
1. Introduction

The aim of this project is to make a real time strategy (RTS) game AI engine. A mini
RTS game is developed in the project to test this AI engine. The code is made in
C++ and OpenGL. In this game, players will control some combat units to destroy
the enemy’s base. At the same time, the opponent units are controlled by the game
AI, they will try to protect their own base and attack the player’s.

The AI engine in this project basically consists of three parts: An A* pathfinding
algorithm, an influence map and a finite-state machine. All the AI controlled tanks will
try to find the best way to the player’s base and move to it. During the motion, these
AI tanks can avoid obstacles, follow a leader or join a group and their velocity will be
affected by different types of terrain. They will also keep tracking the opponent units
position and make decisions to modify the path they have chosen in real time. The AI
tanks will try to retreat when they are in danger or their base is surrounded by the
opponent tanks (their life value is lower than a certain level or the enemy’s influence
near their base is higher than some level).

In a sense, this game is a simplified RTS game because there are not any economic
individual units (sometimes called peons-the “builders” and “gatherers”) in the game
and there are not any resources in the game world for the AI or human player to
collect and use these resources to develop their own base. However, with this AI
engine, it should be easy to add these economic units and resources into the game
world.

2. Previous Work

2.1 Pathfinding Algorithm

“There are many algorithms that are commonly known and used. These algorithms
range from the simple to the complex. The simplest approaches are to go toward the
goal until some sort of obstacle is reached then turn in another direction, and tracing
around the edges of obstacles (Fig. 2.1). This is an example of a "blind-search",
where the algorithm does not rely on any information about the cost of the path to
the goal in selecting the next node to expand. A list of other algorithms in this "blind-
search" group are the breadth-first search, the bi-directional breadth-first search,
Dijkstra’s algorithm, depth-first search, iterative-deepening depth-first search. There
are also some algorithms that plan the whole path before moving anywhere. Best-
first algorithm expands nodes based on a heuristic estimate of the cost to the goal.
Nodes, which are estimated to give the best cost, are expanded first. The most
commonly used algorithm is called A* (pronounced A star), which is a combination of
the Dijkstra algorithm and the best-first algorithm.” [1]

Figure 3.1 (picture from Anatoly Preygel’s Pathfinding: A Comparison of Algorithms [1])

“A-Star (or A*) is a general search algorithm that is extremely competitive with other
search algorithms, and yet intuitively easy to understand and simple to implement.
Search algorithms are used in a wide variety of contexts, ranging from A.I. planning
problems to English sentence parsing. Because of this, an effective search algorithm
allows us to solve a large number of problems with greater ease.

The problems that A-Star is best used for are those that can be represented as a
state space. Given a suitable problem, you represent the initial conditions of the
problem with an appropriate initial state, and the goal conditions as the goal state.
For each action that you can perform, generate successor states to represent the
effects of the action. If you keep doing this and at some point one of the generated
successor states is the goal state, then the path from the initial state to the goal state
is the solution to your problem.

What A-Star does is generate and process the successor states in a certain way.
Whenever it is looking for the next state to process, A-Star employs a heuristic
function to try to pick the best state to process next. If the heuristic function is good,
not only will A-Star find a solution quickly, but it can also find the best solution
possible.” [2]

2.2 Influence Map

“Influence Mapping is slowly becoming one of the most commonly used secondary
AI techniques in games. Its generic structure and open-ended usage make it second
only to finite-state machines(FSMs) in ease of implementation and adaptability to
different game AI problems. The term influence map refers to using a simple array of
data, where each element represents data about a specific world position, IMs are
usually conceptually thought of as a 2D grid overlaid on the world. The resolution of
this grid (and thus the number of elements in your influence array) depends on the
minimum size of game space that you need to tag with information. Where your
game can compromise between data size and influence accuracy will also determine
this resolution. So, if you absolutely need specific information for every square inch
of a large game world, your IM will have a very high resolution indeed (and take up

a lot of memory in doing so). Many games will employ multiple IMs, to either help
with memory and searching costs, or to provide different levels of game space
resolution to the various AI systems. Thus, a real-time strategy game might have an
IM with very low resolution (say, each element is an entire game screen) that
reflects the amount of each resource within The game uses this for high-level
planning when building the town and determining which direction in which to expand
the town. You would want to expand your base (and thus your main defenses)
toward more resourceful areas to facilitate future expansion. You can also employ
another IM, with a much higher resolution (each element is approximately equal to
four of the smallest units standing together) that keeps track of the number of units
that have been killed in each grid square, This map is used to affect the pathfinding
engine so that units will not continue to take paths into areas that have a high
mortality score.

In games with worlds that are heavily 3D (that is, comprising many vertical layers
built on top of each other), a more complex data structure is necessary, these can be
represented with correspondingly layered IMs, or by building the influence data into
the navigation mesh used for pathfinding. Another technique might be to only use
IMs where you need them, or local IMs. For example, a battle between forces in an
RTS game might start anywhere on the map. You might want to have a heavily
detailed IM during battles to coordinate forces, but not want to use the memory to
have a global IM for the game world that would provide the level of information you
require. Instead, you could implement a heavily detailed, but local IM. The system
would detect a battle and set the coordinates of the local battle planning IM to be
some distance out from the center of the battle. The center of the battle could be
determined using a different, lower-resolution IM that keeps track of population data
or fighting locations. Thus, the global IM is still constrained, but local information can
become quite detailed.”[3]

There are several kinds of influence map used in game AI. These influence maps
include occupance data, ground control, pathfinding, danger signification, rough
battlefield planning, simple terrain analysis, and advanced terrain analysis.

“Occupance data means tracking various populations within the game. An easy use
of an IM is to keep track of the number of specific game objects within a certain
area. You might want to keep track of all combat units, specialized resource
locations, important quest items, or any other in-game object. Simple occupance
data can be used to help with obstacle avoidance (overriding the pathfinding system
with local detours around occupied terrain), give rough estimates of various game
perceptions (army size, town density, the direction to the most powerups, etc.), or
any other task that requires quick access to localized population data.”[3]

“ Ground control is finding actual influence of game ground. Although the term
influence map is used in game AI as a loosely defined data structure, the phrase

historically refers to techniques derived from the field of thermodynamics (in
determining heat transfer) and field analysis in general (such as electromagnetic
fields). These same equations can be used in a game setting and can quickly
determine which player has control over which part of the game map.”[3]

“ The pathfinder data may include things like passability, relative to terrain features
(such as hills or cliffs) and to terrain type (land versus sea) or even which player
currently controls the areas of the map you want to traverse.”[3] In this project, the
pathfinder data is built in the A* path finding algorithm so it is not necessary to make
a pathfinder data influence map.

Danger signification is to “keep track of areas where bad things have happened over
a period of time.” Rough battlefield planning is similar to the ground control influence
map. Simple terrain analysis “includes somewhat more mathematical determinations
such as cover (how much a given position is open to attack from any given angle),
visibility (in some ways, the opposite of cover but also considers lighting concerns
and line-of-sight issues), and height factors (many games allow greater missile
weapon range from higher ground and better visibility).”[3] Advanced terrain analysis
includes determinations such as “finding food choke points in a map, or places
where movement or visibility are severely restricted”,[3] “determining the best way to
build a town, defensive walls or other structures”,[3] “determining important map
areas (such as maps with severely limited resources or key strategic positions)”.[3]

2.3 Finite-State Machines

“ FSMs have been used broadly in the video game industry. Since ID Software
released the source code to the Quake and Quake 2 projects, people have noticed
that the movement, defensive, and offensive strategies of the bots were controlled by
a simple FSM. ID is not the only company to take advantage of this either. The latest
games like Warcraft III take advantage of complex FSM systems to control the AI.
Chat dialogs where the user is prompt with choices can also be ran by FSMs.

Aside from controlling NPCs, bots, dialog, and environmental conditions within video
games, FSMs also have a large role outside of the video game industry. For
example, cars, airplanes, and robotics (machinery) have complex FSMs. You could
even say websites have a FSM. Websites that offer menus for you to traverse other
detailed sections of the website act much like a FSM does with transitions between
states.” [4]

“ In the world of game AI programming, no single data structure has been used
more than the finite-state machine (FSM) (unless you count the switch statement as
a data structure, perhaps, but a switch can actually be used as a simple form of state
machine). This simple yet powerful organizational tool helps the programmer to
break the initial problems into more manageable subproblems and allows

programmers to implement intelligence systems with flexibility and scalability. Even if
you haven’t used a formal FSM class or functionality, you’ve probably used the
principles that this structure follows because it is a basic way of thinking about
software problems in general. Thus, even if your game uses a more exotic AI
technique for some element of decision making, you will probably use some form of
state system in your game.” [3]

3. The Fundamentals of A* Pathfinding Algorithm

Patrick Lester has written a good A* pathfinding tutorial for beginners. In his article,
there is a representative example about how to find the best way by using A* path
finding algorithm.[5] This example is shown in figure 3.1, the grey square is the start
position and the black one is the destination. There is a wall which is represented by
three yellow squares between the start point and the end point. Now, if there is an AI
controlled tank in the grey square and it wants to move to the black square, A*
should do several things to make the tank find the best way.

figure 3.1 (picture from Patrick Lester’s A* pathfinding for beginners [5])

The first step is to divide the search area into a square grid (of course it can be
other shapes like triangles or hexagons). All the squares are set to walkable or
unwalkable and the center points of the squares are called “ nodes”. Actually, a
single node could be set in anywhere within one square and in the pathfinding
process, after finding out the path, game units move from one node to another node
until they reach the final node which is the nearest one to the destination.

There are several essential elements in the pathfinding algorithm: an open list and a
closed list; F value; G value and H value. The program will check those squares and
put them into open list or closed list to memorize which squares have already been
checked and which ones need to be checked out. F, G and H are values used to
calculate the cost of getting somewhere.

The search will start at the grey square. So, the grey square is the first one added

into the open list. Then the program will look at all the eight squares adjacent to the
grey one. The unwalkable squares like the wall will be ignored and others will be put
into the open list too. After that, the start square is saved as a “parent square” of the
adjacent squares. This step is very important because after the search is done, the
path will be saved by finding out every parent square from the end point. Then the
grey square will be deleted from the open list and added on the closed list. See
figure 3.2, the squares in the open list will be outlined and each of them has a
pointer that points to its parent. The grey square is now in the closed list.

figure 3.2 (picture from Patrick Lester’s A* pathfinding for beginners [5])

The next step is to calculate the F value for all the adjacent squares by using the
following equation:
 F = G + H
G is the movement cost from the start point to a given square on the map following
the path generated by the A* algorithm. The H value is usually referred to as the
heuristic because it is a guess. The way of calculating the H value greatly affects the
pathfinding result. “The success of A-Star rests heavily on the heuristic function
chosen. For any given problem that we may wish to apply A-Star to, there are good
heuristics and bad heuristics. A good one will allow the algorithm to run quickly and
find the optimal solution. A bad one may just increase the running time. Or it may
be so bad that it misleads the algorithm into returning sub-optimal solutions or not
find solutions at all.”[2]

To calculate the G value, first set the start square’s G value to 0. Then check the
adjacent squares. If it is a vertical or horizontal square, the movement cost is 10. If it
is a diagonal square, the movement cost is 14. This is just the first step and after
this, to figure out a square’s G value, the G value of its parent square should be
picked up and then add 10 or 14 depends on if it is a diagonal square or not.

There are several ways such as the Manhattan method, the Eudidean method and
the Max method to calculate the H value. The Manhattan method is employed in this
project because it is faster than the others although it is slightly inadmissible (which
means it is an overestimate of the remaining distance between the current square
and the target). This method calculates the total number of squares moved vertically
and horizontally to the target square from the start point. All the obstacles will be
ignored. Then multiply the total number by 10 to get the final H value and add the G

value to H to get the F value.(figure 3.3)

figure 3.3 (picture from Patrick Lester’s A* pathfinding for beginners [5])

To continue the search, check all the 8 adjacent squares of the grey one and select
the one which has the lowest F value. With the selected square, first drop it from the
open list and add it on the closed list. Then check the 8 squares around it, ignoring
the obstacles and the squares which are already on the closed list. If the squares are
not on the open list, add them on the open list and set the selected square the
“parent” of the squares. Then calculate the G, H and F value for these squares which
are new added to the open list. If an adjacent square is already on the open list,
check to see if it is a better path to go to this adjacent square from the selected one.
To do this, G value is used to make a comparison. If the game unit uses the selected
square to get to the adjacent one, there will be a new G value. Compare this new G
value with the old one, if the new value is higher, don’t do anything. On the other
hand, if the new value is lower than the old one, the adjacent square’s parent square
should be changed to the selected one because a lower G value means this new
path will cost less than the old path. Meanwhile, the adjacent square’s G and H value
should be recalculated since its parent square has been changed. Thereafter, put
the selected square on the closed list and search the open list to find out the square
with the lowest F value, then repeat the process in this paragraph until the end
square is on the closed list. (figure 3.4)

figure 3.4 (picture from Patrick Lester’s A* pathfinding for beginners [5])

The last step is to figure out the final path. The process should be like this: Start at
the end square (the black square) and move from one square to its parent until
reach the start square. (figure 3.5)

figure 3.5 (picture from Patrick Lester’s A* pathfinding for beginners [5])

4. The Algorithm For The Influence Map

In this project, the influence map is mainly used to collect the ground control data.
“The algorithm for this is simple: First, zero out the entire map. Then, assign each
grid square a value based on its team-specific control (the magnitude represents the
degree of control, the sign differentiates teams; a positive value for player A’s units, a
negative value for player B’s units, with more complex schemes for more than two
players). Then go over the map again, and for each map square, add up the values
of the squares surrounding it, scale by some amount (to prevent value overflow) and
add that to the square’s value. Repeat a few times to disperse the influence out until
you achieve a stable state. Player A controls the squares that have positive values,
and player B controls negatively valued squares. This technique will provide you with
a way of measuring global, as well as local, control.” [3]

5. Different Terrain Types

In this project, A* pathfinding algorithm is expanded by applying some different
terrain types. The status of a square on the map is not only walkable or unwalkable.
Apparently, in the real world, both asphalt roads and grassland are walkable but of
course it is harder to walk on the grass. To simulate this kind of effect, two types of
walkable terrain are made in the game. Figure 4.1 shows these two types of terrain:
The square which colored in light green represents an area with low grass and the
dark green square stands for the land with high grass. As a result, different
movement costs should be assigned to the two squares when A* is calculating. In
this program, the G value of the dark green square is double of the light green
square’s G cost. Accordingly, the tanks will move slower on the dark green squares.

Figure 4.2 shows how to calculate the G value when an AI tank moves from one
square to another square with a different terrain type.

figure 4.1 Two types of terrain

figure4.2 G cost for different terrain

This method could be improved by adding some other kinds of cost to different types
of terrain. In this program, the movement cost only affects the A* pathfinding
algorithm to find the best path. So, A* always tries to find out the best path which
costs the least no matter what kind of terrain it is. Actually, this kind of situation
should only happen in an emergency. In the real world, people usually try to find the
“easiest” way and maybe this way will cost more than the others. For example, if
there are two roads lead to the same place, one of them is shorter but muddy, the
other one is longer but dry. People will usually choose the dry one because they
don’t want to make their shoes dirty. Only in an emergency, the shorter road will be
chosen to save time. So, in the game world, we can add an “emergency cost” to the
A* path finding algorithm. This new E (emergency) value will keep fluctuating
according to the battlefield situation. Now, the equation for calculating the movement
cost should be like this:

F = G + H + E
In the peacetime, the E value of a special terrain should be quite high so the AI
controlled characters won’t like to walk in this area. If there is an emergency, for
example, the base is under attack, the E value will be turned down according to the
danger level, the more dangerous the situation becomes, the lower the E value will
be. At this time, all the AI characters will try to get across a difficult terrain to carry
out a rescue action.

Accordingly, some kinds of “punishment” should be adopted, otherwise the E value

becomes useless because if there isn’t any loss when a tank is moving on a difficult
terrain, and at the same time the path can be shorter by going across this terrain.
Why not just move in this area? In a real battle, the fact is like this: If a group of
soldiers want to save time to get somewhere earlier and thus they decide to cross a
marsh. Probably their battle effectiveness will go down because they will be
demoralized by the terrible environment in the marsh. In the game, the punishment
of getting across a difficult terrain could be decreasing the tank’s life value or
decreasing its fire power, but it is very hard to decide how much punishment should
be applied.

It is hard to decide the degree of the punishment, this is one of the reasons why the
E value is not adopted in this project and the punishment level setting will greatly
affect the game’s balance. A lot of statistic work should be done to decide a proper
punishment for crossing the difficult terrain otherwise the game will be unbalanced.
Another reason for not using the E value in this project is it doesn’t work very well on
the human controlled tanks. Sometimes the human player doesn’t want his game
units to get any punishment even if his base is in danger. For example, if the AI has
sent out all its tanks to attack the player’s base and the player just wants to abandon
this base and move to another place. At this time, since the base is under attack, the
human controlled tanks should think that there is an emergency and they must get
across all the terrible terrains to save time. This is not what the player expects to
see. A way to solve this problem is to let the player make a decision about the
emergency level but it is still not a good method because it will make the game much
more complicated. Players have to set up different emergency levels for different
units (An emergency for the combat units might not be an emergency for the
economic units). If this process is not well designed, the gamer’s immersion level will
be greatly decreased (especially in a RTS game because RTS games always have
very quick rhythm).

6. A Combination of A* And Influence Map

Actually, A* pathfinding algorithm is more suitable for turn-based strategy game
rather than real time strategy game because A* deals with discrete steps, not with
continuous movement. The path is calculated and saved before the game characters
start moving. Furthermore, A* will always find the best way between the start point
and the end point. That means, if the start point and the destination don’t change,
the path will always be the same, so all the game characters will be moving on the
same path and that will look really stupid. In this project, the A* pathfinding function
is executed in every update loop so the game characters should be able to change
their mind to modify the path during their movement. However, only this is not
enough. Some kind of “motivations” must be created for the characters to change
their mind. This work is done by the influence map in this project, it transfers the
battle field information to the game characters and then the characters will make
decisions according to these information.

A grid based map is also essential for making an influence map. The same grid map
which is used in the A* pathfinding function could be employed to make the influence
map. In this project, the influence of each grid square is calculated in the following
way: First a certain game object is selected. Then, set up an influence range (The
influence range should be decided according to the selected game unit’s field of fire.
It will also be affected by each opponent game unit’s characteristic). Thereafter,
make a circle centered at the selected game object’s position and with a radius that
equals to the influence range. Next, calculate the influence for each grid square:
If (distance <= influenceRange)

{
Influence += maxInfluence * (1 - distance / influenceRange);

}
In the above equation, maxInfluence is the maximum influence which is decided by
the selected game unit’s firepower and sometimes by the terrain type (if a tank is
hiding in a forest, the maximum influence of this tank may be stored as zero until its
opponent finds it). The distance value is the value of the distance from any square
center to the circle’s center. Finally, repeat this process for all the game units (notice
that the human controlled game units’ influence value should be positive and the AI
units’ influence should be negative).

To combine the influence map and the A* pathfinding algorithm, the equation of
movement cost calculation should be modified like this:
 F = G + H + Influence
Now the AI tanks will try to evade the human controlled tanks, they will keep
adjusting their paths. For the AI tanks, it will cost more if they try to cross a square
which is occupied by a human controlled tank. So, they will make a detour. They will
also try to move together because that will make the movement cost less. All these
decisions are made in real time.

7. AI Characteristics

Actually, each AI tank in this game has its own influence map. In other words, the
influence map data are not always the same for different AI tanks. Consequently, this
will affect the A* pathfinding algorithm to find out different paths for different tanks
even they start at the same position and go to the same destination. For a single AI
tank, the path it determines just indicates the characteristic it has.

In this project, the AI tanks are divided into three groups. For the tanks in group one,
their influence maps are as same as the original influence map. So, tanks in group
one will try to keep moving together and they will evade the human player’s units.
Group two’s influence map is modified by change all the negative influence value on
the map to zero. As a result, AI tanks in group two will like to move alone. Then,
change all the influence value on the map to zero. That means the AI tanks in group

three will be very dissocial and aggressive. They don’t care much about what their
allied tanks and the opponent are doing. Of course group two and group three are
two extreme situations (extremely dissocial or extremely aggressive). To make it
more realistic, two parameters can be employed in the Tank class. One of them
represents the tank’s aggressive level , the other one represents the tank’s dissocial
level. And for each AI tank, the influence value of each grid square is recalculated
like this:
if (influence > 0) // The current square is occupied (or influenced more) by the player

{ influence = influence – aggrressive; }
else if (influence < 0) // The current square is occupied (or influenced more) by the
AI
 { influence = influence + dissocial; }

figure 7.1 Three different AI characteristics

Furthermore, when an emergency happens, different destinations could be given to
different AI tanks. For example, if the base is under attack. Some AI tanks will just go
back to protect their base and some tanks will go on moving to attack the human
player’s base. That also shows various AI characteristics. Another example is, when
an AI tank encounters a human controlled tank, this AI tank might follow the player’s

tank (change the destination to this human controlled tank’s position) and keep
attacking.

8. The Pipeline Of Decision Making

At the beginning of the game, all the AI tanks will start moving to the human player’s
base. Meanwhile, they keep checking the influence map to make decisions to fix
their paths. They will also keep checking their own life value, their base’s life value
and the influence values around their base. When an AI tank is in motion, if there are
any opponent tanks go into its field of fire, this AI tank will fire at the opponent tank
and try to escape from the battle or follow the opponent to carry on fighting. If the AI
tank is close enough to the human player’s base, it will stop and attack the base. As
soon as the AI tank find out that its own life value is lower that some level or its base
is in danger, it will go back to its base to recover or protect the base. After the AI
tank’s life value is restored or its base is not in danger anymore, it will move to the
enemy’s base again. If the tank’s life value becomes zero, it will be reborn at a
certain place.

figure 8.1 The decision making pipeline

9. Conclusion

In this project, a basic RTS game AI engine is developed. The AI controlled
characters are able to collect information of the terrain and the battlefield to make
decisions. They have lots of steering behaviors such as avoiding obstacles, avoiding
moving enemies, following a leader and joining a group. They can also keep
checking the influence map to know the situation of the battlefield and make a
decision like deciding whether they should carry on the current mission or go back to
protect their base. The combination of the A* pathfinding algorithm and the influence
map provide a flexible method to apply various characteristics to different AI units.

It is easy to add more RTS game elements based on the AI engine in this program.
Currently, there is only one type of unit (combat unit) in the game. Some economic
units could be added to make this game more completed. Actually, The pipeline of
the economic unit’s decision making is almost the same as the combat units’.
Different game units just have different destination like the combat units will move to
the enemy’s base and the economic units will move to the resources (Of course their
life value or firepower will be different too, but those parameters should be set up in
the game object class rather than in the AI engine).

The game graphics is really simple in this program and it can be improved a lot by
building a 3D terrain and some 3D game models (or use better 2D textures to make
a 2D RTS game). The squares on the grid map can be easily reorganized according
to a given 3D terrain model. Thereafter, some kind of height information should be
stored in each square. However, this is not a perfect method to make a real 3D grid
map. There will be some problems to add air forces into the game. To solve this
problem, several layers of grid maps can be laid out vertically.

The pathfinding function in this project works very well but it is not really suitable for
a high resolution grid map. There are too many calculations in the A* pathfinding
algorithm. So, it is better to use the A* pathfinding algorithm as a global pathfinding
algorithm and add a local pathfinding algorithm in the program. By doing this, the
grid map’s resolution could be kept low without any losses of game map details.

The Finite-State machine in this project is not a formal one because It is built in
several functions rather than classes. A formal Finite-State machine usually consists
of three classes: the FSMState class, the FSMMachine class and the FSMAIControl
class. It is better to rewrite the code in the above way.

10. References And Bibliography

References:

1. Anatoly Preygel. Pathfinding:A Comparison of Algorithms.
http://www.cpcug.org/user/scifair/Preygel/Preygel.html#_Toc445443578

2. Benny Tsai. Introduction to the A-Star Algorithm.
http://upe.acm.jhu.edu/websites/Benny_Tsai/Introduction%20to%20AStar.htm

3. Brain Schwab. AI Game Engine Programming. (2004). USA.
ISBN 1-58450-344-0

4. Nathaniel Meyer. Finite State Machine Tutorial.
http://www.generation5.org/content/2003/FSM_Tutorial.asp

5. Patrick Lester. A* Pathfinding for Beginners.
http://www.policyalmanac.org/games/aStarTutorial.htm

Bibliography:

1. Craig Reynolds. Steering Behaviors For Autonomous Characters.
http://www.red3d.com/cwr/steer/

2. Bjon Reese. Finding a Pathfinder.
http://home1.stofanet.dk/breese/aaai99.html

3. James Matthews. An Introduction to Game AI.
http://www.generation5.org/content/2000/app_game.asp

4. James Matthews. A* for the Masses.
http://www.generation5.org/content/2000/astar.asp

5. Stuart James Kelly. Applying Artificial Intelligence, Search Algorithms and Neural
Networks to Games.
http://www.generation5.org/content/2003/KellyMiniPaper.asp

6. Patrick Lester. Heuristics and A* Pathfinding.
http://www.policyalmanac.org/games/heuristics.htm

7. Dave C. Pottinger. Terrain Analysis in Realtime Strategy Games.
http://www.gdconf.com/archives/2000/pottinger.doc

11. Appendices

grid.h

// The grid class is used to create a single square in the Whole
grid-based map
#ifndef __GRID_H__
#define __GRID_H__
#include "GraphicsLib.h"

class grid
{
 public:
 GraphicsLib::Point3 pos;// The grid position
 float step;// The square edge length
 int type;// Terrain type, type 0 represents a grassland, others are
obstacles(sea or mud)
 int f,g,h; // Tree values used in A* path finding algorithm to
calculate the movement cost
 int influence; // This variable is used to store the game units
influece on a certain area (to make an influence map)
 int wb;// walkability, lands with high grass should be harder to go
across
 int whichlist; //There are two lists in the A* algorithm-- Closed
List and Open List. So, this variable shows which list the
//square is on. 0 means this square is not on any lists, 1 means it
is on the open list and 2 means it is on
 //the closed list

// These 3 variables store the " Parent Square" of the current
square. They are also used for A* pathfinding
 GraphicsLib::Point3 parent;
 int parentX, parentY;

 grid();// Constructor
 grid(GraphicsLib::Point3 Pos, float Step);//Constructor
 void setType(int Type);// Set terrain type
 void draw();//Draw function
 void ini();// Initialize the grid
 void setParent(GraphicsLib::Point3 Parent);// Giving the current
square its parent square's information
 void drawInfluence(); // This function is for testing the influence
map. Different influence levels are drawn

 // in different colors
};

#endif

grid.cpp

// The grid class is used to create a single cell in the Whole grid-
based map
#include "grid.h"
#include <math.h>
using namespace GraphicsLib;
using namespace std;

//Constructor
grid::grid(GraphicsLib::Point3 Pos, float Step)
{
 pos=Pos;
 step=Step;
}

//Constructor
grid::grid()
{
 pos.set(0,0,0);
 step = 4.0;
 type =0;
 f=100000;
 g=0;
 h=0;
 influence=0;
 parent=pos;
 parentX=0;
 parentY=0;
 whichlist=0;
 wb=1;
}

//Set the grid type to create different terrain types
// Type 0 : grassland (there are two types of grassland, with low
grass and high grass)
// Type 1 : mud

// Type 2 : sea
void grid::setType(int Type)
{
 type=Type;

 if (type == 0);
 {
 float random = RandomPosNum(10.0);
 // If it is a grassland with high grass, set the walkability to
2, else set the walkability to 1
 if(random > 8.0)
 {wb = 2;}// If the walkability equals two, the speed of the tank
in this area should be slown down by 50%

 else
 {wb = 1;}
 }
}

// Draw the game units' influence in this area
// Different colors represent different danger level
// Green colored areas are safe, red colored areas are dangerous,
white colored areas are extremely dangerous
// Blue means nothing is happening in this area
// This function is just used for testing. Press "i" when game is
running to enter the influence map, "I" to exit
void grid::drawInfluence()
{
 if(influence > 0)
 {
 if(influence/400.0<=1.0)

{
 glPushMatrix();

 glColor3f(influence/400.0,0.0,0.0);
 pos.Translate();
 glutSolidSphere(0.3,6,3);

 glPopMatrix();}

 else
{
 glPushMatrix();

 glColor3f(influence/90.0, influence/200.0, influence/200.0);
 pos.Translate();
 glutSolidSphere(0.3, 6, 3);

 glPopMatrix();
}

 }

 else if (influence == 0)
 {
 glEnable(GL_LIGHTING);
 glPushMatrix();
 glColor3f(0.5,0.5,0.7);
 pos.Translate();
 glutSolidCube(0.6);
 glPopMatrix();
 glDisable(GL_LIGHTING);
 }

 else
 {
 glPushMatrix();
 glColor3f(0.0,abs(influence)/90.0,0.0);

pos.Translate();
glutSolidSphere(0.3,6,3);

 glPopMatrix();
 }
}

//Draw the grid according to its type
void grid::draw()
{

 // Get the four vetices of a square
 Point3 q0, q1, q2, q3;

 q0.set(pos.x-step/2, pos.y-step/2, pos.z);
 q1.set(pos.x+step/2, pos.y-step/2, pos.z);
 q2.set(pos.x+step/2, pos.y+step/2, pos.z);
 q3.set(pos.x-step/2, pos.y+step/2, pos.z);
 // These 10 points are used to draw some grass on the grassland
 Point3 grass[10];
 grass[0].set(q0.x+step/4, q0.y+step/4, 0.01);
 grass[1].set(q0.x+step/4, q0.y+step/4+0.3, 0.01);
 grass[2].set(q0.x+3*step/4, q0.y+step/4, 0.01);
 grass[3].set(q0.x+3*step/4, q0.y+step/4+0.3, 0.01);
 grass[4].set(q0.x+step/4, q0.y+3*step/4, 0.01);
 grass[5].set(q0.x+step/4, q0.y+3*step/4+0.3, 0.01);
 grass[6].set(q0.x+3*step/4, q0.y+3*step/4, 0.01);

 grass[7].set(q0.x+3*step/4, q0.y+3*step/4+0.3, 0.01);
 grass[8].set(q0.x+2*step/4, q0.y+2*step/4, 0.01);
 grass[9].set(q0.x+2*step/4, q0.y+2*step/4+0.3, 0.01);

 if(type==0)
 {

 glColor3f(0.3,0.3f,0.4f);
 //Draw grass

 glBegin(GL_LINES);
 grass[0].Vertex();

grass[1].Vertex();
grass[2].Vertex();
grass[3].Vertex();
grass[4].Vertex();
grass[5].Vertex();
grass[6].Vertex();
grass[7].Vertex();
grass[8].Vertex();
grass[9].Vertex();

 glEnd();
 if(wb == 1)
 {glColor3f(0.3,0.7,0.4);} // Light green --- low grass

 else
 {glColor3f(0.2, 0.6, 0.3);}// Dark green --- high grass

 }

 else if(type == 3) // Type 3, this type of grid is used as
an icon

 {
 glColor3f(0.9,0.9,1.0); // White

 }

 else if(type == 1)// Type 1, mud
 {
 glColor3f(0.9, 0.6, 0.4); // Brown
 }

 else if(type == 2)// Type 2, sea
 {
 glColor3f(0.1,0.5,0.8); // Blue
 }

 // Now draw a square
 glBegin(GL_QUADS);
 q0.Vertex();
 q1.Vertex();
 q2.Vertex();
 q3.Vertex();
 glEnd();

 glPointSize(4.0);
 glBegin(GL_POINTS);
 pos.Vertex();
 glEnd();

}

//Initialize the grid
void grid::ini()
{
 f=100000;
 g=0;
 h=0;
 parent=pos;
 whichlist=0;
}

// Get the parent square's information. This function is used for A*
pathfinding algorithm
void grid::setParent(GraphicsLib::Point3 Parent)
{
 parent = Parent;
}

Tanks.h

// The tank class is used to create all the game units - players
controlled tanks and AI controlled tanks

#ifndef __TANKS_H__
#define __TANKS_H__
#include "Point3.h"
#include "Vector.h"
#include "grid.h"

class Tanks
{
 public:

 GraphicsLib::Point3 pos; // The tank current position in the
space
 GraphicsLib::Point3 oldpos; // The tank previous position
 GraphicsLib::Vector direction;// Velocity direction

GraphicsLib::Point3 aimPos;// The aim position where the tank
is moving to

GraphicsLib::Vector dirRandom;// a random direction
GraphicsLib::Point3 dir; // for moveTo() function
GraphicsLib::Point3 bulletPos, bulletAim;// Bullet position

and bullet target
GraphicsLib::Vector BulletDir;// Bullet velocity direction

float rotateAngle;// The angle used to rotate the tank
 int type; //Type 0 is hunman player's tank, type 1 is AI
controlled tank, type 2&3 are flags

int Startx, Starty, Endx, Endy; //
 float speed, newSpeed; // Tank speed

int beShot; // If the tank is shot
 int timeCount, timeCountRandom, bulletTimeCount; //Variables
used for A* pathfinding

int trigger; // When trigger=1, tank shoots
int bulletLife; // Bullet life
int selected; // If the tank is selected by the player or not
float life;// Tank life

Tanks(int Type);// Constructor
void Draw(void); // Draw function

 void move(GraphicsLib::Vector Direction); // Just move the
tank in a strait line

void moveTo(GraphicsLib::Point3 Aim); // Tank moves to some
point

void update(); // Update function
void moveRandomly(int x1, int x2, int y1, int y2); // Tank

moves randomly, this function is just for testing
void shoot(GraphicsLib::Point3 BulletAim); // Shoot at some

point
void checkSpeed(grid cell); // Tank speed is affected by

different terrain types

void initBullet(); // Init the bullet

};

#endif

Tanks.cpp

// The tank class is used to create all the game units - players'
tanks and AI controlled tanks

#include "Tanks.h"
#include <math.h>
#include <GL/gl.h>
#include <GL/glut.h>
#include "GraphicsLib.h"
using namespace GraphicsLib;
using namespace std;

// Constructor
Tanks::Tanks(int Type)
{
 type=Type; // Type 0 is hunman player's tank, type 1 is AI
controlled tank, type 2&3 are flags

 if(type == 0)
 {pos.set(4,4,0);}

 else
 {pos.set(76, 56, 0);}
 beShot = 0;
 aimPos = pos;
 bulletAim = pos;
 timeCount = 0;
 timeCountRandom = 0;
 dirRandom.set(RandomNum(1.0), RandomNum(1.0), 0.0);

 // A random number is used when set up the tank's speed. By doing
this, we can simulate an "old tank" effect
 // because old tanks run a bit more slowly
 if(type == 0)
 {speed = RandomPosNum(2.0)+2.0;}

 else

 {speed = RandomPosNum(2.0)+2.0;} // If we improve the AI tank's
speed, the game will be more difficult

 newSpeed = speed;
 trigger = 0;
 bulletLife = 30;
 rotateAngle=0.0;
 BulletDir.set (0,0,0);
 selected = 0;

 if(type == 0 || type == 1)
 {life= 100.0;}

 else
 {life = 1000.0;} // This is the flag(base)'s life value, so it
is larger
}

//Draw function, draw the tank and the bullet
void Tanks::Draw(void)
{

 Point3 a, b, c, d, e, f, g, h,i,j,k;
 a.set(0.9, 0.0, 0.4);
 b.set(-0.8, 0.45, 0.4);
 c.set(-0.8, -0.45,0.4);
 d.set(-1.0,-0.55, 0.4);
 e.set(-1.0, 0.55, 0.4);
 f.set(0.4, 0.55, 0.4);
 g.set(0.4, -0.55, 0.4);
 h.set(0.0, 0.0, 0.4);
 i.set(-0.5, 1.0, 0.4);
 j.set(1.5, 1.0, 0.4);

 if(type==0 || type ==1)
 { k.set(-0.5 + 2.0*life/100.0, 1.0, 0.4);}

 else
 {
 k.set(-0.5 + 2.0*life/1000.0, 1.0, 1.6);
 i.set(-0.5, 1.0, 1.6);
 j.set(1.5, 1.0, 1.6);
 }
// First draw the life bar

 glPushMatrix();
 pos.Translate();
 glLineWidth(4.0);

 if(life >1.0)
 {
 glColor3f(0.0,1.0,0.0);
 glBegin(GL_LINES);
 i.Vertex();
 k.Vertex();
 glEnd();
 }

 glColor3f(1.0,0.0,0.0);

 glBegin(GL_LINES);
 i.Vertex();
 j.Vertex();
 glEnd();

 glLineWidth(2.0);
glPopMatrix();

// Then draw the tanks, AI tanks and player's tanks are drawn in
different color.
if (type == 0)
{
 glPushMatrix();

 // After a tank is selected by the player, its color will change
 if(selected == 0)
 {glColor3f(1.0,1.0,0.3);}
 else
 {glColor3f(0.2,0.2,1.0);}

 pos.Translate();
 glRotatef(rotateAngle, 0.0, 0.0, 1.0);

 glBegin(GL_TRIANGLES);
 a.Vertex();
 b.Vertex();
 c.Vertex();
 glEnd();

 glBegin(GL_LINE_LOOP);
 d.Vertex();
 e.Vertex();
 f.Vertex();
 g.Vertex();
 glEnd();

 glBegin(GL_POINTS);
 h.Vertex();
 glEnd();

 if(selected == 1)
 {
 glColor3f(1.0,0.2,0.9);
 glLineWidth(20.0);

 glBegin(GL_LINE_LOOP);
 d.Vertex();
 e.Vertex();
 f.Vertex();
 g.Vertex();
 glEnd();

 glLineWidth(2.0);
 }

 glPopMatrix();

}

else if(type == 1)
{
 glPushMatrix();
 glColor3f(0.5,0.0,0.0);
 pos.Translate();
 glRotatef(rotateAngle, 0.0, 0.0, 1.0);

 glBegin(GL_TRIANGLES);
 a.Vertex();
 b.Vertex();
 c.Vertex();
 glEnd();

 glBegin(GL_LINE_LOOP);

 d.Vertex();
 e.Vertex();
 f.Vertex();
 g.Vertex();
 glEnd();

 glBegin(GL_POINTS);
 h.Vertex();
 glEnd();

 glPopMatrix();
}

else if(type == 2)
{
 glPushMatrix();
 glColor3f(1.5,0.0,0.0);
 pos.Translate();
 glutSolidSphere(1.0, 6,3);
 glPopMatrix();
}

else
{
 glPushMatrix();
 glColor3f(0.0,1.0,1.0);
 pos.Translate();
 glutSolidSphere(1.0, 6, 3);
 glPopMatrix();
}

// Draw the sparks when a tank is shot by the enemy
if(beShot == 1)
{
 Point3 sparkPos;

 for(int i=0; i<9; i++)
 {
 sparkPos.set(pos.x+RandomNum(1.0), pos.y+RandomNum(1.0),
pos.z+RandomPosNum(1.0));
 glPushMatrix();
 glColor3f(1.0,RandomPosNum(1.0),RandomPosNum(0.3));

sparkPos.Translate();
glutWireSphere(RandomPosNum(1.0),9,2);

 glPopMatrix();
 }
}

// Draw the bullet
if(trigger == 1)
{
 bulletPos.z = 0.4;
 Point3 B(0.0,0.0,0.0);
 Vector bulletDir = BulletDir;
 bulletDir.normalize();
 Point3 C = B + bulletDir;
 glPushMatrix();
 bulletPos.Translate();
 if(type == 0)
 {

 glColor3f(1.0,1.0,0.0);
 glLineWidth(4.0);

}
else if(type == 1)
{
 glColor3f(0.6, 0.1, 0.1);

 glLineWidth(4.0);
}

 else
{

 glColor3f(0.9, 0.9, 0.9);
 glLineWidth(8.0);

}

glBegin(GL_LINES);
 B.Vertex();

 C.Vertex();
glEnd();

 glLineWidth(2.0);
 glPopMatrix();

 }
}

// Move in the given direction
void Tanks::move(GraphicsLib::Vector Direction)
{

 Direction.normalize();
 direction = 0.02*speed*Direction;
 pos += direction;
}

// Move to the given position
void Tanks::moveTo(GraphicsLib::Point3 Aim)
{
 GraphicsLib::Vector D;
 GraphicsLib::Vector iD(1.0,0.0,0.0);
 D = Aim - pos;
 D.normalize();

 if(Aim.y< pos.y)
 {rotateAngle = -1*(180.0/3.141593)* acos(D.dot(iD));}

 else
 {rotateAngle = (180.0/3.141593)* acos(D.dot(iD));}

 D = 0.04*newSpeed*D;
 pos += D;
}

// Move in random direction, this function is just for testing
void Tanks::moveRandomly(int x1, int x2, int y1, int y2)
{
 dirRandom.normalize();

 if(x1<pos.x && pos.x<x2 && y1< pos.y && pos.y<y2)
 {
 pos += 0.04*speed*dirRandom;
 timeCountRandom++;
 }

 else
 {
 pos.x = 8;
 pos.y = 8;
 dirRandom = -1.0*dirRandom;
 pos+= 0.01*newSpeed*dirRandom;
 timeCountRandom = (int)RandomPosNum(90);
 }

 if (timeCountRandom == 100)

 {
 timeCountRandom = 0;
 dirRandom.set(RandomNum(1.0), RandomNum(1.0), 0.0);
 }
}

// Update function
void Tanks::update()
{
 // If life is lower than 2, this tank will die
 if(life < 2.0)
 {life = 0.0;}
 //Life will decrease when the tank is shot
 if (beShot == 1)
 {
 if(life>=0.0)
 {life--;}
 timeCount++;

 if(timeCount == 10)
 {
 beShot = 0;
 timeCount= 0;
 }
 }

// Update the bullet
 if (trigger == 1)
 {
 bulletTimeCount++;

 if(bulletTimeCount == 1 || bulletTimeCount == 0)
 {
 Vector mistake (RandomPosNum(0.3), RandomPosNum(0.3), 0.0);
 bulletAim.z = 0.4;
 Vector bulletDir = bulletAim - bulletPos;
 bulletDir = bulletDir + mistake;
 bulletDir. normalize();
 BulletDir = bulletDir;
 bulletPos = pos;
 }

 else

 {
 if(bulletTimeCount == bulletLife)
 {
 bulletTimeCount = 0;
 bulletPos = pos;
 BulletDir.set(0,0,0);
 trigger = 0;
 }

 else
 {
 bulletPos += 0.5 * BulletDir;
 }

 }

 }
}

//Initialize the bullet
void Tanks::initBullet()
{
 bulletTimeCount = 0;
 bulletPos = pos;
 bulletPos.z = 0.4;
 BulletDir.set(0,0,0);
 trigger = 0;
}

//Shoot function
void Tanks::shoot(GraphicsLib::Point3 BulletAim)
{

 if(trigger == 0)
 {
 bulletAim = BulletAim;
 trigger = 1;
 }

}

// Speed=speed/cell.wb cell is a square of the grid based map, wb
is a variable that shows this cell's walkability
void Tanks::checkSpeed(grid cell)

{
 // Firt do collision detection between a tank and a square, if the
tank is in the square, the tank's speed will be modified
 // according to the Square's walkability
 float up = cell.pos.y + cell.step/2.0;
 float down = cell.pos.y - cell.step/2.0;
 float left = cell.pos.x - cell.step/2.0;
 float right = cell.pos.x + cell.step/2.0;
 Vector D = cell.pos - pos;

 if(cell.type == 0 && cell.wb > 1 && D.length() < cell.step/2.0)
 {newSpeed = speed/cell.wb;}

 if(cell.type == 0 && cell.wb==1 && up>pos.y && down<=pos.y &&
left<=pos.x && right > pos.x)
 {newSpeed = speed / cell.wb;}
}

main.cpp

#include <math.h>
#include <iostream>
#include <vector>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include "grid.h"
#include "GraphicsLib.h"
#include "Tanks.h"
using namespace std;
using namespace GraphicsLib;
// Map height and map width. Actually, H and W are the number of
squares in X direction and Y direction
#define H 15
#define W 20
// AI controlled tank number and human cotrolled tank number, please
keep these two numbers lager than 6
// because there are some test functions in the code which uses tank
number 5
#define tankNum 18
#define playerNum 18
// These numbers show that in which square the two flags are and in
which square the tanks will be reborn after they die
#define flag1x 1

#define flag2x 18
#define flag1y 1
#define flag2y 13
#define reborn1x 18
#define reborn1y 1
#define reborn2x 1
#define reborn2y 13
// width of the window
int WIDTH = 1200;
// height of the window
int HEIGHT =900 ;
// The global camera
Camera Cam;
// the values to spin the main window by in x y and z
int spinxface = 0 ;
int spinyface = 0 ;
int spinzface = 0 ;
// The values for mouse function
float
origx,origy,Origx,Origy,finx,finy,leftKeyDown=0,origz,RotateXY,Rotate
XZ=0, camMoveX, camMoveY=0;
// Draw the mouse-dragged square or not
bool drawSquare = false;
// Draw the influence map or not
bool drawInfluence = false;
// After A* pathfinding algorithm determines a path, draw the path or
not
bool DrawPath = false;
int Rotate;
// The poision where the mouse icon is
Point3 mouseTrack;
// Four vertices of the mouse-dragged square
Point3 a, b, c, d;

int Endx=3, Endy=3; // The end square's X number and Y number
int Startx=2, Starty=2; // The start square's X number and Y number
float influenceRadius = 0.0; // A tank's influence range

Tanks obj(0);// This is a game object used in A* pathfinding
algorithm to find out a path for every tank in the game
Tanks flag1(2);// The Player's flag
Tanks flag2(3);// AI's flag
Tanks **player;// Player's tanks

Tanks **tank;// AI controlled tanks

//Vector D(1,0,0);

grid aim;// An icon used to highlight the hunman cotrolled tanks'
destination
grid Map[W][H];// Two dementional array for creating the game map

//Vector g(1,1,0);
Point3 AimPos; // using this point as the next aim for astar path
finding
bool simulation = false;// Start game or stop game

Point3 eye, look;

//Create the game map by using squares to form a grid-based map
void CreateMap()
{
int x, y=0;
// Create grassland firt
for(y=0; y<H; y++)
 {
 for(x=0; x< W; x++)
 {
 Map[x][y].pos.x=x*Map[x][y].step;
 Map[x][y].pos.y=y*Map[x][y].step;
 Map[x][y].parentX=x;
 Map[x][y].parentY=y;
 Map[x][y].setType(0);
 }
 }
// Randomly generate some obstacles(sea and mud) on the map
for(int c= 0; c < H*W/(RandomPosNum(15)+2); c++)
 {
 int a = (int)RandomPosNum(W)-1;
 int b = (int)RandomPosNum(H)-1;
 Map[a][b].setType(2);
 }

for(int c= 0; c < H*W/(RandomPosNum(15)+2); c++)
 {
 int a = (int)RandomPosNum(W)-1;

 int b = (int)RandomPosNum(H)-1;

 if(Map[a][b].type!=2)
 {
 Map[a][b].setType(1);
 }
 }
// Set up all the tanks
player = new Tanks*[playerNum];

for(int i=0; i<playerNum; i++)
 {
 player[i] = new Tanks(0);
 player[i]->pos = Map[flag1x][flag1y].pos;
 }

tank = new Tanks*[tankNum];

for(int i=0; i< tankNum; i++)
 {
 tank[i] = new Tanks(1);
 tank[i]->pos=Map[flag2x][flag2y].pos;
 }

// Set up other game objects
 Map[flag1x][flag1y].setType(0);// The flag shouldn't be built on an
unwalkable square so set this square to type 0
 Map[flag2x][flag2y].setType(0);

 aim.pos= Map[7][7].pos;
 aim.step = 1.0;
 aim.pos.z+=0.001;
 aim.setType(3);

 obj.pos= Map[4][3].pos;
 flag1.pos = Map[flag1x][flag1y].pos;
 flag2.pos = Map[flag2x][flag2y].pos;

// The tanks shouldn't be reborn at an unwalkable place so set type 0
 Map[reborn1x][reborn1y].setType(0);
 Map[reborn2x][reborn2y].setType(0);
}

// Initialize the game map

void initMap()
{
 for(int i=0; i<W;i++)
 {
 for(int j=0; j< H; j++)
 {
 Map[i][j].ini();
 Map[i][j].parentX=i;
 Map[i][j].parentY=j;
 }
 }
}

// CheckSquare function is a part of A* pathfinding algorithm.
// This function is used to check the 8 adjacent squares of a
selected square and calculate the movement cost
void checkSquare(int x, int y, int ex, int ey)
{
 // When the selected square is at the edge of the map
 if(x==0 || x== W-1 || y==0 || y==H-1)
 {
 for(int i=-1;i<2;i++)
 {
 for (int j=-1;j<2;j++)
 {
// Make sure the program doesn't check the place out of the game map(
which means it is checking a square doesn't exist)

 if(x+i>=0 && y+j>=0 && x+i<=W-1 && y+j<= H-1)
 {
 if(i==0 && j==0)
 {
 Map[x+i][y+j].whichlist=2;// Add the selected
square to the closed list

 }

 else if((Map[x+i][y+j].whichlist==0|| Map[x+i][y+j].
whichlist ==1) && Map[x+i][y+j].type==0)

 {
 // Ignore the obstacles

 if ((i==-1 && j==1 && Map[x][y+1].type!=0) || (i==-1
&& j==1 && Map[x-1][y].type!=0))

 {}
 else if ((i==1 && j==1 && Map[x][y+1].type!=0) ||

(i==1 && j==1 && Map[x+1][y].type!=0))
 {}
 else if ((i==-1 && j==-1 && Map[x-1][y].type!=0)

|| (i==-1 && j==-1 && Map[x][y-1].type!=0))
 {}
 else if ((i==1 && j==-1 && Map[x+1][y].type!=0)

|| (i==1 && j==-1 && Map[x][y-1].type!=0))
 {}
 else
 {
 // If the square being checked is not on the open

list, add it to the open list and make the selected
 // square the "parent square" of the current

square. Then calculate the current square's H value by
 // using the Manhatton method

 if(Map[x+i][y+j].whichlist==0)
 {

 Map[x+i][y+j].whichlist=1;
 Map[x+i][y+j].parentX=x;

 Map[x+i][y+j].parentY=y;
 if(x+i < ex)

 {
 for(int m = x+i+1; m<ex+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[m-1][y+j].

wb+5*Map[m][y+j].wb;}
 }
 else
 {
 for(int m = ex+1; m<x+i+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[m-1][y+j].

wb+5*Map[m][y+j].wb;}
 }
 if(y+j < ey)

 {
 for(int m = y+j+1; m<ey+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[x+i][m-1].

wb+5*Map[x+i][m].wb;}
 }
 else
 {
 for(int m = ey+1; m<y+j+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[x+i][m-1].

wb+5*Map[x+i][m].wb;}
 }

 // Calculate the G value and F value
// Here, the tanks influence are added to calculate

the F cost
// By modifying the influence value, we can give the

AI tanks different characteristics
 if(abs(i*j)==1)
 {
 Map[x+i][y+j].g=Map[x][y].g+7*Map[x][y].
wb+7*Map[x+i][x+j].wb;
 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i][y+j].
h+Map[x+i][y+j].influence;

 }
 else
 {
 Map[x+i][y+j].g=Map[x][y].g+5*Map[x][y].
wb+5*Map[x+i][x+j].wb;

 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i]
[y+j].h+Map[x+i][y+j].influence;
 }

 }
 // If the square being checked is already on the open
list, check to see if it is a better path

 // to get to the current square from the selected
square. This process is done by comparing

 // the old G value and the new G value. If the new G
value is higher, don't do anything, is it is lower,

 // recalculate the current square's movement cost and
reset its parent square to the selected one.

 else
 {

 int newG;
 if(abs(i*j)==1)

 {
 newG=Map[x][y].g+7*Map[x][y].wb+7*Map[x+i]
[x+j].wb;

 if(newG < Map[x+i][y+j].g)
 {
 Map[x+i][y+j].g= newG;
 Map[x+i][y+j].parentX=x;

 Map[x+i][y+j].parentY=y;
 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i]
[y+j].h+Map[x+i][y+j].influence;

 }
 }

 else
 {
 newG=Map[x][y].g+5*Map[x][y].wb+5*Map[x+i]
[x+j].wb;

 if(newG < Map[x+i][y+j].g)
 {
 Map[x+i][y+j].g= newG;
 Map[x+i][y+j].parentX=x;

 Map[x+i][y+j].parentY=y;
 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i]
[y+j].h+Map[x+i][y+j].influence;

 }
 }

 }
 }
 }
 }
 }
 }
 }

// When the selected square is not at the edge of the map
else
{
 for(int i=-1;i<2;i++)
 {
 for (int j=-1;j<2;j++)
 {
 if(i==0 && j==0)
 {
 Map[x+i][y+j].whichlist=2;
 }

 else if((Map[x+i][y+j].whichlist==0|| Map[x+i][y+j].
whichlist ==1) && Map[x+i][y+j].type==0)

{
 if ((i==-1 && j==1 && Map[x][y+1].type!=0) || (i==-1
&& j==1 && Map[x-1][y].type!=0))

 {}
 else if ((i==1 && j==1 && Map[x][y+1].type!=0) ||

(i==1 && j==1 && Map[x+1][y].type!=0))
 {}
 else if ((i==-1 && j==-1 && Map[x-1][y].type!=0)

|| (i==-1 && j==-1 && Map[x][y-1].type!=0))

 {}
 else if ((i==1 && j==-1 && Map[x+1][y].type!=0)

|| (i==1 && j==-1 && Map[x][y-1].type!=0))
 {}
 else
 {

 if(Map[x+i][y+j].whichlist==0)
 {

 Map[x+i][y+j].whichlist=1;
 Map[x+i][y+j].parentX=x;

 Map[x+i][y+j].parentY=y;

 if(x+i < ex)
 {

 for(int m = x+i+1; m<ex+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[m-1][y+j].

wb+5*Map[m][y+j].wb;}
 }
 else
 {
 for(int m = ex+1; m<x+i+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[m-1][y+j].

wb+5*Map[m][y+j].wb;}
 }
 if(y+j < ey)

 {
 for(int m = y+j+1; m<ey+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[x+i][m-1].

wb+5*Map[x+i][m].wb;}
 }
 else
 {
 for(int m = ey+1; m<y+j+1; m++)
 {Map[x+i][y+j].h=Map[x+i][y+j].h+5*Map[x+i][m-1].

wb+5*Map[x+i][m].wb;}
 }

 if(abs(i*j)==1)
 {
 Map[x+i][y+j].g=Map[x][y].g+7*Map[x][y].
wb+7*Map[x+i][x+j].wb;
 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i][y+j].
h+Map[x+i][y+j].influence;

 }

 else
 {
 Map[x+i][y+j].g=Map[x][y].g+5*Map[x][y].
wb+5*Map[x+i][x+j].wb;

 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i]
[y+j].h+Map[x+i][y+j].influence;
 }

 }
 else
 {

 int newG;
if(abs(i*j)==1)

 {
 newG=Map[x][y].g+7*Map[x][y].wb+7*Map[x+i]
[x+j].wb;

 if(newG < Map[x+i][y+j].g)
 {
 Map[x+i][y+j].g= newG;
 Map[x+i][y+j].parentX=x;

 Map[x+i][y+j].parentY=y;
 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i]
[y+j].h+Map[x+i][y+j].influence;

 }
 }

 else
 {
 newG=Map[x][y].g+5*Map[x][y].wb+5*Map[x+i][x+j].
wb;

 if(newG < Map[x+i][y+j].g)
 {
 Map[x+i][y+j].g= newG;
 Map[x+i][y+j].parentX=x;

 Map[x+i][y+j].parentY=y;
 Map[x+i][y+j].f=Map[x+i][y+j].g+Map[x+i]
[y+j].h+Map[x+i][y+j].influence;

 }
 }

 }
 }
 }
 }
 }
 }

 }

// A* pathfinding algorithm
void astar(int startx, int starty, int endx, int endy)
{
 int sx=startx, sy=starty, ex=endx, ey=endy;// Get the start position
and the end position
 initMap();// Initialize the map
 // Make sure the start square and the end square are both walkable
 if(Map[startx][starty].type==0 &&Map[endx][endy].type==0)
 {
 for(int h=0; h<W*H; h++)
 {
 int fval1=100000, fval2=0;
 if(Map[ex][ey].whichlist!=2)
 {

 // 1.put start square on the openlist
 Map[sx][sy].whichlist=1;
 // 2.check the adjacent squares
 checkSquare(sx, sy, ex, ey);
 // 3.put start square on closedlist
 Map[sx][sy].whichlist=2;
 // 4. choose the square with the lowest f value from the
adjacent square
 for(int i=0; i<W; i++)
 {
 for (int j=0; j<H; j++)
 {
 if (Map[i][j].whichlist==1 && Map[i][j].
type==0)
 {
 fval2= Map[i][j].f;
 if (fval2<=fval1)
 {
 sx= i;
 sy= j;
 fval1=fval2;
 }

 }
 }

 }
 }

 }
 // If the path doesn't exist, initialise the map
 if (Map[endx][endy].whichlist!=2)
 {
 initMap();
 }

 }
}

// The drawPath function is just for testing the A* pathfinding
// Press '9' to draw the path

void drawPath()
{
 int a=obj.Endx, b=obj.Endy, c= obj.Endx, d= obj.Endy;
 Point3 height(0.0, 0.0, 0.15);
 for(int i=0; i<H*W; i++)
 {
 c= Map[a][b].parentX;
 d= Map[a][b].parentY;
 glPushMatrix();
 height.Translate();
 glColor3f(1.0,1.0,0.0);
 glLineWidth(2.0);
 glBegin(GL_LINES);
 Map[a][b].pos.Vertex();
 Map[c][d].pos.Vertex();
 glEnd();
 glPopMatrix();
 a=c;
 b=d;
 }
}

// Transfer a point position in 3D space to a square position on the
game map
void getEndPoint()
{
// Here, we reverse the start point and the end point because to
determine the final path, we need to go backwards from

// the end point to the start point. So, just reverse them to make it
easier
 for (int i=0; i< W; i++)
 {
 for(int j=0; j<H; j++)
 {

 if(Map[i][j].pos.x-Map[i][j].step/2.0<=aim.pos.x && Map[i]
[j].pos.x+Map[i][j].step/2.0 > aim.pos.x && Map[i][j].pos.y-Map[i]
[j].step/2.0<=aim.pos.y && Map[i][j].pos.y+Map[i][j].step/2.0 >
aim.pos.y)

 {
 obj.Startx= i;
 obj.Starty= j;

 }
 }
 }

 for (int i=0; i< W; i++)
 {
 for(int j=0; j<H; j++)
 {

 if(Map[i][j].pos.x-Map[i][j].step/2.0<=obj.pos.x && Map[i]
[j].pos.x+Map[i][j].step/2.0 > obj.pos.x && Map[i][j].pos.y-Map[i]
[j].step/2.0<=obj.pos.y && Map[i][j].pos.y+Map[i][j].step/2.0 >
obj.pos.y)

 {
 obj.Endx=i;

 obj.Endy=j;
 }

 }
 }

}

// DrawParent function is also used to test the A* pathfinding
algorithm
// In this function, some pointers are drawn to point out a certain
square's parent square
void drawParent()
{
 glPushMatrix();
 Point3 up(0.0, 0.0, 0.1);

 up.Translate();
 Vector direction(0,0,0);
 Point3 end(0,0,0);
 for (int i=0; i< W; i++)
 {
 for (int j=0; j< H; j++)
 {
 if(Map[i][j].whichlist==2 || Map[i][j].whichlist==1)
 {
 direction = Map[Map[i][j].parentX][Map[i][j].parentY].
pos-Map[i][j].pos;
 end =Map[i][j].pos + 0.5*direction;

 glColor3f(1.0,1.0,1.0);
 glBegin(GL_LINES);

 Map[i][j].pos.Vertex();

 end.Vertex();
glEnd();

 glBegin(GL_POINTS);
 Map[i][j].pos.Vertex();
 glEnd();
 }
 }
 }
 glPopMatrix();
}

// This function is used to give the A* a start square position and a
end square position
void path()
{

 AimPos = Map[Map[obj.Endx][obj.Endy].parentX][Map[obj.Endx]
[obj.Endy].parentY].pos;
 obj.dir = AimPos;

}

// Check the terrain type of the area where a tank is moving and
modify the tank's speed according to the terrain type
void checkSpeed()
{

 for (int i = 0; i<W; i++)
 {
 for (int j = 0; j<H; j++)
 {
 for(int t=0; t<tankNum; t++)
 {
 if(tank[t]->life>0.0)
 {
 tank[t]->checkSpeed(Map[i][j]);
 }
 }
 for(int t=0; t<playerNum; t++)
 {
 if(player[t]->life>0.0)
 {
 player[t]->checkSpeed(Map[i][j]);
 }
 }
 }
 }
}

// Find out a target for a tank to shoot at
void findTarget()
{

 for (int i = 0; i< tankNum; i++)
 {
 tank[i]->update();
 if(tank [i] ->trigger == 0)
 {

 Vector Dflag = tank[i]->pos-flag1.pos;
 if(Dflag.length()<10.0)
 {
 tank[i]->shoot(flag1.pos);
 flag1.shoot(tank[i]->pos);
 }
 else
 {
 for(int j=0; j< playerNum; j++)
 {
 Vector D = player[j]->pos - tank[i]->pos;
 if(D.length()<=15.0)

 {
 tank[i]->shoot(player[j]->pos);
 j = playerNum;
 }
 }

 }
 }
 }

for (int i = 0; i< playerNum; i++)
 {
 player[i]->update();
 if(player[i]->trigger == 0)
 {
 Vector Dflag = player[i]->pos-flag2.pos;
 if(Dflag.length()<10.0)
 {
 player[i]->shoot(flag2.pos);
 flag2.shoot(player[i]->pos);
 }
 else
 {
 for(int j=0; j< tankNum; j++)
 {
 Vector D = player[i]->pos - tank[j]->pos;
 if(D.length()<15.5)
 {
 player[i]->shoot(tank[j]->pos);
 j = tankNum;
 }

 }

 }
 }
 }
}

// Do collision detection between tanks and bullets
void checkBulletCollision()
{
 Vector DisToFlag1, DisToFlag2;
 for(int i=0; i<tankNum; i++)

 {
 DisToFlag1 = tank[i]->pos - flag1.bulletPos;
 if(DisToFlag1.length() < 1.0)
 {
 tank[i]->beShot = 1;
 flag1.initBullet();
 }

 if(tank[i]->life >0.0)
 {
 for (int j = 0; j<playerNum; j++)
 {
 Point3 b = player[j]->bulletPos;
 b.z = 0.4;
 Vector D = tank[i]->pos - b;

 if(D.length()< 1.0)
 {
 tank [i] -> beShot = 1;
 player[j]->initBullet();

 }
 }
 }

 else
 {
 delete tank[i];
 tank[i] = new Tanks(1);
 tank[i]->pos = Map[reborn2x][reborn2y].pos;
 tank[i]->life=10.0;
 tank[i]->initBullet();
 }

 if(flag1.life > 0.0)
 {
 Vector Dflag = tank[i]->bulletPos - flag1.pos;
 if(Dflag.length()< 1.5)
 {

 flag1.beShot = 1;
 tank[i]->initBullet();

 }
 }
 else
 {simulation = false;}

 }

 for(int i=0; i<playerNum; i++)
 {
 DisToFlag2 = player[i]->pos - flag2.bulletPos;
 if(DisToFlag2.length() < 1.0)
 {
 player[i]->beShot = 1;
 flag2.initBullet();
 }

 if(flag2.life>0.0)
 {
 Vector Dflag = player[i]->bulletPos - flag2.pos;
 if(Dflag.length()< 1.5)
 {

 flag2.beShot = 1;
 player[i]->initBullet();

 }
 }
 else
 {simulation = false;}
 if(player[i]->life> 0.0)
 {
 for (int j = 0; j<tankNum; j++)
 {
 Point3 b = tank[j]->bulletPos;
 b.z = 0.4;
 Vector D = player[i]->pos - b;
 if(D.length()< 1.0)
 {
 player[i] -> beShot = 1;
 tank[j]->initBullet();

 }
 }
 }
 else
 {
 delete player[i];
 player[i] = new Tanks(0);
 player[i]->initBullet();
 player[i]->life=10.0;
 player[i]->pos = Map[reborn1x][reborn1y].pos;

 }
 }

}

// If an AI cotrolled tank finds out its life is lower than some
level, it would like to ge back to its base and recover
// Tanks' life will increase gradually when they are near their own
base
 void tankRecoverNearBase()
 {
 for(int i=0; i< tankNum; i++)
 {
 Vector D = tank[i]->pos - flag2.pos;
 if(D.length()<10.0 && tank[i]->life< 80.0)
 {
 tank[i]->life+=0.02;
 }
 }

 for(int i=0; i<playerNum; i++)
 {
 Vector D = player[i]->pos - flag1.pos;
 if(D.length() <10.0 && player[i]->life < 80.0)
 {player[i]->life += 0.02;}
 }

 if(flag1.life < 700.0)
 {flag1.life += 0.1;}

 if (flag2.life < 700.0)
 {flag2.life += 0.1;}

 }

 void initInfluenceMap();
 void influenceMap();
 void reverseIM();

// Actually, this function is a Finite-State machine for the tanks
// Here, the tanks will move to their enemy's base and try to destroy
it. The tanks will keep checking the influence map
// to get information of the battle field.

// By modifying the influence map, different characteristics can be
applied to the AI tanks, some of them would like to
// move together with other tanks, some of them will move alone, some
of them will try to avoid a battle and some of
// them will ignore the enemy's influence(go directly into the
enemies)
void Path()
{
 initInfluenceMap();
 checkSpeed();

// Hunman controlled tanks
 for(int i=0; i< playerNum; i++)
 {
 if(player[i]->life> 0.0)
 {
 obj.pos = player[i]->pos;
 if(player[i]->selected == 2)
 {
 getEndPoint();
 player[i]->aimPos = aim.pos;
 }
 else
 {
 aim.pos = player[i]->aimPos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }

 astar(obj.Startx, obj.Starty, obj.Endx, obj.Endy);
 path();

 player[i]->dir = obj.dir;
 // check collisions between tanks
 int collision = 0;
 for(int j = 0; j< playerNum; j++)
 {
 if(j != i)
 {
 Vector playerDis = player[i]->dir - player[j]->pos;
 if(playerDis.length() <0.5)
 {collision = 1;}
 }
 }

 // check distance between unit and aim
 Vector distance = player[i]->aimPos - player[i]->pos;
 if(distance.length() > 2.0 && collision == 0)
 {
 // if no collision and not reach the aim yet, go on moving
 player[i]->moveTo(player[i]->dir);
 }
 }
 }

 influenceMap();

// AI controlled tanks
 for(int i=0; i< tankNum; i++)
 {

 if(i == tankNum/2)
 {
 for(int x=0; x<W; x++)

{
 for (int y= 0; y<H; y++)

 {
 // These AI tanks will ignore other AI tanks influence,
they want to move alone, but they will try to

 // avoid enemies
 if(Map[x][y].influence <20.0)
 {Map[x][y].influence = 0;}
 }
}

 }

/* The next 12 lines of code will affect the drawPath function
because the path drawn is the last AI tank's path.
 The next 12 lines will make the last AI tank a "careless" tank, that
means it won't notice its enemy's influence and
 it won't change its path once it has decided a destination. If you
want to observe how the AI tanks change their
 ideas according to the human player's action, just get rid of the
following 12 lines(line 818 - 829).*/
 if(i == 4*tankNum/5)
 {

 for(int x=0; x<W; x++)
 {

 for (int y= 0; y<H; y++)
 {

 // these tanks will ignore their enemies influence
 if(Map[x][y].influence >0.0)

 {Map[x][y].influence = 0;}
 }
 }

 }

 // AI tanks make decisions about where they should go and what they
should do,
 // to attack the enemy's base or to protect their own base
 // wether they should retreat or not
 if(tank[i]->life >0.0)
 {
 obj.pos = tank[i]->pos;
 if(Map[flag2x][flag2y].influence > 0 && flag2.life<100.0)
 {
 if(Map[flag2x][flag2y].influence > 200)
 {
 aim.pos = Map[flag2x][flag2y].pos;
 tank[i]->aimPos = Map[flag2x][flag2y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 else
 {
 if (i > tankNum/3)
 {
 aim.pos = Map[flag2x][flag2y].pos;
 tank[i]->aimPos = Map[flag2x][flag2y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 else
 {
 aim.pos = Map[flag1x][flag1y].pos;
 tank[i]->aimPos = Map[flag1x][flag1y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 }

 }

 else if(i >= 1000.0/flag2.life-1.0 && tank[i]->life >= 70.0)
 {
 if(i >=2 && i <=5)

 {
 // This is a test of making some aggressive AI tanks

(AI tank number 2 to AI tank number 5)
 // they will follow a human controlled tank(player tank

number 3) and keep attacking it
 aim.pos = player[3]->pos;
 tank[i]->aimPos = player[3]->pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);

 }
 else

 {
 aim.pos = Map[flag1x][flag1y].pos;

 tank[i]->aimPos = Map[flag1x][flag1y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 }
 else if(i >=1000.0/flag2.life-1.0 && tank[i]->life <= 20.0)
 {
 aim.pos = Map[flag2x][flag2y].pos;
 tank[i]->aimPos = Map[flag2x][flag2y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 else if (i<= 1000.0/flag2.life-1.0)
 {
 aim.pos = Map[flag2x][flag2y].pos;
 tank[i]->aimPos = Map[flag2x][flag2y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }

 else
 {
 Vector D = tank[i]->pos - flag2.pos;
 if(D.length() < 10.0)
 {
 aim.pos = Map[flag2x][flag2y].pos;

 tank[i]->aimPos = Map[flag2x][flag2y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 else
 {
 if(i >=2 && i <=5)

 {
 // This is a test of making some aggressive AI tanks

(AI tank number 2 to AI tank number 5)
 // they will follow a human controlled tank(player tank

number 3) and keep attacking it
 aim.pos = player[3]->pos;
 tank[i]->aimPos = player[3]->pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);

 }
else
{

 aim.pos = Map[flag1x][flag1y].pos;
 tank[i]->aimPos = Map[flag1x][flag1y].pos;
 getEndPoint();
 aim.pos.set(Origx, Origy, 0.1);
 }
 }
 }

 }

 astar(obj.Startx, obj.Starty, obj.Endx, obj.Endy);
 path();
 tank[i]->dir = obj.dir;
 Vector distance = tank[i]->aimPos - tank[i]->pos;
 if(distance.length() > 2.0)
 {tank[i]->moveTo(tank[i]->dir);}

 }
// The reason why we call the influenceMap function again is to draw
the original influen map
// It is just used for testing and it will slow down the program
running speed a little bit
 influenceMap();

}

// draw function
void display()
{
 // clear the current buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 // save the current transformation matrix
 // turn on the lights
 glPushMatrix();

 glRotated ((GLdouble) spinxface, 1.0, 0.0, 0.0) ;
 glRotated ((GLdouble) spinyface, 0.0, 1.0, 0.0) ;
 glRotated ((GLdouble) spinzface, 0.0, 0.0, 1.0) ;
// draw the mouse-dragged square
 if(drawSquare == true)
 {
 glColor3f(0.9,1.0,1.0);
 glLineWidth(1.0);
 glBegin(GL_LINE_LOOP);

 a.Vertex();
 b.Vertex();
 c.Vertex();
 d.Vertex();
 glEnd();

 glLineWidth(2.0);
 }
// draw the game map
 for(int y=0; y<H; y++)
 {
 for(int x=0; x<W; x++)
 {
 Map[x][y].draw();
 if(drawInfluence == true)
 {
 Map[x][y].drawInfluence();
 }
 }
 }

aim.draw();

for(int i=0; i<tankNum; i++)
 { tank[i]->Draw(); }

for(int i=0; i<playerNum; i++)
 { player[i]->Draw(); }

if(DrawPath == true)
 {
 drawParent();
 drawPath();
 }

 flag1.Draw();
 flag2.Draw();

 glPopMatrix();

 glutSwapBuffers();

}

// initialise the influence map
void initInfluenceMap()
{
 for(int y=0; y<H; y++)
 {
 for(int x=0; x<W; x++)
 {
 Map[x][y].influence = 0;

 }
 }
}

// This function is just for testing, AI tanks will move randomly
void tankMove()
{
 for (int i = 0; i< tankNum; i++)
 {
 tank[i]->moveRandomly(0, (W*(int)Map[1][1].step-1), 0, (H*(int)
Map[1][1].step-1));
 }

}

// Calculate the influence
void influenceMap()
{

 influenceRadius = 12.0;
 for(int y=0; y<H; y++)
 {
 for(int x=0; x<W; x++)
 {
 Vector distance(0,0,0);
 float iv ;

 for(int i=0; i < playerNum; i++)
 {
 distance = player[i]->pos - Map[x][y].pos;
 iv = 60 *player[i]->life*influenceRadius/(distance.length
()*100.0);
 if(0.0<=distance.length()&&distance.length()
<=influenceRadius)
 {Map[x][y].influence += (int)iv;}

 }

 for(int i=0; i < tankNum; i++)
 {
 distance = tank[i]->pos - Map[x][y].pos;
 iv = 60 * influenceRadius *tank[i]->life/(distance.length()
*100.0);
 if(0.0<=distance.length()&&distance.length()
<=influenceRadius)
 {Map[x][y].influence -= (int)iv;}
 }
 }
 }

}

// If we want to use the influence map for the human controlled tanks
too, we have to reverse it first because if
// the influence is positive for AI tanks, it should be negative for
human players.
void reverseIM()
{

 for(int i = 0; i<W; i++)
 {
 for(int j = 0; j<H; j++)
 {
 Map[i][j].influence = -1*Map[i][j].influence;
 }
 }

}

// initialise the game
void initGame()
{
 for (int i = 0; i< tankNum; i++)
 {
 delete tank[i];
 tank[i] = new Tanks(1);
 tank[i]->pos = Map[flag2x][flag2y].pos;
 tank[i]->initBullet();
 }
 for (int i = 0; i< playerNum; i++)
 {
 delete player[i];
 player[i] = new Tanks(0);
 player[i]->pos = Map[flag1x][flag1y].pos;
 player[i]->initBullet();
 }
 flag1.life = 1000.0;
 flag2.life = 1000.0;
 aim.pos = Map[7][7].pos;
}

float timeElapsed = 0;
//

int Time,timeprev=0;
void Update(int i)
{

Time=glutGet(GLUT_ELAPSED_TIME);
timeprev = Time;

if(simulation==true)
{
 flag1.update();

 flag2.update();
 findTarget();
 tankRecoverNearBase();
 checkBulletCollision();
 Path();
}

glutTimerFunc(10,Update,0);
glutPostRedisplay();

}

/*! InitGL set's up the opengl drawing state */
void InitGL()
{
 glClearColor(0.0f, 0.1f, 0.0f, 1.0f);
 glShadeModel(GL_SMOOTH);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_LIGHT0);
 GLfloat AmbColour[]={0.2,0.2,0.2};
 glLightModelfv(GL_LIGHT_MODEL_AMBIENT,AmbColour);

 Point3 Eye(38.0f,28.0f,72.5f);
 Point3 Look(38.0f,28.0f,0.0f);
 eye = Eye;
 look = Look;
 Vector Up(0.0f,1.0f,0.0f); //Y == UP
 Cam.set(Eye,Look,Up);
 Cam.setShape(45,640.0/480.0,0.5,150);

 glEnable(GL_COLOR_MATERIAL);
 glColorMaterial(GL_FRONT,GL_AMBIENT_AND_DIFFUSE);
}

void KeyPressed(unsigned char ch, int x, int y)
{
 switch (ch)
 {
 // ESC key to exit program

 case 27 : exit(0); break;

 case 'i' : drawInfluence=true; break;
 case 'I' : drawInfluence = false; break;

 case ' ' : initGame(); simulation = true; break;
 case 'p' : simulation = false; break;
 case 'a' : for(int i = 0; i<playerNum; i++)
 {player[i]->selected = 1;}; break;
 case 'h' : Cam.slide(camMoveX,camMoveY,0.0);

camMoveX=0;camMoveY=0; break;
 case 's' : flag1.life = 1000.0; break;
 case '7' : glPolygonMode

(GL_FRONT_AND_BACK,GL_LINE);DrawPath = true; break;
 case '8' : glPolygonMode

(GL_FRONT_AND_BACK,GL_FILL);DrawPath = false; break;
 case '9' : DrawPath = true; break;
 case 't' : for(int i = 0; i<playerNum; i++)
 {player[i]->life = 100.0;}; break;
 case 'm' : if(simulation == false)
 {CreateMap();}; break;

 case '1' : for(int i=0; i<playerNum; i++)
 { if(i< playerNum/3)

 {player[i]->selected = 1;}
 else
 {player[i]->selected = 0;}};break;

 case '2' : for(int i=0; i<playerNum; i++)
 { if(i< 2*playerNum/3&& i>=

playerNum/3)
 {player[i]->selected = 1;}
 else
 {player[i]->selected = 0;}};break;

 case '3' : for(int i=0; i<playerNum; i++)
 { if(i< playerNum && i>=2*playerNum/3)

 {player[i]->selected = 1;}
 else
 {player[i]->selected = 0;}};break;

 }

 glutPostRedisplay();
}

// camera controls

void SpecialKeyPressed(int key, int x, int y)
{
 switch (key)
 {
 // slide the camera left right up and down
 case GLUT_KEY_LEFT :

Cam.slide(2.5,0.0,0.0);
camMoveX-=2.5;
cout<<camMoveX<<endl;

break;
 case GLUT_KEY_UP :
 Cam.slide(0.0,-2.5,0.0);

camMoveY+=2.5;
break;
case GLUT_KEY_RIGHT :

Cam.slide(-2.5,0.0,0.0);
camMoveX+=2.5;

 break;
case GLUT_KEY_DOWN :

 Cam.slide(0.0,2.5,0.0);
camMoveY-=2.5;
break;

 //slide the camera along the z axis
case GLUT_KEY_PAGE_UP :

 Cam.slide(0.0,0.0,2.5);
break;

case GLUT_KEY_PAGE_DOWN :
 Cam.slide(0.0,0.0,-2.5);

break;

 }
 //redisplay the scene
glutPostRedisplay();
}

void motion (int x, int y)
{
 if (leftKeyDown==1) {

 drawSquare = true;

 finx = x/15.0-Map[1][1].step/2.0-camMoveX;
 finy = ((float)HEIGHT-y)/15.0-Map[1][1].step/2.0-camMoveY;
 a.set(origx, origy, 0.3);
 b.set(finx, origy, 0.3);
 c.set(finx, finy, 0.3);
 d.set(origx, finy, 0.3);

 }
}

/* The button callback is called when a mouse key is pressed */

static void Button(int button, int down, int x, int y)
{

 switch(button)
 {
 case GLUT_LEFT_BUTTON:

 if (down == GLUT_DOWN)
 {

 leftKeyDown = 1;
origx = x/15.0-Map[1][1].step/2.0-camMoveX;
origy = ((float)HEIGHT-y)/15.0-Map[1][1].step/2.0-

camMoveY;

 }

 if(down == GLUT_UP)
 {
 finx = x/15.0-Map[1][1].step/2.0-camMoveX;
 finy = ((float)HEIGHT-y)/15.0-Map[1][1].step/2.0-camMoveY;

 for (int i= 0; i<playerNum; i++)
 {

 if (abs(player[i]->pos.x-origx)+abs(player[i]->pos.x-
finx) == abs(origx - finx) && abs(player[i]->pos.y-origy)+abs(player
[i]->pos.y-finy) == abs(origy - finy))

 {
 player[i]->selected = 1;

 }

 else
 { player[i]->selected = 0;}
 }

 leftKeyDown = 0;
 drawSquare = false;
}

break;
case GLUT_RIGHT_BUTTON:
 if (down == GLUT_DOWN)
 {

 for (int i =0; i< playerNum; i++)
{

 if(player[i]->selected == 1)
 {player[i]->selected = 2;}

}

Origx = x/15.0-Map[1][1].step/2.0-camMoveX;
Origy = ((float)HEIGHT-y)/15.0-Map[1][1].step/2.0-

camMoveY;
//cout<< aim.pos.x<< "and" << aim.pos.y<<endl;
mouseTrack.set(Origx, Origy, 0.0);
aim.pos.set(Origx, Origy, 0.1);

 for(int i=0; i<playerNum; i++)
{

 if(player[i]->selected == 2)
 {

 player[i]->bulletAim.set(Origx, Origy, 0.4);

 }
}
//cout<< origx<< " and" <<origy<<endl;
//Rotate = 1;

 }
break;

}
}

// application main loop
int main(int argc, char **argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DEPTH | GLUT_RGBA | GLUT_DOUBLE |GLUT_ALPHA
|GLUT_ACCUM);
glutInitWindowSize(WIDTH, HEIGHT);
glutCreateWindow("AI");
 //load the glut callbacks
glutDisplayFunc(display);
 //glutIdleFunc(Update);

 glutTimerFunc(10,Update,0);

glutMouseFunc(Button);
glutMotionFunc(motion);
glutKeyboardFunc(KeyPressed);
glutSpecialFunc(SpecialKeyPressed);
//initialise opengl
InitGL();
CreateMap();

glutMainLoop();

return 1;
}

//end of file

