
OpenGL GPU Features and SPH Fluid

Ewan Rice

August 22, 2016

Computer Animation and Visual Effects MSc

Bournemouth University

1

Abstract

This thesis covers the use of two General Purpose GPU features of
OpenGL, Transform Feedback and Compute Shaders and the implemen-
tation of SPH fluid. Transform Feedback and Compute Shaders allow
for arbitrary calculations to take place on GLSL shaders, making use of
the parallelization of the GPU. An easy to use library for these features
was written and an analysis and comparison of the two is made. The
SPH fluid implementation closely follows the work of Clavet et al. and
examines carrying out the simulation on the GPU.

2

Contents
1 Introduction 4

2 Transform Feedback 4
2.1 Implementation . 5

2.1.1 Create Shader Program 5
2.1.2 Set Data & Create VAO 5
2.1.3 Executing Shader 6

3 Compute Shader 7
3.1 Implementation . 7

3.1.1 Work Groups & Dispatching Shader 7
3.1.2 Dispatching Shader & Work groups in 3D 8
3.1.3 Built-In Inputs . 9

3.2 Shader Storage Buffer Objects 10
3.2.1 std140 & std430 . 10
3.2.2 Accessing the Buffer 10

4 GPU Particle System 11
4.1 Particle Update . 12
4.2 Particle Collision with Sphere 13
4.3 Drawing the Particles . 13

5 OpenGL GPU Library 14

6 Analysis and Comparison of Compute Shaders and Trans-
form Feedback 15
6.1 FPS . 16
6.2 Memory Usage . 16

7 SPH Fluid Simulation and GPU Implementation 17
7.1 SPH . 18

7.1.1 Kernel Function & Kernel Length 19
7.1.2 Neighbour Searching 19
7.1.3 Density . 21
7.1.4 Pressure . 22
7.1.5 Displacement . 23
7.1.6 Viscosity . 23
7.1.7 Advection . 24
7.1.8 Updating Velocity 24
7.1.9 Collision detection & Response 24
7.1.10 External Forces & Interactivity 25

7.2 GPU Implementation and Memory Synchonrization 26
7.2.1 Half GPU Implementation 27
7.2.2 Full GPU Implementation 27
7.2.3 Memory Synchonisation 28

8 Further Work 29

3

1 Introduction

GPUs and the APIs designed to open them up to developers such as OpenGL
and DirectX offer multi-threaded programming tailored for graphics which has
been essential for real-time rendering. The uses for the GPU extend beyond
real-time rendering and the video game industry, as computationally heavy re-
search simulations, engineering and artistic graphics software all have a need for
accelerated performance.

OpenGL is an API for rendering graphics, which is what the GPU is typically
used for. However OpenGL also offers ways of using shaders to make any arbi-
trary computations. Some examples of areas in graphics that can benefit from
this is to calculate the movement for particles, cloth and fluid or detect and
resolve collisions. Transform Feedback and Compute Shaders are two methods
that can be used for general purpose GPU programming. There are however
other extensive APIs that offer the same in CUDA and OpenCL. These APIs
offer more features however the need to install an external library and learn the
procedures and languages associated with them can make Transform Feedback
or Compute Shaders a simpler, and therefore preferable option [1].

A SPH fluid simulation offers a good learning opportunity for GPU program-
ming.

2 Transform Feedback

Transform Feedback was introduced to OpenGL in version 3.0 and allows for
writing to a buffer in a vertex shader, meaning any calculations made in the
shader can be used after the fact and become accessible on the CPU [2]. Al-
though it is perhaps out-dated by the introduction of Compute Shaders, it still
has relevance for computers with graphics drivers that do not support version
4.3, where Compute Shaders were introduced, for example Mac machines [3].

Transform Feedback uses a vertex shader to perform the GPU-side calculations.
A shader program must be created for the vertex shader to be attached to and
compiled, as with a normal shader. The Transform Feedback is performed using
two Vertex Buffer Objects, one as an input for sending data to the shader, and
the other for writing the newly calculated data to an output from the shader.
After the shader has finished, the data in these buffers must be swapped on
the CPU, so in the next frame the input buffer now has the data that was
output from the shader in the previous frame. This is sometimes referred to as
ping-ponging.

4

2.1 Implementation

2.1.1 Create Shader Program

Firstly a shader program must be created which a vertex shader must be at-
tached to, where the GPU calculations will take place. However, after attaching
the shader and before linking the program a special call must be made in prepa-
ration for Transform Feedback.

glTransformFeedbackVaryings (GLuint programID,
GLsizei count,
const char **varyings,
GLenum bufferMode)

[4]

This method is used to pass in the names of the varyings in the shader, which
are the variables that are output from the shader.

programID The ID of the program.

count The number of varyings.

varyings An array of strings of the names of the varyings,
which must match the names in the shader.

bufferMode Specifies whether a single buffer will be used for the
varyings or multiple. It generally will be more
convenient to use a single buffer.
GL_INTERLEAVED_ATTRIBS for a single
buffer, GL_SEPARATE_ATTRIBS for multiple.

It is important that varyings declared in the shader are explicitly written to and
cannot be left unused, otherwise the shader won’t successfully compile.

2.1.2 Set Data & Create VAO

The two VBOs must be generated and glBufferData called for each. Assign
initialized data to what will be used as the input buffer, however the output
buffer data may be set as a nullptr. The size of the output buffer must match
the input buffer.

A Vertex Array Object can also be used for describing how the input attributes
are to be sent to the shader. This can be created and reused for every frame
the shader is used.

5

2.1.3 Executing Shader

1. Before executing the shader the following should be called -

glEnable(GL_RASTERIZER_DISCARD)

There is no need to draw or go further along the pipeline than this shader, which
this call ensures.

2. Bind input buffer and VAO.

3. For each input attribute, call glEnableVertexAttribArray and glVertexAt-
tribPointer. These attributes must align with the output varyings in terms of
data types and order.

4. Bind output VBO using -

glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, m_outputVBO)

0 is the index of the buffer, if more buffers are used for the varyings, the index
must match that.

5. glBeginTransformFeedback(GL_POINTS)

glDrawArrays(GL_POINTS,0,numIndices)

glEndTransformFeedback()

numIndices specifies the number of invocations of the shader. This may match
the length of an array of the attributes that are being passed in.

6. Unbind the VBO and VAO.

7. glDisable(GL_RASTERIZER_DISCARD). Re-enable drawing post vertex
shader.

8. Swap the input and output buffers std::swap(m_inputVBO, m_outputVBO).

Sample Vertex Shader

#version 330 core
layout (location=0) in vec4 position;
out vec4 outPosition;

void main(void)
{

outPosition = position;
}

6

3 Compute Shader

Compute shader is another shader stage, the other stages being the Vertex,
Fragment, Geometry and Tesselation shaders. A compute shader’s purpose is
to carry out computations on data, which may be used further in the pipeline
for drawing or for any other heavy calculations [5].

• A significant difference between the compute shader stage and other shaders
is that there are no-built in outputs from the shader, the user must send
data to the shader using a buffer, texture or image and write out to one
of these objects. This differs for example to the vertex shader in which
the output gl_Position is built-in and must be written to.

• Uniform variables can still be used.

• Where a vertex shader is executed once per vertex that is passed into the
shader, the number of times a compute shader is executed depends on user
input.

• A compute shader is compiled and attached to a program in the same
manner as any other shader type, with the difference being the GLenum
GL_COMPUTE_SHADER is used when creating the shader.

• A compute shader cannot be attached to a program that other shaders
are also attached to, it must be the only shader in a program [1][6].

3.1 Implementation

3.1.1 Work Groups & Dispatching Shader

The work carried out by a compute shader is divided into work groups, each of
which can execute a given number of threads. Work groups are executed one at
a time, but the threads of the work group are executed in parallel [6].

Take an instance where we wish to carry out 64 threads of a compute shader,
where 64 may be the length of an array of data which we wish to perform calcu-
lations with, or possibly the number of particles of which we wish to calculate
the position. These 64 threads may be divided into 4 work groups of 16 threads
(which we can also refer to work items). In reality, 64 threads can easily be run
concurrently, but in a compute program that may be run millions of times, the
number of concurrent threads needs to be divided down into more manageable
groups. This is what work groups allows for and they can offer more control in
the shader [6].

It is important that the correct number of work groups are used. In a case
in which there are 102 particles, we may divide this into work groups of 16

7

work items(or threads). The number of work groups must be a positive whole
number, and we might calculate this by the following-

totalParticles = 102

invocationsPerGroup = 16

numWorkGroups = 102 / 16 = 6.375

6.375 rounded to nearest lowest int is 6. If we use 6 work groups of 16 threads
each, then a total of 6 * 16 = 96 threads are used. If 96 threads are run for
102 particles, this means 6 particles are not being considered in the compute
shader. It is therefore necessary to increment numWorkGroups by 1, or make
sure totalParticles is a multiple of invocationsPerGroup.

It is also up to the user to set the most efficient number of work groups and
threads/invocations. More threads may improve performance though there will
be a limit on the number of threads per work group. The maximum number of
work groups can be queried with the OpenGL api using

glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_COUNT).

Similarly the maximum number of invocations may be queried with

glGetIntegeri_v(GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS).

Other relevant variables are also available to query. [5]

3.1.2 Dispatching Shader & Work groups in 3D

To execute a shader from the CPU side a glUseProgram call is made as with
any other type of shader, however instead of glDrawArrays as with a normal
program, a call to glDispatchCompute is made.

glUseProgram(GLuint progamID)

glDispatchCompute(GLuint num_groups_x, GLuint numGroups_y, GLuint
num_groups_z)

The space the groups work in is three dimensional [5]. This dispatch method
takes in the number of work groups we wish to dispatch in the x, y and z. In
practice, how many groups are dispatched in each direction depends on how we
wish to use the compute shader. If the shader is being used to calculate the
positions of particles, it is being executed once per particle, which are stored in
a linear array. It is therefore easiest to dispatch the total necessary number of
work groups in the x, and 1 work group in y and z. An example of dispatching
2 dimensional groups may be when writing to a texture or image, which can
allow for more convenient access of that object [1].

8

3.1.3 Built-In Inputs

Compute shaders have the following built-in inputs [5].

uvec3 gl_NumWorkGroups Number of work groups, same as what was passed
in glDispatchCompute.

uvec3 gl_WorkGroupID The current work group for a shader
invocation.

uvec3 gl_LocalInvocationID The current invocation of the shader within
the work group. May be thought of as the ID
of the current thread within in the current
work group.

uvec3 gl_GlobalInvocationID The unique ID of the current invocation
across all invocations.

gluint gl_LocalInvocationIndex The unique ID of an invocation within a
work group.

In terms of a particle system on a compute shader program, if there are 128
particles and we wish to use 16 threads per group, which will give 8 work groups,
the dispatch call would be -

glDispatchCompute(128 / 16, 1, 1)

For any one invocation of the shader

gl_NumWorkGroups = (8, 1, 1)

gl_WorkGroupID = (range(0,7), 0, 0)

gl_LocalInvocationID = (range(0,15), 0, 0)

gl_GlobalInvocationID.x = (range(0,127), 0, 0)

gl_LocalInvocationIndex = range(0,15)

Any of these inputs may be used in getting an index of an element of a SSBO.

9

3.2 Shader Storage Buffer Objects

As part of OpenGL 4.3 SSBOs were introduced as a new buffer object which
unlike a Uniform Buffer Object can be both read and written to. This, along
with a much larger maximum storage size make it very useful in combination
with compute shaders. [7].

Like other buffers they must be generated, given data and bound to a location
in the shader before each dispatch call.

They are defined in shaders as follows -

layout (std430, binding=0) buffer SSBO

{

float buffer[];

};

The binding must match the location it is bound to on the CPU, and it can be
defined without an array size, though the size will be determined by the memory
allocated for the buffer on the CPU when the buffer was assigned data. The
length of the buffer can be returned using .length().

3.2.1 std140 & std430

A potential source of problems can come from defining the layout as std140
or std430. A std140 layout does not guarantee that the buffer will be tightly
packed. A buffer of floats will in fact have a stride of vec4, which if unexpected
can produce strange results[8].

It can therefore be safer to define any buffers with std140 as of type vec4, or
use std430 which has optimizations that ensure the tight packing of types other
than vec4. In general it is best to avoid using vec3 all together.

3.2.2 Accessing the Buffer

The built-in inputs of compute shaders provide a useful way of accessing ele-
ments of a SSBO. For a program that runs through a given number of particles,
using gl_GlobalInvocation.x in the shader will give the unique index of a par-
ticle.

10

Sample Compute Shader

#version 430 core
#extension GL_ARB_compute_shader: enable
#extension GL_ARB_shader_storage_buffer_object: enable
#extension GL_ARB_compute_variable_group_size: enable

layout (std140, binding=4) buffer Pos
{

vec4 positions[];
};

layout (local_size_x = 256, local_size_y = 1, local_size_z = 1) in;

void main()
{

uint index = gl_GlobalInvocationID.x;
positions[index].y += 0.1f;

}

4 GPU Particle System

A particle system can be implemented with Transform Feedback or Compute
Shaders with very similar code and considerations. This simple implementation
creates a particle system that does not require any of the particles to have any
influence on each other, as each moves separate to each other, only dependant on
it’s own velocity and position, which makes it well suited to the parallelization
of the GPU.

Particle effects generally consist of thousands of particles and can be used to
create non-polygonal or deformable bodies such as rain, fire, water, smoke, magic
effects, trail effects etc. Reeves produced an early particle system for Star Trek
II: Wrath of Khan which introduced particles and the common attributes that
are still often seen in modern systems [9].

In this implementation each particle is represented by a position, velocity and
lifetime. The position of a particle is what is used in drawing a point on screen,
however the velocity is used in calculating the position of the particle every
frame, and the lifetime is stored to constantly re-use a particle, and create a
steady stream.

Both the Transform Feedback and Compute Shader implementation use the
same data types in the shader code -

Vec4 position

Vec4 initialPosition

11

Vec4 velocity

Vec2 lifetime

lifetime is represented as a vec2 as the x component stores the current lifetime of
a particle, and the y stores the initial lifetime. When the current lifetime drops
below 0, the x component is set to that initial value stored in the y component,
velocity is set to 0, and position is set to the initial position. An alternative to
storing the initial position would be to get a new random value whenever the
particle is reset.

Differences lie in how the data is sent to the shaders -

Transform Feedback

A struct is made called Particle, which holds the variables of the above data
types. A total number of particles is defined, and a single VBO is filled with
that number of Particle objects that have been set with initial values. Calls
to glVertexAttribPointer with the correct stride and location values need to be
made in order to correctly pass the data to the vertex shader that will carry out
the calculations. The output VBO is then swapped with the input VBO.

Compute Shader

To send the data to the compute shader, separate SSBOs are made for posi-
tion, initialPosition, velocity, and lifetime. The SSBOs must be bound to their
location in the shader code before dispatching the shader.

4.1 Particle Update

The particle update code is to be executed every frame, for each particle. It
performs the following functions -

• Calculate the new position of the particle through Euler integration, using
the velocity and the external force of gravity.

• Collision detection with any spheres that have been defined, and resolve
those collisions.

• Check if the current lifetime has dropped below 0, if so, reset the particle.

Pseudocode
velocity += gravity * timeStep

12

for each Sphere s in spheres :

velocity = collisionWithSphere(position, velocity, s.position, s.radius)

position += velocity * timeStep

currentLifetime -= timeStep

if currentLifetime < 0 :

currentLifetime = initialLifetime

position = initialPosition

velocity = vec3(0,0,0) //May alternatively wish to set an initial velocity

4.2 Particle Collision with Sphere

A point colliding with a sphere can be calculated in GLSL using the reflect()
method [1], which takes in a vector, and returns a reflection of that vector about
an incident vector, which in this case will be the collision normal.

Pseudocode
Vec3 sphereCollision(position, velocity, s.position, s.radius)

//Check if the distance from the particle to the

//sphere is less than the sphere’s radius

if distance(position - s.position) < s.radius :

collisionNormal = (position - s.position).normal

//Bounce coefficient is a value between 0 and 1

//which acts as a dampener. 1 will produce a perfect

//bounce where as 0 produces no bounce at all.

return reflect(velocity, collisionNormal) * bounceCoefficient

else :

return velocity

4.3 Drawing the Particles

The data that is on the VBO in a Transform Feedback implementation or in the
SSBO storing positions can be passed directly to a vertex shader to be drawn,
without the need to write to a new VBO, they must both just be bound before
the call to glVertexAttribPointer is made using glBindBuffer(GL_ARRAY_BUFFER,
bufferID).

13

5 OpenGL GPU Library

As part of this project, a library was written that would make it easier to use
the Transform Feedback and Compute Shader features of OpenGL. The library
provides wrapper classes for both of the methods as well as a general shader
management class and SSBO wrapper class. The aims of the library would be
to enable users to easily make use of the OpenGL functions related to the GPU
features by reducing the number of method calls required and offering more
descriptive method names which will help to avoid common mistakes and be a
bit more accessible. However, the user still must write the GLSL shader code
from scratch and will require some surface knowledge of how shaders are created
and used on the CPU side, particularly the order certain functions are called.

There are 4 classes in the library, though depending on the program, a user may
only need to concern themselves with TransformFeedback or ComputeShader.

ShaderManager

A general purpose class for creating and storing shader programs. It is used in
other classes in the library, but may be used by the user to create other shader
types other than those used for general purpose GPU features.

TransformFeedback

This class creates the shader program to be used for the Transform Feedback,
and handles all other code related to executing the shader and making use of
Transform Feedback. For every shader the user wishes to perform calculations
on, an instance of this class should be created.

SSBO

Generates a SSBO and stores the id. The class also offers methods for setting
the data in the buffer and for binding. The ComputeShader class has methods
that will create and store SSBO objects though users may want to create SSBO
objects separately and use them where appropriate. For example if a program
requires the same SSBOs to be used across multiple Compute Shaders, it may
be easier and more logical for a user to create and store SSBO objects, rather
than use one of those ComputeShader objects to create them all.

ComputeShader

Creates the compute shader program and attaches the shader. To dispatch the
compute shader, users call useProgram() and then dispatch(). If any uniform
variables are to to be set it must be done between the use and dispatch calls.
This class can also create and store SSBOs for use.

14

6 Analysis and Comparison of Compute Shaders
and Transform Feedback

Using the particle system from section 4, a test was run using both methods,
examining the memory usage and FPS of the same simulation run with different
numbers of particles. The shader code run in both methods involves the same
operations for updating the data passed in, and keeps the same data types.
The simulation involved particles falling under gravityand being re-used, and
potentially colliding with 6 spheres. Below are the results from the tests -

15

6.1 FPS

Both programs targeted 60 FPS, and FPS is recoreded as the average FPS of a
running program. The following observations are made -

• The results showed a higher and more consistent FPS for the Compute
Shader particles.

• There is no linear decline in FPS with the increase in particles for either
method.

6.2 Memory Usage

• Transform Feedback has a significantly greater memory usage than Com-
pute Shaders. By taking the difference in memory at 2 and 3 million
particles we find that Transform Feedback uses 107.4MB of memory for 1
million particles, where as Compute Shader uses 15.2MB. This can at least
partly be attributed to the need for two VBOs being allocated in Trans-
form Feedback as opposed to using SSBOs for Compute Shaders that can
be both read and written to.

• There is a linear increase in memory for Transform Feedback with the
number of particles used, however from 7 to 8 million particles, the mem-
ory usage doubles in the compute Shader program.

16

7 SPH Fluid Simulation and GPU Implementa-
tion

Smooth Particle Hydrodynamics is a fluid implementation first developed by
Monaghan [10]. It is a particle-based method, putting it in the Lagrangian
category of fluid simulations.

Background

Lagrangian Methods

Lagrangian fluid sims use particles to represent the fluid, where each particle
may be thought of as a fluid molecule, and for which its velocity must be cal-
culated to behave like fluid when surrounded with other particles. The velocity
is then used to calculate the position of the particle for it to be drawn. An
advantage of a particle-based method is that drawing the particles is relatively
simple, though to represent the fluid as a body with a surface, rather than nu-
merous single points in space, additional rendering methods such as marching
cubes / meta-balls may need to be employed.

Creating a convincing fluid simulation requires a vast number of particles to
be used. This can be a distinct disadvantage of particle-based methods as
all fluid calculations are carried out per particle, therefore the complexity of
the computations increases dramatically with the increase in the number of
particles, with potentially very slow performance as a result.

The first implementation of SPH by Monaghan et al. from 1992, was used as part
of research for astrophysics. Muller et al.[11] then presented SPH with graphical
applications in 2003. However, the implementation that is discussed in detail
below is based on Clavet et al. which introduced some improvements in the
incompressibility aspects of SPH which resolves issues with particles clustering
together, and changed the force based movement of particles to position based.
Clavet et al. [12] also introduces springs between neighbouring particles as a
way of handling elasticity, and covers fluid stickiness with other objects.

Euler Methods

Alternatively there is the Euler methods, which instead of particles, uses a grid
that stores the velocities of a fluid in cells of the grid. Early work by Foster &
Metaxas [13] was followed by Jos Stam [14], who presented a stable real-time
implementation.

17

Hybrid Methods

Some hybrid implementations of Lagrangian and Euler such as the Affine PIC
method by Jiang et al. calculate the fluid velocity on a grid which is then applied
to particles placed in this grid [15]. This can be more efficient as a large number
of particles can be used with a much less substantial drop in performance, as
complexity is mostly determined by the resolution of the grid, where each cell
has fluid calculations performed.

Navier Stokes

All the above methods have a basis in the Navier-Stokes equation, which de-
scribes the movement of a fluid with the following -

ρ(∂
∂t + u•∇)u = -∇p + µ∇•(∇u) +f

∇•u = 0

Where ρ is density, p is pressure, u is velocity, µ is viscosity and f is the sum of
any external forces such as gravity [16]. The first line is known as the momentum
equation which describes the movement of fluid based on pressure, density, vis-
cosity and external forces, all of which are factored into the SPH implementation
by Clavet et al. The second line is the incompressibility condition which states
that the mass and overall velocity of the fluid must remain constant [16]. With
a particle-based approach this is achieved so long as the number of particles in
the fluid remains constant [11].

7.1 SPH

In carrying out various fluid calculations the goal is to calculate a position for
a particle every frame that will produce fluid like behaviour when viewed with
thousands of other particles. This implementation of SPH closely follows Clavet
et al. though leaves out the spring calculations while still achieving convincing
fluid movement. Below are the steps that are carried out every frame of the
program, in the order they are carried out.

18

1. for each particle:
Apply external forces

2. for each particle:
Apply viscosity

3. For each particle:
Advect the particles

4. For each particle:
Find all neighbouring particles

5.For each particle:
Calculate density
Calculate pressure
Displace position of the particle and each neighbour

7. for each particle:
Update velocity

for each particle:
Resolve collisions

7.1.1 Kernel Function & Kernel Length

A number of constants are used that will be covered in the sections below
however there is a common kernel function that is used in multiple calculations
where a particle and its neighbour are being considered.

a = 1 - (d / k) [12]

Where d is is the distance between the particle and its neighbour, and k is the
kernel length, a constant. Kernel length is the radius within which a particle
will be affected by another particle. The function above is a measure of how
close one particle is to it’s neighbour, and should always be a value between 0
and 1. If a value less than 1 is returned, this means the neighbour is further from
the particle than the kernel length, and so neither the particle nor neighbour
should have an effect on each other.

7.1.2 Neighbour Searching

Particles must know which other particles are within a distance <= kernel
length. It would be possible to do the following check -

Pseudocode
clear p1.neighbours

for each Particle p1 in particleList:

for each Particle p2 in particleList:

19

if (distance <= k)

Add p2 to p1.neighbours

However in a simulation with thousands to hundreds of thousands of particles,
this is much too inefficient to be usable.

There are two neighbour search methods that have been implemented in this
project, both of which use a grid of cubic cells that all have a width, height
and breadth of k, and are all equally spaced apart. The general idea is to know
which particles are in which cell so the above algorithm may be written as -

Pseudocode
for each Cell c:

for each Particle p1 in c:

for each Particle p2 in cells neighbouring and including c:

if (distance <= k)

Add p2 to p1.neighbours

Therefore instead of comparing every particle against every other particle we
are comparing only against the particles that are within a distance of, at the
very most, 2 * k.

The disadvantage of using a grid to find neighbours is that the particles stay
within that grid, which limits the space the simulation can take place in. Al-
though the size of the grid may be increased this will have a cost in memory. An
alternative solution called Spatial Hashing will be discussed below. An octree
method and a simple grid method have been implemented.

Octree

An octree divides a space into smaller, equally sized divisions, and uses a tree
data structure to find what one of those divisions a given point is in. For
example given a point in space, within the bounds of the octree, firstly check
which quadrant that point is located in, then find the quadrant of that quadrant,
and so on for however many layers that we wish to check.

On initialization, all grid cells are added to the octree, with pointers to them
stored within the smallest divisions of the tree. Every frame, particles are passed
through the tree, until they are in the lowest division. This division will have
cells in it, which a particle will be checked against and added to the cell if it is
found to be located within its bounds.

20

Simple Grid

The following method was used as part of the GPU implementation as the tree
data structure was less suitable within the limits of GLSL programming.

If we imagine a 3D grid with cells of width and height 1.0, where the first cell
at index (0,0,0) in the grid has a left boundary at 0.0, and right boundary of
1.0. Similarly the bottom boundary is at 0.0, and top boundary at 1.0, and the
same for the back and forward boundary. A point at position (2.13, 3.56, 9.90)
will be in cell index (2,3,9).

For a 3D grid that has cells of arbitrary size and for which the cell at (0,0,0)
does not have a lower, left, back boundary at (0.0, 0.0, 0.0), we must effectively
convert the grid and the point we are looking at to the above size.

Firstly calculate the offset to move the grid to have it’s lower, left, back at (0.0,
0.0, 0.0).

Pseudocode
x index = roundDownToInt((point.x + offset.x) / cellSize)

y index = roundDownToInt((point.y + offset.y) / cellSize)

z index = roundDownToInt((point.z + offset.z) / cellSize)

With the cell index, we can add this particle to the appropriate cell.

Spatial Hashing

An alternative solution, which bears some similarities to the Simple Grid method
above is Spatial Hashing, which does not have the disadvantage of being con-
fined to a grid. The world space is essentially divided into equally spaced cells,
however the cells are not stored in memory as with the above solution. Every
cell will have a unique hash key, and so particles that are within the same cell
will have the same key. Storing particles by the hash key is a convenient way
of finding neighbours. Every frame, the hash table that stores all the keys,
and particles with those key, is cleared. For each particle, the hash key for the
position it is in is found, if the key is already in the hash table, the particle is
added to the list of particles stored with that key, otherwise the key is added to
the table and the particle with it [17].

7.1.3 Density

Every particle has a density attribute, and it depends on the number of particles
neighbouring it, and how close those particles are. The following formula is used
to calculate density [12] -

ρ =
∑

j∈N(i)(1− rij/h)2

21

The square of the function from section 7.1.1 is used here. The formula states
that the density of a particle is the sum of a2 for all neighbouring particles.

Near Density

An important part of the solution by Clavet et al. is to introduce an additional
density calculation which is called ‘Near Density’. It is calculated similarly to
the density but with a slight different kernel function of a3.

Pseudocode
for each Particle p :

p.density = 0

p.nearDensity = 0

for each Particle np in neighbours of p :

p.density += (1− (dist/k))2

p.nearDensity += (1− (dist/k))3

The introduction of near density was to solve the problem of particles clustering,
and keeps particles spaced apart, as the molecules of a fluid should be.

7.1.4 Pressure

Pressure and Near Pressure is calculated for each particle using the particle’s
density and near density values.

Pseudocode
p.pressure = (p.density - restDensity) * stiffness

p.nearPressure = p.nearDensity * nearStiffness

restDensity is a constant that can control how closely particles may sit beside
each other at rest. Higher restDensity will produce a much more dense fluid. If
the particle density is greater than restDensity it will have a repulsive movement
from other particles, if it is less it will have an attractive movement. stiffness
is another constant, it is useful in controlling the pressure of particles, a higher
stiffness will produce more wild and splashy particle movement.

The calculation for near pressure does not use restDensity. This means it will
always contribute to a repulsive movement, which aids in keeping particles from
clustering. nearStiffness is another constant which can give more control over
the look of the simulation similar to the stiffness constant. It should generally
be kept around the same value as stiffness, but it should be kept in mind that
higher nearStiffness will only produce higher repulsive movement.

22

7.1.5 Displacement

Using the newly calculated pressure and near pressure values, particles must be
moved, depending on those values, towards or away from neighbouring particles.
For each neighbour, the particle is displaced, and the neighbour is displaced in
the opposite direction.

Pseudocode
for each Particle p :

Vec3 pDisplace

for each Particle np in neighbours of p :

v = np.position - p.position

a = 1 - (v.length / k)

displacement = timeStep^2 * (p.pressure * a + p.nearPressure * a^2) * v.normal

np.position += displacment * 0.5

pDisplace -= displacement * 0.5

p.position += pDisplace

7.1.6 Viscosity

Viscosity is a measure of the thickness of a liquid, for example oil has a high
viscosity. In terms of SPH the application of viscosity may be omitted and still
produce fluid like behaviour, however with viscosity the simulation can be used
to produce various types of fluid, and generally gives more control over the look
of the simulation.

The viscosity calculations are carried out for the particle and each of its neigh-
bours.

Pseudocode
for each Particle p :

for each Particle np in neighbours of p :

v = np.position - p.position

u = dot((p.velocity - np.velocity), v.normal)

if (u > 0.0) :

a = 1 - (v.length / k)

impulse = timeStep * a * (linearVis * u + quadraticVis * u * u) * v.normal

p.velocity -= impulse * 0.5

np.velocity += impulse * 0.5

23

The variable u stores the projection of the difference in velocities of the two
particles onto the vector between them. Checking if u > 0 means we are only
applying viscosity to particles that are on a collision course. The constants lin-
earVis and quadraticVis control the level of viscosity. For more viscous fluids,
increase linearVis. For less viscous fluids linearVis may be reduced but quadrat-
icVis should still remain > 0, as it is used in reducing velocity inside the fluid,
away from the surface [12]. Without viscosity applied a potential unwanted
behaviour is for the fluid to be constantly swirling without coming to a rest.

7.1.7 Advection

Particle positions are moved along based on their velocity. The particle’s previ-
ous position is also stored before the advection, which will be used in updating
the velocity in a later step.

Pseudocode
p.previousPosition = p.position

p.position += p.velocity * timeStep

7.1.8 Updating Velocity

Using the previous position and current position the velocity is updated. This
is necessary as the velocity is not the only factor in moving the particle. The
displacement step will move a particle’s position not based on velocity, as will
collision response.

Pseudocode
p.velocity = (p.previousPosition - p.position) / timeStep

7.1.9 Collision detection & Response

Collisions and response with non axis-aligned planes and rectangles are imple-
mented in this project, which are used to create a container for the fluid, and
cuboid obstacles for the fluid to interact with.

Given a particle position, to calculate the distance to a plane the following is
used [18]-

Pseudocode
dist = dot((p.position - pointOnPlane), planeNormal)

If dist is less than the collision radius of the particle then the particle is colliding
with the plane.

24

However, the above collision detection only considers an infinite plane, with no
edges. For a rectangle, there must first be a check whether the position falls
within the bounds of the rectangle, and then check the distance to the surface
with the above.

For a rectangle where we know two vectors, from corner 1 (c1) to corner 2 (c2),
and c1 to corner 3 (c3). We project the position of the particle onto these
vectors, and if it falls within the length of these vectors, it is within the bounds
of the rectangle.

Pseudocode
projection1 = dot((p.position - c1), (c2 - c1)) / (c2 - c1).lengthSquared

projection2 = dot((p.position - c1), (c3 - c1)) / (c3 - c1).lengthSquared

if projection1 >= 0.0 and projection1 <= 1.0 and projection2 >= 0 and projection2 <= 1 :

checkDistanceToPlane()

Resolving Collision

The velocity is reflected in the direction of the plane normal and the particle
position is set back to be outside the plane [19].

Pseudocode
p.velocity = p.velocity * -2 * dot(p.velocity, planeNormal) * planeNormal * bounceCoefficient

The bounceCoefficient is a constant between 0 and 1 that can dampen the
velocity.

7.1.10 External Forces & Interactivity

External forces such as wind or gravity are applied to each particle’s velocity -

Pseudocode
p.velocity += externalForce * timeStep

Interactivity

A small level of interactivity is added to the 2D implementation of the fluid
where a left mouse click will attract fluid within a certain radius of the click,
and allow it to be thrown. The right mouse click does the opposite, repelling
particles that are within that same radius.

25

This is done by getting the position of the mouse while clicked, in world space.
The linear kernel function used in the fluid calculations is also used here. Par-
ticles that are closest to the mouse click will be most strongly affected by the
pull to its position. The pull or push is applied as follows -

Pseudocode
v = mousePosition - p.position p.velocity += v * (1 - (v.length / effectRadius)) * strength
* timeStep

strength is a constant that will control how strong the pull/push is, however, if
the left mouse button is clicked for a pull, the strength is positive, if the right
mouse button is clicked it is negative. This is applied in the external forces step
of the simulation.

7.2 GPU Implementation and Memory Synchonrization

As well as a fully CPU implementation, two GPU solutions were made for this
project, both using Compute Shaders and SSBOs. In both of the implemen-
tations Compute Shader programs were created for each of the following steps
-

Advection

Density, pressure and displacement calculations

Viscosity calculations

Collision detection and response

Separate SSBOs were created to store the particle data -

Position

Previous position

Velocity

Density

Near density

Pressure

Near pressure

Neighbours

All of the SSBOs matched their data types from the CPU side except for the
Neighbours SSBO. In the CPU implementation, each particle stored a list of
pointers to other particles. As the size of SSBOs must be allocated when it is

26

generated, a list data structure cannot be used, which is useful for a moving
particles that will have a variable number of neighbours every frame. Therefore
a maximum number of neighbours is defined, that should be high enough that
there are never, or rarely, more neighbouring particles than can be stored, but
low enough as to not waste memory.

The neighbours are stored as ints, which will be the index of a particle in the
other SSBOs. The neighbour SSBO is not the same size as the other SSBOs due
to storing MAX_NEIGHBOURS number of ints for each particle. The index
of each particle’s neighbours in the SSBO therefore starts at (particleIndex *
MAX_NEIGHBOURS).

Before the neighbours array is filled, all elements are set to -1, which indicates
there is no neighbour. The neighbours are then filled for each particle, starting
at the beginning of the memory allocated for each particle. When particles are
later running through their neighbours, when a value of -1 is found, we break
from the loop as there are no neighbours remaining.

Constants such as kernel length etc. are defined as uniform variables in the
shaders.

As each step of the fluid calculations must be completed before the next begins,
this must be taken into consideration when invoking the shader programs. The
function glMemoryBarrier(GL_SHADER_STORAGE_BARRIER_BIT), called
on the CPU after each shader dispatch makes sure that previous OpenGL invo-
cations are complete before the next begins, in this case specifically for the use
of SSBOs.

7.2.1 Half GPU Implementation

The first of the GPU implementations keeps the neighbour searching on the
CPU using the octree method with the remaining fluid calculations carried out
on the GPU. This meant that very frame, the buffer containing the positions
had to be written to memory on the CPU, so the positions could be used in
the neighbour search. The neighbours SSBO would then be re-mapped with the
appropriate data.

The neighbour search on the CPU was a limiting factor for performance. Read-
ing and writing data back and forth from the GPU also incurred a heavy perfor-
mance cost, making this an ineffective solution to speeding up the simulation.

7.2.2 Full GPU Implementation

The next implementation moved the neighbour search to the GPU, and changed
the method from an Octree to the Simple Grid method from section 7.1.2. Two
Compute Shader programs were added to fill the grid with particles, one to clear

27

the grid every frame, and one to run through every particle and add it to the
appropriate cell in the grid.

An SSBO is added to represent the grid, which is structured much like the neigh-
bours SSBO. The grid SSBO is of type int and is divided into cells. Like the
neighbours SSBO a maximum number of particles each cell can store is defined.
The first element of each cell stores the number of particles, and the next three
store the x, y, z index position of the cell, with the next MAX_PARTICLES_PER_CELL
storing the indices of particles in the cell. Therefore the size of each cell is (4 +
MAX_PARTICLES_PER_CELL).

7.2.3 Memory Synchonisation

As many of the fluid calculations use neighbours attributes, there is potential
for the same memory to be read from and written to by two threads at the
same time. For example if two threads are looking at two particles which are
neighbours to each other, or share the same neighbours.

Similarly when filling the grid with particle indices on the GPU. To fill the
grid, each particle is looked at and the position in the grid is found, where it
will then be added to the grid. Particles are added to the correct place in the
grid SSBO depending on the number of particles currently in the cell, and so
multiple threads may be trying to read this number of particles at once and
then increment it by one when adding a particle.

Reading and writing to shared memory in parallel programming can lead to in-
consistent results as what is written in one thread, may not be visible in another
thread to read or write to [6]. This could lead to some strange behaviours in the
half-GPU implementation where neighbouring particles are displaced and have
velocity changed due to viscosity. For full-GPU implementation the problem
was more grave as the grid could not be filled with the correct data, meaning no
particles would have any neighbours stored, and therefore the fluid calculations
had no effect.

Atomic Functions

One solution to this is to use atomic functions to alter SSBO data [5]. uints, ints,
and floats (with the GL_NV_shader_atomic_float extension enabled) can be
used in atomic functions. For example

atomicAdd(inout nint mem, nint data),

takes in a value mem and adds data to it. This can solve the problem when
SSBO values need only be written to, however if they are read to, the original,
unaltered value will still be read despite the atomic function.

28

Memory Barriers

GLSL contains memory barrier functions that are used to give control over the
order of memory accesses [6]. The use of the function memoryBarrier() ensures
that all memory transactions before the call must be completed before any other
thread may make that memory transaction [6]. This can be used in combination
with the function barrier(), which will halt threads at that line until all threads
have reached it.

Despite the available functions, this remained an unresolved problem come the
end of the project.

8 Further Work

Resolving the memory synchronisation problems would be essential in contin-
uing the work of this project. An exploration and analysis of other available
GPGPU APIs, CUDA and OpenCL would also be an area that would merit
further work. In terms of the fluid simulation, the elasticity area of Clavet et al.
has yet to be implemented, as well as the stickiness of the fluid. This, as well
as adding more comprehensive collision detection, for more primitive objects as
well as complex polygonal shapes would greatly improve the effectiveness of the
simulation in more practical applications.

References
[1] Bailey, M. OpenGL Compute Shaders,http://media.siggraph.org/education/conference/S2012_Materials/ComputeShader_1pp.pdf,

2012, [Online; accessed July 2016]

[2] OpenGL.org, Transform Feedback, https://www.opengl.org/wiki/Transform_Feedback, Au-
gust 2016, [Online; accessed July 2016]

[3] Apple Inc., https://support.apple.com/en-gb/HT202823, August 2016, [Online; accessed Au-
gust 2016]

[4] Khronos Group, glTransformFeedbackVaryings, https://www.opengl.org/sdk/docs/man/html/glTransformFeedbackVaryings.xhtml,
[Online; accessed July 2016]

[5] OpenGL.org, Compute Shaders, https://www.opengl.org/wiki/Compute_Shader, May 2016,
[Online; accessed June 2016]

[6] ARM Mali, Introduction to Compute Shaders,
http://malideveloper.arm.com/resources/sample-code/introduction-compute-shaders-2/,
[Online; accessed August 2016]

[7] OpenGL.org, Shader Storage Buffer Object, https://www.opengl.org/wiki/Shader_Storage_Buffer_Object,
December 2015, [Online; accessed June 2016]

[8] OpenGL.org, Interface Block, hhttps://www.opengl.org/wiki/Interface_Block_(GLSL),
June 2015, [Online; accessed July 2016]

[9] W. T. Reeves. Particle systems; a technique for modeling a class of fuzzy objects. ACM
Trans. Graph., 2(2):91–108, April 1983.

29

[10] Monaghan, J. Smoothed particle hydrodynamics, Annual Review of Astronomy and Astro-
physics, pp. 543–574, 1992.

[11] Muller, M., Charypar, D. and Gross, M. Particle-based fluid simulation for interactive appli-
cations, SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, pp.
154– 159, 2003.

[12] Clavet, S., Beaudoin, P. and Poulin, P. Particle-based viscoelastic fluid simulation, SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer anima-
tion, ACM, New York, NY, USA, pp. 219–228, 2005.

[13] N. Foster and D. Metaxas. Realistic Animation of Liquids. Graphical Models and Image
Processing, 58(5):471– 483, 1996.

[14] Stam, J. Stable fluids., Conference Proceedings, Annual Conference Series, 1999.

[15] Jiang, C. Schroeder, C. Selle A. Teran, J. Stomakhin, A. The Affine Particle-in-cell Method,
ACM Trans. Graph. 34, 4, Article 51, 10 pages , August 2015.

[16] Bridson, R., Fedkiw, R. and Muller-Fischer, M. Fluid simulation: Siggraph 2006 course
notes, SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses, ACM, New York, NY, USA, pp.
1–87, 2006.

[17] Teschner, M. Heidelberger, B. Muller, M. Pomeranets, D. Gross, M. Optimized Spatial Hash-
ing for Collision Detection of Deformable Objects, VMV, Munich, Germany, November 2003.

[18] Weisstein, Eric W. "Point-Plane Distance." From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Point-PlaneDistance.html, [Online; accesed August 2016]

[19] Kelager, M. Lagrangian fluid dynamics using Smoothed Particle Hydrodynamics, January
2006.

30

