more convenient for the creation of
families of surfaces by adjusting the parameters in both the PDEs and the boundary condition expressions.

To allow optimum determination of the geometric quality and computational speed in surface representation, in this
paper, we have put forward three types of PDEs. The forms of the PDEs, the functional and tangential boundary
conditions and the closed form solutions of these partial differential equations have been formulated. The
performance and the ability of shape control for the generated surfaces are discussed along with the illustration of a
number of surface design examples.



It is observed that the second order PDEs have the highest computational efficiency amongst the three forms of
PDEs. This is because this form contains the least number of unknown constants to be determined. Due to exactly
the same reason, this form is the least powerful in terms of the variety of the surfaces it can generate. Without
sacrificing perceptible computational performance, the second order PDEs can be improved by introducing the
fourth order PDEs for one of the components leading to the mixed order PDEs. This new collocation allows the
tangential boundary conditions to be fulfilled for the components concerned. As a consequence, more complex
boundary conditions can be met. The fourth order partial differential equations, despite their lower efficiency than
the second and mixed order PDEs, have much more degrees of freedom, and hence are able to generate family of
surfaces with sophisticated geometric features. These degrees of freedom are realised through the use of the vector-
valued parameters, the functional boundary conditions and the tangential boundary conditions.

These three forms of PDEs should be applied in different situations depending on the actual applications. If real-
time performance is a crucial issue, such as in virtual reality applications, the second and mixed order PDEs should
be considered first. If the shape requirement and modelling accuracy become a dominating factor, the fourth order
PDEs of three vector-valued parameters should be given a priority.
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