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Abstract 
In this paper, we develop a mathematical model 

from the theory of plate bending in elasticity which 
relates physical properties of a surface to its elastic 
deformation. We present the finite difference solution of 
the mathematical model and implement it using the Maya 
API and the MEL scripting language. We examine the 
effects of material properties and other factors on 
surface shapes and demonstrate applications of the 
proposed approach in controlling the shape of elastically 
deformable surfaces. 
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1. Introduction 

Deforming objects to create natural and realistic 
shapes and movements is an interesting topic which has 
been investigated since the beginning of computer 
animation. By now, quite a number of methods have 
been developed for this aim. 

Common efforts are to use Bézier, B-spline and 
NURBS to build geometrical models, and manipulate 
surface shapes through control points, knots and weights 
[1]. With these pure geometric methods, the realism of 
objects depends on the visual judgment of modellers. 
Therefore, different modellers will create somewhat 
different appearances of the same objects.    

In order to attack this issue, physically based 
modeling and animation was introduced. Terzopoulos 
and his co-workers applied elastic theory to develop 
dynamic differential equations for flexible materials such 
as rubber, cloth and paper [2,3]. Later on, Terzopoulos 
and Fleischer further incorporated viscoelasticity, 
plasticity and fracture [4]. By introducing mass 
distributions, internal deformation energies, and other 

physical quantities into NURBS, Terzopoulos and Qin 
proposed a dynamic NURBS [5]. With integration of 
dynamic NURBS into swung surfaces, Qin and 
Terzopoulos presented a dynamic NURBS swung 
surface method which was used to cope with surfaces 
with symmetries and topological variability [6]. They 
also extended triangular B-splines to triangular NURBS, 
formulated the mathematical model of dynamic 
triangular NURBS from Lagrangian mechanics, and 
employed the finite element method to solve the 
mathematical model and generate surfaces defined over 
arbitrary, nonrectangular domains [7]. Mandal et al. 
developed a new approach based on physics and 
geometric subdivision and used it to manipulate the 
smooth limit surface dynamically [8]. Léon and Verson, 
and Guillet and Léon applied a bar network mechanics 
method to deform free-form surfaces [9,10]. Celniker 
and Gossard minimized the energy functional under user 
controlled geometric constraints and loads, proposed a 
curve and surface finite element method, and applied it 
in free-form surface generation [11]. Güdükbay and 
Özgüç gave a physically based modeling algorithm 
consisting of a primal formulation and a hybrid 
formulation derived from the theory of pure elasticity 
and employed it to animate deformable objects [12]. 
Using forces as a main sculpting tool and minimizing the 
energy functional of a surface, Vassilev presented an 
efficient means to manipulate deformable B-spline 
surfaces [13]. 

Surfaces and solid volume can also be described by 
the solution to a partial differential equation subjected to 
suitably defined boundary conditions. This idea was first 
introduced for surface blending [14] and free-form 
surface generation [15] by Bloor and Wilson. In order to 
solve the fourth order partial differential equation 
efficiently, various analytical methods were proposed. 
The closed form solutions of partial differential 
equations for some simple blending surfaces were dealt 
with in [14] and those for generation of solid volume 
were given in [16]. Fourier series method was discussed 
in [15]. By using a remainder function to exactly satisfy 
boundary conditions, an approximate analytical method 



was presented to perform partial differential equation 
(PDE) based surface modelling [17]. After that, a 
perturbation method was proposed to create blending 
surfaces [18]. In addition to the work in development of 
various analytical resolution methods, PDE based 
modeling approaches have been applied in various 
industries. For instance, Sevant et al. used partial 
differential equation method to parameterize a flying 
wing and obtained its design with maximized lift [19]. 
Mimis et al. introduced PDE based surface modeling into 
design of a two-stroke engine and optimized its 
scavenging properties based on computational fluid 
dynamics calculations [20]. 

PDE based modeling has many new features such as 
the capacity in using a single patch to define a 
complicated surface, more powerful and flexible 
manipulation in shape control of surfaces, and potential 
in merging functionality. Therefore, it has been paid a 
greater amount of attention in recent years. Ugail 
investigated how the spine of a PDE surface can be 
generated and applied in shape parameterization of the 
PDE surface [21]. He and his colleagues also examined 
interactive design using sixth order partial differential 
equations [22].  By combining partial differential 
equations with equation of motion, Du and Qin obtained 
some new approaches of dynamic surface and solid 
modeling [23,24,25]. You and Zhang studied different 
surface functions and achieved some efficient and 
accurate methods for surface blending [26,27] and 
generation [28]. 

By now, the partial differential equations used in 
surface and solid modeling are not directly related to 
material properties. The main objective of this paper is to 
address this issue, derive a mathematical model to reflect 
material properties and implement it into the animation 
software Maya for manipulation of elastically 
deformable surfaces. 

2. Mathematical model  

An arbitrary surface in a three-dimensional space 
has x , y  and z  components. Each of these components 
is a function of parametric variables u  and v  which are 
called position functions. The geometric representation 
of each position function changing with two parametric 
variables u  and v  is a three-dimensional surface. Using 
the theory of plate bending in elasticity, we can derive a 
mathematical model describing the relationship between 
the position functions and parametric variables u  and v , 
and relate material properties of a surface to its 
deformation. In the following, we take x  component as 
an example and introduce the derivation of the 
mathematical model. 

As indicated in Figure 1, an infinitesimal element of 
dvdu×  is taken out from a surface describing the 

relation between x  position function and parametric 
variables u  and v . An arbitrary external force P  is 
applied on the infinitesimal element. This force can be a 
concentrated force, a line distributed force or an area 

distributed force. Considering all these cases, we can 
write this force in the form of ),( vuP . Under the action 
of this force, the surface will deform and the caused 
internal forces in the surface can be described with those 
acting on the four boundaries of the infinitesimal 
element. These internal forces are: shear forces uQ  and 

vQ , bending moments uM  and vM , and the twisting 
moment vuuv MM = .  

Taking the equilibrium of moments around u and v  
axes, we obtain 
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The condition of force equilibrium along x-axis 
gives the following equation 
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Substituting equation (1) into (2), one obtains the 
equilibrium equation below 
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Figure 1 The forces and moments acting on an 

infinitesimal element of a surface 

 
All surfaces in the natural world exhibit certain 

material or physical properties. These properties can be 
described with elasticity, isotropy, orthotropy and so on. 
Here, we consider elastic and orthotropic cases. Similar 
to those given in the textbooks of elasticity or plates, the 
relations between the bending moments, twisting 
moment and position function x  have the forms of 
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where t  is the thickness, uE  and vE  are Young’s 
moduli, uµ  and vµ  are Poisson’s ratios, and G  is the 
shear modulus of a surface. 

Substituting (4) into (3) and combining the same 
terms, we obtain the equation for the x  component as 
below  
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After some mathematical operations, Eq. (5) can be 
further transformed into the following equation 
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Through the above equation, the material properties 
of a surface are related to the position function of the 
surface. 

For the y  and z  components, similar equations to 
(6) can be derived. In the interest of space, their concrete 
forms are not provided here. 

Given two non-coincident 3D curves, we can create 
a surface which passes these two curves. The slope of the 
surface can be defined with the tangents of the surface at 
these two curves. Therefore, the boundary conditions for 
the surface can be regarded as a combination of 
boundary curves and tangents. Still taking x  component 
as an example, the boundary conditions required in 
solving Eq. (6) are represented by the following 
equations  
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where )(0 vb , )(2 vb , )(4 ub  and )(6 ub   are the boundary 
curves, and )(1 vb , )(3 vb , )(5 ub  and )(7 ub  are the 
boundary tangents. 

Equations (6) and (7) give a mathematical model 
which defines an elastically deformable surface through 
its material properties, geometric parameters, boundary 
constraints and external forces. 

3. Resolution  

The mathematical model represented by Eqs. (6) and 
(7) is very difficult to solve analytically. In order to 
present a general resolution method, we here consider the 
finite difference method. It is to transform a 

mathematical model into a set of linear algebraic 
equations.  Using the mesh given in Figure 2 and central 
difference approximation, the first and fourth partial 
derivatives can be transformed into  
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where h is the interval in the parametric directions u  
and v . 

Substituting Eq. (8) into Eq. (6), a linear algebraic 
equation below for each interior node was obtained  
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where 0xP  is the  force component acting at the typical 
node 0 in x  direction. 

Introducing Eq. (8) into Eq. (7), the boundary 
conditions become 

)(2)1()1(
       )()1(

 )(2)0()0(
       )()0(

)(2)1()1(
       )()1(

 )(2)0()0(
       )()0(

0742

060

0542

040

0331

020

0131

000

uhbvxvx
ubvx

uhbvxvx
ubvx

vhbuxux
vbux

vhbuxux
vbux

==−=
==

==−=
==

==−=
==

==−=
==

         (10) 

where 0=u , 1=u , 0=v  and 1=v  indicate that the 
typical node is at the boundary curves defined by these 
quantities respectively, and 0u  and 0v  are parametric 
values of the typical node at the boundary curves. 

Putting Eqs. (9) and (10) together and writing the 
resulting linear algebraic equations in the form of matrix, 
we reach 

FKX =                                 (11) 
where K  is a square matrix consisting of the coefficients 
before the unknown constants determined by Eqs. (9) 
and (10), X  and F are column vectors consisting of the 



unknown position functions at all nodes and the known 
constants, respectively. 
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Figure 2 Mesh of finite difference approximation 

 
Eq. (11) is a sparse matrix. We use the resolution 

method for large, sparse matrix and the corresponding 
standard C++ program to solve the linear algebraic 
equations defined by Eq. (11). The developed software 
module is called ElastSolver.   

It can be seen that the time spent to obtain the 
solution depends on the number of the nodes. When the 
node number is not very large, the proposed finite 
difference method can reach real-time performance.  

4. Maya implementation  

In order to take full advantage of the powerful 
functions of the animation software Maya, we implement 
the above mathematical model into Maya 6.0/7.0 
package through the API using C++. Some scripts are 
developed as well using MEL (Maya Embedded 
Language). 

When a manipulation task of elastically deformable 
surfaces starts, we firstly specify a deformation region 
which may be global or local as well as a force acting 
region, then input physical properties and deformation 
constraints, obtain the geometric information of objects 
from Maya, pass them into ElastSolver to calculate 
deformations of the objects, and output the deformed 
information of the objects into Maya to generate the new 
shapes of the objects. The general structure of Maya 
implementation is shown in Figure 3. 

Maya is used as a central information gathering tool. 
The correct definition of the data flow system between 
the software, the mesh, the ElastSolver engine and users 
is the key to success of our implementation. In Maya, 
data are transferred between a network of nodes in the 
Dependency graph. DataFromMaya node is responsible 
for passing the geometric information of un-deformed 
objects including mesh information and the values of 
parametric variables u  and v  and position functions x , 
y  and z  at all nodes onto ElasticNode.  

 Through a user friendly interface UserInput, a 
deformation region and a force acting region are 
determined. Then, the direction and size of the forces 

),( vuPi  ),,( zyxi =  are specified. Finally, material 
properties which are Young’s moduli uE , vE , Poisson’s 
ratios uµ , vµ , shear modulus G , surface thickness h , 
and boundary tangent constraints )(1 vb , )(3 vb , )(5 ub  
and )(7 ub  are inputted. All the information is transferred 
to the ElasticNode. 

 
 

Figure 3 General structure of Maya 
implementation 

Once the ElasticNode has received the data form 
both Maya through DataFromMaya and the user, it 
processes them and transforms them into those required 
by the mathematical model and sends them to 
ElastSolver. With the above finite difference method, 
ElastSolver solves the set of linear algebraic equations 
determined by the input information and geometric data, 
and obtains the deformed shape of the objects. Then, it 
gives the deformation information back to Maya via 
DataIntoMaya and Maya generates the deformed objects. 

5. Numerical Applications  

With the Maya implementation developed above, in 
this section, we examine material properties and other 
factors which affect the shape of surfaces and present 
some examples to demonstrate the applications of the 
proposed method in manipulation of elastic surfaces and 
objects.  

Users 

UserInput: specify deformation region 
and force acting region, magnitude and 
direction, input material properties, 
force, thickness and boundary 
constraints 

DataFrom
Maya: 
undeformed 
shapes from 
Maya 

ElasticNode 
1. Geometric information:   
meshes, UV coords, and 
position coords 
2. Materials properties 
3. External actions: forces and 
boundary constraints  

ElastSolver 

DataIntoMaya: 
deformed shapes return 
to Maya 



In order to investigate how different material 
properties, surface thickness, boundary tangents and 
force functions are related to the shape of surfaces, the 
deformations of a planar surface will be discussed below. 
For an arbitrary surface such as a curved surface, the 
method given here still applies. For this case, the final 
deformed position will be the sum of the initial position 
and the deformation of the surface.  

The basic data of material properties, boundary 
tangent and force functions are taken to be: Young’s 
moduli 1== vu EE , Poisson’s ratios 3.0== vu µµ   
shear modulus 1=G , surface thickness 1=t , boundary 
tangents  07531 ==== bbbb , and force functions 

0== yx PP  and 50=zP . The surface shape caused by 
these parameters is depicted in Figure 4a.  
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Figure 4 The effects of material properties  

Firstly, the effects of material properties were 
considered. To this end, all other parameters are kept 
unchanged, and only one material property was altered 
each time. By changing uE  to 5, the surface in Figure 4b 
was obtained. Due to the increase of Young’s modulus, 
the stiffness of the surface against deformations rises, 
leading to a significant reduction of surface deformation. 
Varying vE  to 5 generates the image in Figure 4c. 
Although the values of two Young’s moduli are 
identical, they act in different directions which results in 
the visible difference of surface shapes. Poisson’s ratios 

can also make an obvious impact on surface shapes. 
Raising Poisson’s ratio uµ  from 0.3 to 0.8, the surface 
shape was changed to that in Figure 4d. It is quite 
different from that in Figure 4a. However, when two 
Poisson’s ratios take a same value, the difference 
between two surfaces is very small as shown in Figure 
4d and Figure 4e where vµ  was also increased from 0.3 
to 0.8. It indicates when implementing Poisson’s ratios 
into a user’s handle, only one of them need to be taken 
into account. The influence of shear modulus G  on the 
surface shape is similar to that of Young’s moduli. A 
variation of shear modulus from 1 to 3 reduces the 
surface deformation and brings in the image indicated in 
Figure 4f. 

Next, we study how surface thickness changes the 
shape of surfaces. It is easy to understand that thicker the 
surface thickness, larger the deformation resistance. 
Setting the value of surface thickness t  to 1.5, the 
surface deformation was noticeably lowered as 
demonstrated in Figure 5. 

 
Figure 5 The effects of surface thickness  
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Figure 6 The effects of boundary tangents  



Thirdly, how boundary tangents affect the surface 
shape is tackled. Taking boundary tangents 51 =b , 

5.23 =b , 45 =b  and 27 =b , respectively, the surface 
shapes were changed into those given in Figure 6a, 6b, 
6c and 6d. Clearly, different values of boundary tangents 
bring in different deformations. The largest deformation 
occurs in the region near the boundary whose boundary 
tangent is changed. Then, the deformation is weakened 
gradually when moving towards the inner area of the 
surface.   

Finally, the influence of force functions is examined. 
By setting the force component zP  to -30, the image in 
Figure 7a was produced. Since the direction of the force 
is reversed, the deformation in the opposite direction is 
induced. Keeping 50=zP  and introducing 50=xP and 

80−=yP , respectively, the surface shapes in Figure 7b 
and Figure 7c were generated. These two force 
components result in the variation of both size and 
direction of the deformation, strongly supporting the 
argument that the force function can make a profound 
difference to the surface deformation. 
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Figure 7 The effects of force functions  

 

Figure 8 Pull of a ductile block  
With the above Maya plug-in, all the factors 

affecting surface deformations are the user handles, with 

which the user can easily control surface shapes and 
obtain a desired surface. 

Apart from shape manipulation of elastically 
deformable surfaces, the developed approach can be used 
to control deformations of objects which consist of a 
number of surface patches. Applying the Maya 
implementation presented above, we carried out the 
shape manipulation of objects shown in Figures 8, 9 and 
10. In Figure 8, a ductile block is pulled upward. In 
Figure 9, the block is subjected to a twist action. In 
Figure 10, a flexible thick sheet is deformed by two 
spheres with different radii.   

 
Figure 9 Twist of a ductile block  

 
Figure 10 A flexible thick sheet under action of 

two spheres 

 

6. Conclusions  

In order to relate material properties to deformations 
of surfaces, in this paper, we used the theory of plate 
bending in elasticity to develop the mathematical model 
of physically based elastic deformations. With the 
obtained model, Young’s moduli, shear modulus, 
Poisson’s ratios, surface thickness, externally applied 
force and boundary constraints are linked together and 



jointly contribute to physically based deformations of 
surfaces. We also presented the finite difference method 
to solve the mathematical model and implemented it into 
Maya. With the developed Maya implementation, we 
discussed the effects of material properties, surface 
thickness, force function and boundary tangent 
constraints on surface shapes, and applied our approach 
in manipulation of some complicated deformations of 
objects.  
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