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Abstract 

In this paper, we introduce second order and mixed 
order partial differential equations (PDEs) for surface 
blending and present an approximate algorithm for the 
resolution of the PDEs. We investigate how different 
orders of partial differential equations influence the 
continuities of blending surfaces.  
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1. Introduction 

Surface blending has a wide range of applications in 
computer aided design, computer animation and other 
industries. It has attracted a lot of research attention. 

Rossignac and Requicha defined the rolling-ball 
blending method in terms of offset solids and 
approximated blending surfaces and their intersecting 
curves by use of piecewise circular curves [1]. 
Middledich and Sears proposed a technique which is 
suitable for blend definition and profile control. With 
such a technique, determining the blending surface with 
this method relies on finding a conic tangential to two 
straight lines that define a plane [2]. Hoffmann and 
Hopcroft proposed the formulation for blending two or 
three primary surfaces and named this technique the 
potential method [3]. Later on, they developed the 
projective potential method [4]. Bloor and Wilson 
introduced the fourth order partial differential equation 
into surface blending [5]. Rockwood proposed a method 
to blend implicit surfaces and called it the displacement 
method [6]. For implicit surfaces, Warren introduced a 
new definition of geometric continuity and presented 
some new methods to blend several primary surfaces 
simultaneously [7]. In addition to the application in 
blending implicit surfaces, the rolling ball method also 
finds a wide range of applications in blending parametric 
surfaces. Normally, there are two kinds of rolling-ball 
blends: constant-radius blends and variable-radius 
blends. By sweeping rational quadratic (conic section) 
curves, Choi and Ju constructed constant-radius rolling-
ball (edge) blends which can be used to blend any 
rectangular parametric surface patches with smooth 

offset surfaces whose intersections can be well defined 
[8]. Later, Kosters extended the potential method to 
blend implicitly defined surfaces, includes blending an 
arbitrary number of surfaces to form a convex corner, 
blending surfaces for all cases where three surfaces meet 
transversely, and blending for a very general class of 
corners [9]. He further extended the potential method to 
blends of arbitrary continuities consisting of piecewise 
algebraic surfaces of low degree [10]. Sanglikar et al. 
employed differential geometry to formulate equations 
for blending parametric surfaces and gave closed form 
analytic solutions for most of the surfaces used in current 
solid modellers [11]. Cheng et al. proposed a finite 
difference method to solve fourth order partial 
differential equations and applied the solution in surface 
blending of quadric surfaces [12]. Ohkura and Kakazu 
described a generalized method for the blending of three 
primary surfaces which yields the formulae for both 
convex and concave combinations. They also presented 
the projective potential method to produce a convex 
combination of three surfaces [13]. Based on the 
determination of intersection of two offset surfaces using 
only the first-order derivatives of the progenitors, 
Barnhill et al. developed a method for blending two 
primary parametric surfaces [14]. Vida et al. presented a 
comprehensive review of blending between parametric 
surfaces, discussed the applicability and efficiency of 
parametric techniques for general blending situations, 
and pointed out open questions for future research in 
surface blending [15]. Defining the blending surface as a 
collection of intersection curves of correlated pairs of 
surfaces, Hartmann proposed a method to blend an 
implicit surface with a parametric surface which can 
achieve G2-continuous transitions from the blending 
surface to primary surfaces by introducing a simple 
additional condition [16]. Chuang et al. used the derived 
spine curve and linkage curves to compute a parametric 
form of the variable-radius spherical and circular blends 
and investigated the variable-radius rolling-ball blending 
methods [17]. They translated geometric constraints 
specifying the variable radius into a non-linear system 
that represents the spine curve exactly for solving the 
difficulty in specifying the radius and tracing the spine 
curve [18]. Chunag and Lien also proposed an exact 
formulation which represents the blending in a high 
dimensional space as the swept surface of the 



intersection between the offsets of the base surfaces 
whose the radii satisfy a specific one-parameter curve, 
and another complex formulation defining the blend as 
the sweeping surface of the intersection between offsets 
of base surfaces whose radii satisfy a specific two-
parameter surface [19]. Li and Li and Chang developed 
boundary penalty finite element methods to solve partial 
differential equations and applied it in surface blending 
[20-22]. On the basis of the theory of envelopes and 
discriminant sets, Lukács analyzed variable radius rolling 
ball (VRRB) blend surfaces which are envelopes of one 
parameter families of varying radius balls and usually G1 
continuous but often only piecewise curvature 
continuous [23]. Hartmann investigated a numerical 
implicitization for both parametric surfaces and many 
other surfaces of practical use which have no standard 
(parametric or implicit) representations in a uniform way 
as implicit surfaces [24]. Kós and colleagues examined 
the methods for recovering constant radius rolling-ball 
blends in reverse engineering [25]. Chen et al. gave a 
scheme to construct a piecewise algebraic surface which 
blends the given surfaces along the intersection curves of 
the given surfaces and their corresponding auxiliary 
planes [26]. You et al. discussed a fast resolution method 
for fourth order partial differential equations and applied 
it in blends of parametric surfaces [27]. Based on the 
geometric information of the given boundary curves, 
Chang and Yang used a boundary-blending method 
achieve unidirectional 2D parametrization and extended 
it to bi-directional parametrization via superposition to 
include both boundary pairs which leads to reasonable 
smooth blending of the boundaries [28]. Foufou and 
Garnier discussed how to determine principal circles 
tangent to both quadrics being blended, proposed a novel 
method to define G1 Dupin cyclide blends between 
quadric primitives [29]. Han and Wu introduced the 
parametrization of implicit blending surfaces and 
investigated the subdivision scheme of the kth-degree 
NURBS curve, and presented the algorithm of 
subdivision scheme for the implicit algebraic surfaces 
[30]. Song et al. developed a method to created n-sided 
(n = 3, 5, 6) G2 blending surfaces with the exception of 
the 3-sided blending surface being C0 continuous at the 
three vertexes and the 5-sided blending surface being C0 
continuous at a vertex [31]. 

In this paper, we will introduce the resolution of 
second order partial differential equations and examine 
how different orders of partial differential equations 
affect the smoothness at the transition curves between 
the blending surface and the primary surfaces 
represented in a parametric form. 

2. Blending models with different orders of 
partial differential orders  

Partial differential equations have been widely 
applied in surface blending. It is well known that a 
second order partial differential equation can only ensure 
the positional continuity. A fourth order partial 
differential equation can guarantee both positional and 

tangential continuities and a sixth order partial 
differential equation has a capacity to satisfy up to 
curvature continuities. However, the higher the order of 
the partial differential equation, the more difficult and 
inefficient it is to solve the equation. Mixed order partial 
differential equations can reduce the computational cost. 
A combination of two second and one fourth order 
partial differential equations have been applied in surface 
blending by Bloor and Wilson [5].  

In the following, we will present a solution to a 
second order partial differential equation subject to 
blending boundary conditions, and combine the second 
and fourth order, second and sixth order, and fourth and 
sixth order partial differential equations as well as the 
second, fourth and sixth order partial differential 
equations to create blending surfaces of the same 
blending task. We will also examine the effects of these 
partial differential equations on blending surfaces. 

Mathematically, surface blending with up to sixth 
order partial differential equation can be defined below. 
 For surface blending with second order partial 
differential equations, the resolution equations and 
blending boundary conditions are  

),,(
1
0

0

1

0

2

2

2

2

zyxt
(v)t       t          u
(v)t       t          u

t(u,v)
v

b
u

a tt

=
==
==

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

∂

∂

∂

∂

            (1) 

where u and v are parametric variables, ta  and tb  are 
shape parameters, x, y and z are position functions of 
blending surfaces, and )(t0 v  and )(t1 v  are boundary 
curves. 
 For surface blending with fourth order partial 
differential equations, the above mathematical model 
becomes  

),,(

1

0

0),(

32

10

4

4

22

4

4

4

zyxt

(v)t
u
t      (v)       t   t          u

(v)t
u
t     (v)       t   t          u

vut
v

c
vu

b
u

a ttt

=

=
∂
∂

==

=
∂
∂

==

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

∂

∂

∂∂

∂

∂

∂

       (2) 

 When curvature continuity is required, surface 
blending can be represented by 
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 By introduction of mixed order blends, three 
combinations of different orders of partial differential 
equations up to the sixth order exist. Usually, the x and y 
components are taken to be a lower order and the z 
component is set to a higher order. The first combination 



is from two second and one fourth order partial 
differential equations with the form of 

(v)z
u
z      (v)       z   z          u

(v)z
u
z     (v)       z   z          u

vuz
v

c
vu

b
u

a

yxt
(v)t       t          u
(v)t       t          u

vut
v

b
u

a

zzz

tt

32

10

4

4

22

4

4

4

1

0

2

2

2

2

1

0

0),(

),(
1
0

0),(

=
∂
∂

==

=
∂
∂

==

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

=
==
==

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

∂

∂

∂∂

∂

∂

∂

∂

∂

∂

∂

         (4) 

 The combination of two second with one sixth order 
partial differential equations leads to the following 
blending mathematical model 
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 Finally, the combination between two fourth and one 
sixth order partial differential equations result in surface 
blending representation as follows 
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3. Resolution of PDE based blending 
problems  

The blending problems described by Eq. (1) to (6) 
can be summarized into the separate resolution of 
second, fourth and sixth order partial differential 
equations subject to corresponding blending boundary 
conditions.  

Similar to the treatment in [32, 33], the functions of 
boundary curves, tangents and curvatures can be divided 
into some independent basic functions. Taking the x 

component as an example, the decomposed boundary 
conditions for the positional continuity only become 
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where jxa 0  and jxa 1  are known constants determined by 
the blending boundary conditions, and (v)gxj  are 
independent basic functions. 

Still taking the x component as an example, the 
position function of blending surfaces can be taken to be 
a combination of the functions of boundary curves with 
an unknown function of u parametric variable for the 
resolution of the second order partial differential 
equation 
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where jmp  are unknown constants. 
Substituting Eq. (8) into (7) and solving for 0jp  

and 1jp , we obtain 
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 Introducing Eq. (9) back to the position function (8), 
boundary conditions (7) are satisfied exactly and (8) 
becomes 
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 The error function of Eq. (1) is reached by 
considering Eq. (10) which has the form of 
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 In order to minimize the error of partial differential 
equation (1), some collocation points are chosen and the 
square sum of the error function at these collocation 
points is calculated. Its differentiation with respect to 
the unknown constants ),4,3,2(  xjjm Mmp L=  produces 
the following linear algebraic equations 
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 For the fourth and sixth order partial differential 
equations, the position function is still taken to be (8). 
With the similar treatment, the resultant linear algebraic 
equations can be obtained and have the same form as 
(12). 
 Solving Eq. (12), the x component is determined. 
Carrying out the same operation, both y and z 
components can be determined. Then, these position 
functions are used to generate blending surfaces.  



4. Effects on blending surfaces  

In this section, we will use some examples to study 
how different orders of partial differential equations 
affect the continuities of blending surfaces. The first 
example is to blend the frustum of an irregular cone with 
an elliptic cylinder. The boundary conditions up to 
curvature continuities for this blending problem can be 
written as 
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With the above methods, the blending surface from 
Eq. (1) to (6) is given in Figure 1, respectively.  

It can be seen from these figures that the second 
order partial differential equations can only create 
blending surface with positional continuity. Keeping 
partial differential equation for x and y components to be 
the second order and changing the partial differential 
equation for the z component to a fourth order do not 
improve the continuity between the blending surface and 
primary surfaces. Even worse, a higher order partial 
differential equation for the z component appears to 
bring in poorer results at the boundary curves. This can 
be observed from the blending surface in Figure 1c 
which is produced by the combination between 2 second 
and one sixth order partial differential equations. 

However, when all the partial differential equations 
become the fourth order, the smooth transition from the 
blending surface to primary surfaces is created. This is 
because both positional and tangential continuities at 
boundary curves are achieved.  

Further changing all the partial differential equations 
to the sixth order, the blending surface in Figure 1e was 
obtained. It is smoother than that in Figure 1d because of 
the introduction of curvature continuity. 

For the mixed order blends, when the lowest order 
of partial differential equations is larger than 4, higher 
order partial differential equation for the z component 
leads to better continuity. This argument is supported by 
the observation of Figures 1d and 1e.  

    
     a). 2nd order blending           b). 2nd+4th order blending 

    
c). 2nd+6th order blending              d). 4th order blending   

                    
 e). 4th + 6th order blending           f). 6th order blending         

Figure 1 Blending between the frustum of an 
irregular cone and an elliptic cylinder 

 
 The second example is to blend a circular torus and 
an elliptic hyperboloid of one sheet. The boundary 
conditions including curvature continuity have the form 
of 
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a). 2nd order blending 

 
b). 6th order blending 

Figure 2 Blending between a circular torus and 
an elliptic hyperboloid of one sheet 

 
 In the interest of space, here we only consider the 
blending surfaces from the second and sixth order partial 
differential equations, respectively. Using the above 
methods, the blending surface from the second order 
partial differential equations was shown in Fig. 2a and 
that by the sixth order partial differential equations was 
depicted in Figure 2b. 
 Once again, the images in Figures 2a and 2b indicate 
that the sixth order partial differential equations generate 
smoother transition between the blending surface and 
primary surfaces than the second order partial differential 

equations. However, although both blends in Figure 1a 
and Figure 2a employed the second order partial 
differential equations, the continuity in Figure 2a is 
better than that in Figure 1a. This suggests that for some 
blending tasks, i.e., when the tangential information of 
the blending surfaces defined by Eq. (1) at the boundary 
curves is close to that of primary surfaces, the second 
order partial differential equations can create visible 
smoothness between the blending surface and primary 
surfaces.  

5. Conclusions  

Different orders of partial differential equations 
determine the continuity between the blending surface 
and primary surfaces. In this paper, we investigate this 
issue. 

 We discussed the mathematical models of the 
surface blending with different orders and mixed orders 
of partial differential equations and the resolution of the 
second order partial differential equations subject to 
blending boundary conditions. 

The order of partial differential equations has a 
strong influence on the continuity of blending surfaces. 
For general cases, the second order partial differential 
equations cannot achieve satisfactory smoothness 
between the blending surface and primary surfaces. For 
such a situation, the smoothness cannot be improved by 
mixed order blends. In contrast, when the order of partial 
differential equations is not less than 4, the introduction 
of higher order partial differential equation for one 
position component is helpful for a smoother transition 
from the blending surface to primary surfaces. 
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