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In memory of my grandpa:

My grandpa used to wear a blue jacket. I have not ever asked where he bought it,

but I assume he took it in the cloth shop he built from scratch, and called with his

wife’s name.

My grandpa used to give hidden tip to the bartender to get extra olives for his

grandchildren, while he pretended to look at his wine.

Lately, my grandpa used to forget things, that is why my grandma received birth-

day’s cakes several times a year (none of them in the right date).

My grandpa was sometimes very grumpy, but his smile warmed more than the

Sun.

My grandpa always gave me the money for the bus when I left on Sundays, even

when I left to other country with an Erasmus scholarship.

My grandpa agreed to my mother that buying me a car could be dangerous, but he

gave me driving lessons on Fridays’ afternoon.

When I was younger, I was always crying because I did not want to attend to a

piano lesson with a very tough teacher, but suddenly one day she was lovely; later I

discovered she had met my grandpa.

My grandpa used to build kites with old papers from the cloth shop, pasting them

to wooden sticks with hot potato. One day he put a kite higher than the clouds.

Other day he arose from a sea of spiny plants with a lost kite on his hand shouting:

”I won’t fly it again!”. But he did.

My grandpa once caught a falcon.

When I was young, my grandpa told me that some turtles used to stay very quiet

for a long time. After discovering that my turtle died, I knew that my grandpa had

gone hidden to the pet shop to try to buy another one, but they did not have more.
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When I got older, my grandpa always reminded me to carry socks to excursions;

not the ones which come in pairs, but the ones which come in boxes of six or twelve.

Every night my grandpa gave me a cup of chamomile. Once, I threw it with my

elbow and he shouted at me, and I ran to my bed crying. I do not remember how

much time later, but it was exactly the time chamomile requires to be done, because

there he was, waking me up, grabbing a cup with both hands.

Girls called me many things, even tons of them did not ever call me at all. But

once, one said to me that I was authentic. My grandpa was authentic, genuine. He

was a real person, a real human being.

My grandpa taught me the value of a good heart, a sharp mind and big nuts.
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Abstract

The use of crowds in films and games requires time and money, either hiring extra

cast or animating 3D characters by keyframing. This thesis presents an approach to

simulate crowds employing an agent-based model. Although many researches have

been done in this field, the method proposed here has significant differences which

enhance flexibility and scalability and achieve realistic results. The simulation is

entirely driven by the individual script-based behaviours. In this way, the group

behaviour of the crowd will emerge from the individuals; from how they interact

with each other and with the environment. Hence, very complex simulations can

arise from simple behaviours.
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Chapter 1

Introduction

Currently, the presence of crowds in visual pieces, let they be films or video games,

has acquired a lot of relevance. Scenes with a crowded train station, big streets full

of pedestrians, tons of animals in a flock, troops of robots, hordes of zombies or

armies of warriors can be found very often in modern films and games.

In the past, not many films could afford this kind of resources in their scenes,

since the only way of having more characters was actually including more characters

in the cast. The use of extras highly increases the cost of a production, besides the

requirement of a strict coordination and proper training in some situations. One of

the reasons of the boom of big masses in films was the arrival of new technologies in

computer graphics and artificial intelligence. Alongside with this, the generation and

simulation of virtual crowds became a reality, saving money and time and making

the use of crowds affordable to big and small studios.

Other of the reasons of the popularity of big groups of individuals featured in films

is the strength they give to a shot. It is not only a matter of fact that crowds are

visually stunning and their magnificence captures the attention of the audience, but

also they are powerful tools to tell and enrich a story. At this point of time, it could

be hard, if not impossible, to imagine the saga of the Lord of the Rings without

those epic battles of tens of thousands of warriors, or imagine the breathtaking

apocalyptic scenes without those milliards of zombies wandering around.
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Closely tied to the idea of crowd simulation, the concept of behaviour appears.

This is what gives life to the crowd and makes the spectator perceive the group

nature of it. An army of brave warriors in a battlefield will find enemies and will

show aggressive movements; on the other hand, on a ballroom gentlemen and ladies

will dance graciously.

(a) Crowd in a train station (b) Troops of droids (Star Wars)

(c) Horde of zombies (World War Z) (d) A Battlefield (Lord of the Rings))

(e) A Ballroom (f) One vs Many (Matrix)

Figure 1.1: Crowd scenes

The aim of this project is to propose an approach which gives the flexibility to

simulate any sort of crowd needed for a scene. Taking base on how the real world

works, this method is based on the principle that the group behaviour is determined

by the specific behaviours of every individual. And here is where one of the main
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ideas for this project appears: Emergent Behaviour.

Leonard Kleinrock, professor of computer science in UCLA, states that emergent

behaviour is unanticipated behaviour shown by a system (Kleinrock, 2011). Once a

system is designed and defined by certain rules or mathematical equations, it may

configure itself in a way that could not be anticipated. The interaction of a large

number of simple individual things is very hard to predict; the complexity does not

reside in the individuals, but on the way they are interconnected and they interact

to each other. Professor Kleinrock proposes this example: “we might know how a

bunch of children behave when they are alone, but once you put them together in a

group, you will observe behaviours that will surprise you”.

Subsequently, how a real crowd behaves is something hard to predict, and how

realistic it is depends directly on how realistic each individual is.

This thesis is structured as follows:

• Chapter 2: Related Work. It explains the previous approaches in this

field, the similarities and differences to the proposed method, as well as the

advantages and drawbacks they present.

• Chapter 3: Technical Background. Physical concepts, flocking algorithms

and the force-based virtual world model; and state machines and how they can

be used to model behaviours.

• Chapter 4: Agent Based Model. This is where the current method

starts to be explained into details, using a bottom-up approach. This chap-

ter presents how agents are modeled, the parts which form them and their

properties, as well as how they communicate to each other.

• Chapter 5: Crowd Engine. Here the core of the approach is introduced.

It is explained how to handle the agents efficiently, how the virtual world

is designed employing a physically-based approach, and how messages and

collisions are faced.

• Chapter 6: Applications and results. A pipeline where this methodology
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might fit in a real production situation is presented. Some results of different

tests will be shown in this chapter; a set of individual behaviours will be pre-

sented and the emergent behaviour observed will be explained and discussed.

• Chapter 7: Application design and implementation. The design and

implementation for the application based on this approach are exposed.

• Chapter 8: Conclusion. A final concluding chapter will summarize the

whole approach, mentioning the main advantages and drawbacks, as well as

presenting potential lines for future work.
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Chapter 2

Related work

Generating crowds is a problem that has frequently been faced in the field of com-

puter graphics and artificial intelligence. Numerous solutions have been proposed,

following different approaches and applying different ideas and concepts. Crowd mo-

tions can be created by planning or simulation, and even some researches propose

hybrid approaches.

2.1 Motion Planning for Crowd

Opposite to the philosophy of this thesis, a substantial sum of research establishes

that a crowd is not only a group of individuals and involves problems that should

be handled at the group level, making use of pre-planned techniques. Frequently,

strategies such as virtual force fields, navigation fields, motion planning, navigation

graphs, etc. are employed to drive the movement of the whole mass, forgetting by

all means the individual nature of the crowd. S. Musse et al. state that a motion

planning for a group walking together requires more information than an individual

motion planning (Musse & Thalmann, 2001). In addition, this research claims for

the need of model behaviours at the level of groups and crowds in order to acquire

the beauty of synchronization, homogeneity and unity.
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Figure 2.1: Motion Planning for Crowd using Navigation Fields (Patil et al., 2011)

Extending the control vertically, in (Musse et al., 2005) a hierarchical model for

real time simulation of virtual human crowds is proposed allowing different control

features at levels of crowd, groups or individuals. This is an example of hybrid

approach where it is possible to increase the complexity of crowd-group-individual

behaviours according to the problem to be simulated.

By means of these techniques, it was visually proven that very convincing and

realistic results can be produced. Nevertheless, the identity and the decision capacity

of each of the individuals is partially if not completely lost.

2.2 Crowd Motion Simulation

Purely simulation strategies, which is the case of this thesis, discard any pre-planned

decision and the final result is entirely based on the global consequences of local

interactions of members of the population. This is known as Agent-Based Model or

Individual-Based Model. It will be detailed in Chapter 4 and for further information

check (Reynolds, 1999).

The main idea this thesis is settled on is the simple principle stated by C.

Reynolds, the pioneer of flocking behaviours, which claimed that very simple rules

can arise emergent behaviours without involving any central coordination. Notice

again the concept of emerge.
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One of the earliest works in group behaviours was Craig Reynolds’ flocking al-

gorithm which was a distributed behaviour model for flocks, herds and schools

(Reynolds, 1987). The individuals of his flocking system are called “Boids” and

are subjected to three simple rules: cohesion, alignment and separation.

This classic research not only presents a flocking algorithm, but also establishes

a turning point proposing an individual virtual force model as the way to affect how

each agent move. The approach presented in this thesis has adopted that model.

Figure 2.2: Flocking System following the Virtual Force Model proposed by C. W.
Reynolds (Reynolds, 1987)

Starting from this robust and solid idea, tons of research paths can be taken

in order to acquire and compare different approaches for crowd simulation. For

instance, C. Wang & T. Li suggest an evolving crowd motion simulation (Wang & Li,

2006). In that research, the use of genetic algorithms is proposed to generate optimal

virtual forces according to the given environment and desired movement behaviour.

Although Craig Reynolds presents a base-approach which models very accurately

the way crowds behave in the real world, the main disadvantage is that configuring

the forces to generate desired motion behaviours remains empirical. And again, we

are witnesses of a characteristic inherent to emergent behaviours.

2.3 MASSIVE Software

MASSIVE stands for Multiple Agent Simulation System in Virtual Environment

and is a software developed by Stephen Regelous in Weta Digital, as a request from
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Peter Jackson to recreate those epic battle scenes that Tolkien described in the

books of the Lord of the Rings. Massive has contributed to the creation of many

awarding visual effects, particularly the battle sequences; and due to this, it has

been developed into a complete product and has been licensed by many other visual

effects houses.

Figure 2.3: Award winning battle scene from ’The Lord of the Rings: Return of
the King’

Massive introduces a very interesting model approach which consists of treating

each agent as a combination of a body and a brain. The body defines the physical

characteristics of the agent and the brain is a fuzzy logic network which controls

the actions of the agent such as following an arbitrary terrain, avoiding obstacles or

interacting with other agents. This thesis has adopted this natural design combined

with the flexibility that scripting languages provide.

Each action is associated to a pre-recorded animation, rather obtained from mo-

tion captured session or hand-animated, and will be blended between them in order

to achieve the movement of the character. Apart from Artificial Intelligence features,

it includes other abilities such as Rigid Body Dynamics (RBD), cloth simulation or

GPU rendering.
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Chapter 3

Technical Background

The background needed for doing research on engineering or any technical discipline

is extremely important, and frequently is what makes the difference between a solid,

consistent and robust study from a weak one. Many mathematical and physical con-

cepts (specially physical) are critical to understand analytically the ideas, reasoning

and logical models presented in this research.

This chapter intends to describe formally the main ground concepts where this

thesis is settled on. Although this may only be a brief glimpse of all the ideas applied

directly or indirectly, and a much finer conceptual background might be developed,

this should be enough for following the approach.

The source consulted to write this section was the chapter A Maths and Physics

Primer, in the book Programming Game AI by Example (Buckland, 2005).

3.1 Physics

In any research that involves modelling the real world, physical rules will acquire

a fundamental role, particularly the ones concerned with motion. Next, the key

concepts to understand the virtual force model will be presented.
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• Time. This is a concept that everybody has in mind. Physically speaking,

time is a dimension in which events can be ordered from the past through the

present into the future. It is a continuous scalar quantity with no direction

measured in seconds. Time in computer simulations and computer games

might be measured in seconds, like in the real world, or in virtual seconds or

ticks. This will be discussed more in depth in Chapter 7: Application Design

and Implementation.

• Mass. It is a scalar quantity measured in grams, and it is the measure of

an amount of something. This property is directly linked to how fast bodies

change of state. For example, if we imagine two people with the same proper-

ties except mass, the one with higher mass will require more time to change

from standing to running.

• Strength. It is the scalar quantity which defines the physical power a person

or animal has. Notice that this property is inherent to an individual and does

not have direction, if it had, we would be talking about force, concept that will

be introduced later. And again, this is related with how fast bodies change of

state. The bigger strength, the faster change.

• Position. These are the location coordinates of a specific point related to an

origin. This is not as simple as it might seem, because bodies have a volume,

so which exact position a body has, is a controversial discussion. Normally the

centre of mass is used to determine the position, but other points can be used

depending on the approach. In order to calculate the movement, we need to

know the rate of change of the position, both the magnitude and the direction.

• Velocity. This is the vector which defines the rate of change of distance over

time. Its standard unit of measurement is m/s. Mathematically it can be

expressed as follows:

v =
∆x

∆t
(3.1)
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• Acceleration. It is a vector which defines the rate of change of velocity over

time. Acceleration is written as m/s2, and expressed by:

a =
∆v

∆t
(3.2)

• Force. This is the main element of the physical model followed by this thesis.

According to Isaac Newton: “An impressed force is an action exerted upon

a body in order to change its state, either of rest, or of uniform motion in a

right line”. Therefore, a force is a quality that can alter an object’s speed or

line of motion. It is measured in Newtons and represented as a vector, with

both magnitude and direction

We know that in order to change the position of an object (to move it), it is

needed to make its velocity greater than 0, and to achieve that, there has to exist

an acceleration. Basically, what the object is experimenting is a change of state due

to an acceleration produced by forces.

Newton’s second law states the relatioship between an object’s mass m, its ac-

celeration a, and the applied force F by the equation:

F = ma (3.3)

Therefore, this gives us the key to perform a physically based simulation. Accord-

ing to everything mentioned before, the motion an object experiments in a physically

based virtual world can be calculated after synthesizing all the forces applied over

it:

1. a = Ftotal

m

2. vt+1 = vt + a

3. pt+1 = pt + vt+1

12



3.2 Reynold’s Flocking Algorithm

Craig W. Reynolds proposed in 1987 a model to simulate natural group behaviours

such as herds, flocks or schools (Reynolds, 1987). This is a very powerful mechanism

to use in crowds, besides sharing the principles this thesis is based on. The method

works by applying three simple rules to each individual of the flock, which Reynolds

called boids, that make them move as a unit.

(a) Cohesion Rule (b) Separation Rule (c) Alignment Rule

Figure 3.1: Reynolds’ Model Rules

Each boid knows a set of neighbours in the flock which influences its movement.

Only the ones that are within a certain distance are considered neighbours, and the

rest are ignored; thus, boids have local conscience of the flock. According to the

virtual force model, those simple rules produce these three steering forces:

• Cohesion. This force makes the boid to move towards the centre of mass of

the neighbourhood so that they remain close to each other.

Let p be the position and v the velocity of the current boid, pi the position of

the neighbour i and n the number of neighbours:

centreOfMass =

∑
n

i=1
pi

n
(3.4)

cohesionForce = normalize(centreOfMass− p)− normalize(v) (3.5)
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• Separation. This force makes the boid to move away from its neighbours, to

avoid remaining too close.

Let p be the position of the current boid, pi the position of the neighbour i, di

the distance to the neighbour i and n the number of neighbours:

separationForce =
n∑

i=1

normalize(p− pi)

di
(3.6)

• Alignment. This attemps to keep the boid aligned with their neighbours.

Let p be the position and v the velocity of the current boid, pi the position

and vi the velocity of the neighbour i and n the number of neighbours:

averageHeading =

∑
n

i=1
normalize(vi)

n
(3.7)

alignmentForce = averageHeading − normalize(v) (3.8)

3.3 Finite State Machine (FSM)

Finite State Machines, or FSM, have been the main instrument of choice to imbue

an agent the illusion on intelligence. Some of the reasons are these:

• Quick and simple to code

• Easy to debug
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• Little computational overhead

• They are intuitive

• They are flexible

Historically, a FSM is a rigidly formalized device used by mathematicians to

solve problems, whose precursor might be considered the Turing Machine. The idea

is to decompose an object’s behaviour into easily manageable “chunks” or states.

For instance, a light switch is a very simple FSM where off and on are the states.

Transitions are made by the input of the fingers. By clicking the switch up it

triggers the transition from off to on, and by clicking the switch down it triggers the

transition from on to off. There is no action associated with the off state, but when

it is on, the electricity is allowed to flow and light up the room.

Figure 3.2: Light Finite State Machine

As mentioned above, one of the main advantages of FSM is that they are very

intuitive. It is human nature to think about things as being in one state or an-

other. Humans do not really work like FSM but sometimes it is useful to think our

behaviour in this way. It is fairly easy to break down an agent’s behaviour into a

number of states with associated actions and to create rules to transit among them.

One feature that notably enhance the power of FSM and allow intercommunica-

tion among agents is the message passing support. Intelligent agents can send and

receive information to each other, and act upon it. This is a model which reflects

quite accurately how real interactions work. This messages are sent in the form of
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packets of data to other agents, which might influence their behaviour triggering a

transition to a different state. If an archer sends an “arrow” message to an enemy,

this might respond changing his state from alive to dead.
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Chapter 4

Agent-Based Model

After an introductory chapter and a background overview, this is where this docu-

ment starts dealing with the particular approach studied in this thesis. The solution

will be presented following a bottom-up explanation line, since the author believes

that it will be clearer for the reader and is the way behaviours emerge. Thus, in this

chapter the abstract model for an individual which belongs to a crowd, and which

lives in the virtual world, is explained into details. This individual, which will be

referred as agent from now on, is the element that will encapsulate the intelligence

of the system. Therefore, this approach is based on individual intelligent agents

rather than any global mechanism, from whose interactions a group behaviour will

arise. As stated before, the crowd behaviour will have as much quality as the agent

behaviours have.

Next Chapter will take a wider vision presenting the concept of crowd and the

world which holds the complete simulation.

“An autonomous agent is a system situated within and a part of an environment

that senses that environment and acts on it, over time, in pursuit of its own agenda

and so as to effect what it senses in the future” (Buckland, 2005)

Since the old Greece, some philosophers argued about a spiritual division between

soul and body, other scientists consider the ability of thinking something that escapes
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the bounds of the physical body. Without going such further, this thesis presents

an abstract agent model divided in two parts: a body and a brain.

4.1 Agent Body

This part is the one which is materially in the world, and there is no intelligence

in here. It is completely physically based and most of its attributes are immutable

during a simulation. The body represents how big an agent is, or how fast it is,

etc. This way, an agent might be big and slow or small and fast. These attributes

might even limit the capacity of decision of the thinking partition of the agent.

Let us imagine a situation where a prey’s brain desperately keeps requesting for

increasing the velocity to escape from a predator, but the body cannot perform a

higher speed. Next, the list of the physical properties which define the body of an

agent are presented.

4.1.1 Physical Properties

• Mass. The mass of an agent determines how much acceleration a force pro-

duces on it. Taking the assumption that agents have comparable densities, it

is also employed to visualize their size

• Strength. This will influence in the prime mover force, which is the force an

agent applies on itself to move in the space. Therefore, having agents with the

same mass, the strong ones will have the ability of opposing to external forces

easily and to produce more self-acceleration, changing their velocity faster.

The strength might vary if, for example, the agent gets tired or receives any

sort of damage.

• Maximum Strength. This is the amount of strength that an agent has when

it is fully recovered.
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• Velocity. This is the current velocity that an agent possesses and, contrary to

the strength, this attribute has both magnitude and direction. This is the rate

of change of the agent’s location; thus, it is used to obtain the next position. It

is calculated with the acceleration that the total force produces on the agent.

• Maximum Speed. This is the higher punctual speed that an agent can move

in the world with. Do not confuse this with how fast an agent can change of

physical state, which is related with forces and mass (acceleration). Consider

the next example: a cheetah can change from 0 to 100 km/h in a matter

of seconds (high acceleration); on the other hand, a high-speed train, which

needs a lot of force (strength with direction) to move such a big mass, has much

smaller acceleration, but it can travel at 200 km/h (high maximum speed).

• Vision Radius. This property determines which portion of the world the

agent is aware of. This is mainly used to calculate the other agents that

one agent can perceive, which will conform its neighbourhood. Therefore, an

explorer may have a large vision radius, meanwhile a blind agent will have

vision radius 0, and will need to receive information about the world by other

means, such as somebody whispering at its ear (message passing).

Figure 4.1: One single agent with its physical properties
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At this point, a comment regarding to the development of this method might be

pertinent. How an agent’s body behaves in the virtual world is uniquely ruled by

physical laws. The brain might say “move up” and apply a force towards the sky

but if this force is smaller than the gravity, then the agent will descend. Hence, the

piece of this system relative to the physical simulation or the physical properties of

an agent is something static, a fixed and solid structure which works. That is why it

is implemented in a compiled language. Nevertheless, somebody’s way of thinking

or acting, might be so diverse that it needs a flexibility that a compiled language

cannot provide.1

4.2 Agent Brain

This is where resides the “intelligence” of the agent. This piece has the responsability

of determining which motion an agent describes, how to interact with the world and

how to interact with other agents.

The main mechanism used to model a brain is a FSM, although any other device

might be used such as an artificial neural network, which is the closest to reality.

This computational box receives a set of information both from the body and from

the environment. This includes the physical properties, the current state of the

agent, a table of own attributes, a list with its neighbours and their information and

a list of the incoming messages. After processing, the brain will communicate to the

body what to do by returning certain parameters.

• Prime Mover Force. This is the instruction the brain sends to the body in

order to perform a specific displacement. This will be explained into details in

the next chapter during the section of forces, but it is basically the force that

the muscles should apply on the body to move it in a certain direction and

with certain acceleration. The direction is a free choice, but the magnitude

should be influenced by the current strength to acquire a realistic motion.

1Although the design and implementation of the approach are treated in chapter 7, the author

believes that it is convenient to mention some implementations details which are important to

understand how much flexibility and scalability this approach offers.
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• Heading. The brain can set the heading of the agent too; this is normally

established by the velocity, but there are some kind of motions, such as lateral

movements, where the heading does not point in the same direction than the

velocity.

• Strength. According to this model, it is the brain who decides how much

strength the actions of the agent consume or, by the contrary, how fast it

recovers. So the new strength is returned.

• State. The brain will tell to the body the new state, which might be the old

one, or a new one if some transition was triggered.

• Messages. A list with the messages to send to the agent’s neighbours. This

messages have certain type of information detailed later, and if the receiver

knows how to react upon it, its behaviour may be affected

This is where the usability and beauty of the approach arises. The behaviours are

script based; therefore, having all the gears of the system spinning properly, any new

brain can be added at any time. For the behaviours proposed, it was chosen to use a

FSM, as a simple and effective mechanism, but any other more sofisticated method

could be used. Different techniques such as movement prediction, statistical study,

evolving algorithms, etc. might be employed for developing new agent behaviours

and observe the emergent configuration of the crowd.

4.2.1 Capacity of Decision

This is what, under a physical consistency, drives the simulation. The ability that

an agent has to take decisions is the main input to produce a simulation. If we

have in mind any simple video game in where we control a character to interact

with a world, we are taking decisions, tons of them. They might be long term ones

(reach a target) or short term ones (this way seems a shortcut). Thus, the idea is

automate this task. An infinite amount of things might influence every decision we

take in real life: in which state we feel, where we are, how tired we are, which is

our physical shape, who is surrounding us, what we know about who is surrounding
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us, etc. In order to take accurate decisions, a large amount of information needs

to be taken into account, besides all the different possibilities available; that could

produce extremely complex FSM’s or other artifacts very difficult to handle.

4.2.2 The Illusion of Intelligence

Intelligence is a very complex concept. It is thought as a mental capability that

involves things such as the ability to reason, plan, solve problems, think abstractly,

comprehend complex ideas, learn quickly or learn from experience.

The Artificial Intelligence (AI) is the science which studies and develops intelli-

gent machines and software. The general problem of simulating (or creating) intel-

ligence has been broken down into a number of specific sub-problems related to the

tasks mentioned in the previous paragraph. There is no established unifying theory

or paradigm that guides AI research. Researchers disagree about many issues.

As a general rule, it can be considered that the decisions an agent takes and

behaviour it presents will tell us if it is intelligent or not. Building a simple behaviour

is a matter of minutes, building a very intelligent behaviour might require several

times the time this thesis was done in.

4.3 Interaction among agents. Message passing

The other important feature essential for an authentic emergent group behaviour

is how the individuals are interconnected, as stated in (Kleinrock, 2011). This is

acheived by passing messages, which allows communication among the agents.

A message is a package which contains information that includes:

• Agent Identification. This is used to recognize the sender of the message.

• Label. This is the string of text which contains the information inherent to the

message. A message might have any type of label, meanwhile the behaviour
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designer provides the mechanisms to handle it. It might be from an “attack”

message to a “shall we dance?” message.

• Position. The position of the sender. Take into account that having the

agent identification, we can check all the information about it looking into the

neighbours. But it might happen, that the sender is out of our vision radius.

Imagine that we hear a far shout, the only we know about it is what it says

and where it comes from.

• Strength The strength of the sender. This is use for practical purposes.

Knowing the strength of the sender allows to take richer decisions at the time

of handle it. For instance, if an “attack” arrives to us, we know the strength

associated to it; or if a strong warrior sends a “follow” message in a battlefield,

it may be a wise choice to pay attention to him.

4.4 Overview of Possible Behaviours

A behaviour is the range of actions and mannerisms made by organisms, systems,

or artificial entities in conjunction with their environment, which includes the other

systems or organisms around as well as the physical environment.

Many of some basic behaviours, which are thought as standard ones in the field of

AI, were used directly or inderectly to develop some test behaviours for this thesis.

The most classic one is the steering behaviour of the seek which directs the agent

to a target position.

Let pos be the position, velocity the velocity, and maxSpeed the maximum speed

of the agent; and targetPos the position of the target:

desiredDirection = normalize(targetPos− pos) (4.1)

seekForce = desiredDirection− normalize(velocity) (4.2)
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Figure 4.2: Seek Steering Behaviour

This is one example among many other simple behaviours such as flee, arrive,

pursuit, evade or wander (Buckland, 2005).

For this approach, more complex and varied behaviours which might involve the

previous ones were developed. The method employed was basically logical reasoning

and empirical testing, manipulating the motion by means of the prime mover force,

besides heading, state, strength and all the other features that the brain supports.

In this way, we might have simple boids that essentially follow the rules of

Reynolds’ flocking algorithm, or more sophisticated ones. Droids that stand at

a certain distance to the target to shot, warriors that send attacks to each others

where the strong ones have more chances to reach the victory, dancers that employ

forces softly to describe harmonious swings in couples, and more. The testing results

will be exposed in further details in Chapter 6: Applications and Results.
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Chapter 5

Crowd Engine

5.1 Modelling the World

Once described the agent-model based, it is time to present where all the agents live

with the superior form of a crowd. In order to model this, an entity called the Crowd

Engine is presented. It is in charge of handling all the agents and take care of the

consistence of the world. Although the agents and their interactions are what drive

the simulation, this is the core of the system, where all the pieces meet together.

The Crowd Engine stores all the agents in the world and updates them in each

tick. Besides its internal mechanism, it employs external components with specific

responsabilities, which manage different aspects of the world.

5.2 Handling Large Amounts of Agents

One of the most important problems that a crowd simulation system may present,

is the fact that it has to handle an enormous amount of agents. Routines such

as neighbour finding or collision detecion will become a cartesian product of all the

agents, which is equivalent to a computational complexity of O(n2). This means that

if our world with 10 agents requires 20 ms per tick (50 FPS) in certain machine, if
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it had 100 agents it would require 2000 ms (less than 1 FPS); and if it had 1000

agents, to update one single frame would take more than 3 minutes!

Thus, in this sort of circumstances a method called cell-space partitioning or,

sometimes, bin-space partitioning is used. This is nothing more than indexing the

space.

5.2.1 Cell Partition

With this method the space is divided into a number of cells or bins. Each cell keeps

a list of all the entities it contains. This is updated every time an entity changes

position. If an entity moves into a new cell, it is removed from its old cell’s list and

added to the current one. This way, instead of having to test every agent against

every other, we can just determine which cells lie within an agent’s neighbourhood

and test against the agents contained in those cells.

As mentioned before, this is a way of indexing and ordering the agents in the world

space. The weight of the process relies now in a search on an ordered structure (the

cell partition),which is normally implemented as a very efficient algorithm over a

b-tree.

The Cell Partition of this approach was inspired by the method proposed by Lee

et al (Lee & Cho, 2012). They suggest a method that improves the efficiency of the

search of the k-nearest neighbors in flocking behaviours.

It is used an heuristic based in this very simple statement: “ two agents that

are spatially close may share many common neighbours” (Lee, 2010). This thesis

adopted this method, slightly modified by the author to find all the neighbours in a

certain radius r (the vision radius).

The pseudo code of the algorithm is presented below. Notice that the Cell Par-

tition developed for the approach is a 2D Cell Partition due to agents represent

terrestrial creatures, but the design of the application allows scalate it at any time.

The routine findAGentsInCells returns all the agents belonging to the cells
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Algorithm 1 Efficient Neighbours Search Algorithm in radius

Require: list agents that contains all the agents in the world
Ensure: update all the neighbours
1: checkedAgents = φ
2: for all agent1 in agents do
3: if agent1 not in checkedAgents then
4: r1 = agent1.getV isionRadius()
5: agentsInCells = findAgentsInCells(agent1, r1)
6: neighbours1 = findNeighboursInAgents(agent1, r1, agentsInCells)
7: agent1.setNeighbours(neighbours1)
8: checkedAgents.insert(agent1)
9: for all agent2 in neighbours1 do

10: if agent2 not in checkedAgents then
11: r2 = agent2.getV isionRadius()
12: if cellsUnion includes agent2 vision then
13: neighbours2 = findNeighboursInAgents(agent2, r2, agentsInCells)

14: agent2.setNeighboures(neighbours2)
15: checkedAgents.insert(agent2)
16: end if
17: end if
18: end for
19: end if
20: end for
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union which includes the vision radius of the agent, and findNeighbours returns

the neighbours from those agents.

Figure 5.1: findAGentsInCells and findNeighbours procedures

According to the heuristic proposed in (Lee, 2010), it is likely to find the neigh-

bours of a close agent in the same union of cells.

Figure 5.2: heuristic for increasing the efficiency

5.3 Virtual Force Model

As mentioned repeatedly along this document, the world follows a physical approach

where forces take a fundamental role. The three main forces that will affect the
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agents, imbuing an acceleration and therefore generating the motion are: the Prime

Mover Force, the Gravity Force and the Friction Force.

5.3.1 Prime Mover Force

This is the only internal force. It comes from the agent and it could be comparable

to the muscular force which moves our body. More precisely, it is the brain who

decides the value of this force and normally, the magnitude is influenced by the

current strength of the agent.

5.3.2 Gravity Force

Gravity is the attraction that the Earth exerts on us, creating a perpendicular force

which pushes bodies towards the floor. If an agent wanted to fly, it would have to

apply a prime mover force superior to the gravity in order to achieve this. For a

jumping behaviour, for instance, not only the impulse of the agent will determine

the height of the jump, but also the magnitude of the gravity. Different values of

the gravity can produce very different simulations.

(a) Cows (b) Flying cows due to the abscence of gravity

Figure 5.3: Effects of the Gravity in a simulation
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5.3.3 Friction Force

Friction is a force that opposes to the current movement. If this force did not exist,

bodies may be in a state of constant velocity moving in straight line. Friction is

what obligates us to step on the accelerator continuously to prevent our car from

stopping. In the same way than gravity, friction may influence in simulations notably

creating different effects. Let us image a behaviour which defines couple of dancers;

by means of the friction the amplitude of the swing might be manipulated.

(a) Long swing due to null friction (b) Short swing due to high friction

Figure 5.4: Effects of the Friction in a simulation

5.4 Handling Messages

Remembering what was mentioned previously, an essential part which drives the

simulation is the interaction among agents, which this approach models by using

message passing. Each agent has an inbox messages list, and the crowd engine acts

as the postman. The brain tells what messages it wants to send and to who, and

they are packaged and sent by the engine. One disadvantage of this solution, or at

least something that we need to be aware of, is that this might produce a loss in

synchronization. Depending on the order of updating of the agents, some messages

might be sent in one tick and received and processed in the next one; whereas others

might be sent, received and processed in the same tick. This is not a serious problem

but might produce collateral issues.
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5.5 Collision Detection

Although it is not the main aim of this thesis, some simple physics engines with

some collisions detection mechanisms were added. In first place, the checking of the

collisions was done by means of a radius, only on the plane XZ (an infinitely long

vertical cylinder) due to most crowds are formed by terrestrial agents; later, it was

added a physics engine based on the bounding box which enhanced the flexibility

of the simulations. The author may insist that the collision detection is not the

target of this thesis; as future work lines, more complex features in collisions would

improve notably the power of this crowd simulator approach.

5.5.1 Bounding Cylinder

The first physics engine supports a simple radius-radius collision checking. Despite

very simple, it is fairly enough to execute the simulation and appreciate the emerging

behaviours. This process adjusts position and velocity if a collision occurs, and if by

some reason some agents are partially overlapping, it only allows the actions which

move away one from each other.

(a) Narrow Collision Radius (b) Wide Collision Radius

Figure 5.5: Cylinder Collision Radius

Manipulating the collision radius, it is also possible to alter the simulation to

achieve different situations.

31



(a) Romantic atmosphere (b) Problems in the relationship

Figure 5.6: Changing agents’ separation with the Cylinder Physics Engine

5.5.2 Bounding Sphere

Latterly, a bounding sphere physics engine was incorporated to the system. Basi-

cally, it does the same than the cylinder-based engine, but also in the Y axis. This

allowed adding more complex behaviours in terms of spatial motion, such as jump-

ing agents which fall over others or obsessive agents which might climb onto others

to reach their target.

(a) Marching zombies (b) Mountain of zombies

Figure 5.7: Sphere Physics Engine allowing climbing
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Chapter 6

Applications and Results

6.1 Possible real production pipeline

This chapter has much relevance since it exposes all the different behaviours scripted

in order to test the core and perform a set of simulations. But before doing that, it

is proposed a real pipeline where this thesis may fit in, proving that this approach

might contribute both to the game and VFX industry.

Figure 6.1: Possible pipeline
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Any simulation takes place inside a specific environment, therefore it should be

possible to import it from a 3D package. When developing this approach, the

priorities were behaviours and AI, hence this was left on a second plane. Adding

a specific terrain would allow to achieve concrete sequences where a crowd with a

particular behaviour is involved.

In order to allow the engine handle the environment, as well as complex meshes

for the agents, it would be needed an efficient physics engine able to produce an

accurate collision detection.

Besides of the previous features, the strength of this approach resides in the

flexibility of the behaviours. A script-based brain for a new type of agent can be

written, modified and added at any time, and the limitations of a behaviour are

only set by the behaviour writer. So a tool based on this approach could be used

for any sort of sequence.

The simulation might be performed in a user-assisted way, this means that the

user could adjust the different parameters that will modify the simulation. The final

behaviour emerges from the individual behaviours and their interconnections (this

is what this thesis is all about), but as mentioned in the previous chapter, there

are physical properties of the virtual world which may lead the simulation in one

direction or another.

As final step, the simulation may be exported for finer manipulation and some

animations might be attached to each one of the states of the agents.

Another alternative pipeline might be directly build a plugin that can be loaded

at runtime by a 3D full package such as Maya or Houdini.

It is worthy to mention that this thesis describes an approach; a robust and solid

base where a very flexible, high quality and productive application can be settle on.
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6.2 Test Behaviours

Some behaviours were scripted, in this case in Lua, which is the language chosen for

this specific implementation. The behaviours are presented following a structure.

First the individual behaviours are explained, in company of the FSMs used for their

development if there are, and next the emergent behaviours observed are described.

Notice that for the simulations some different dummies are used. They are just

that, dummies to make the visualization more friendly and to provide some intuitive

clues about the agent’s behaviour. But the simulation is about points, transforma-

tions and states; and the group behaviour that emerge.

All the videos are available in online platforms or in the master’s thesis website.

6.2.1 Crowds

The first test is very basic. The brain of these agents implements the basic behaviour

of a flock described by Reynolds (Reynolds, 1987). Here, the boids move on the

ground as a group of flocks kept in union by the three basic rules. So, having

different flocks interacting in the same region, it is possible to distinguish if a boid

belongs to one flock or another. The behaviour emerged here is similiar to the one

achieved when used field of forces of navigational mechanisms.

Many different situations might arise when there is contact among several flocks.

They might adjust their directions to converge in one big mass of people, they might

move parallel in opposite directions, they might diverge, etc.
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(a) Random crowd (b) Diverging crowd

Figure 6.2: Crowd Simulation

6.2.2 Droid Wars

This behaviour is a little more complex than the previous one. The brain reproduces

how a shooter battle droid acts.

Figure 6.3: Droids and targets

They patrol in flocks (green state), so that means that the three Reynolds’ flocking

algorithm rules are present here too (and in most behaviours). In the simulation,
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there are also some targets which move randomly on the ground. When a droid

sights a target (it enters in its vision radius), it changes of state and starts attacking

(red state). Targets receive the shots as messages and they decrease their strength.

If a target gets too close to a droid, the droid permutes to a state of evasion to reach

a proper distance to shot again (blue state). The FSM is presented below.

Figure 6.4: Droid’s FSM

In the next screen captures it can be observed the group behaviour that arises.

They stay at certain distance and attack together, tending to describe arcs around

the target. Even if the attack state does not implement the flocking behaviour they

group due to common targets.

(a) Droids flocks attacking targets (b) Droids evading

Figure 6.5: Droids War Simulation
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6.2.3 Zombie Apocalypse

This brain is the less complex one. This is quite logical if we take into account that

we are trying to represent zombies. It is just an obsessive behaviour which launches

the agent against the wall, trying to reach a target point by any mean.

(a) Obsessive zombies running to the wall (b) Zombies climbing to the wall

Figure 6.6: Zombie Apocalypse Simulation

What does the work in here is the sphere-based physics engine, which projects

the velocity over the tangent to the spheres. This allows that bigger agents climb

onto smaller ones. With a simulation with a number of agents large enough, the

behaviour that emerges corresponds to a group of not too smart agents, climbing

on one another to desperately reach their target, creating a huge human mountain.
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Figure 6.7: Mountain of zombies

6.2.4 A Battlefield

This example might be the more complete one, it includes several behaviours with

different characteristics that, by means of message passing, can communicate among

all of them. The warrior brain, is the classical member of a battle. It moves with

their troop and when it sights an enemy it attacks it. Contrary to the shooter

behaviour, this is a body-to-body fight so a warrior can send attacks to the enemy

stepping forward, or receive attacks having to step back. If the strength is too

critical, the warrior switches to a state of defense, sending no attack and recovering

strength. The FSM is presented below.

In the same way, it was developed a very similar brain to the warrior called

captain. The captain commands warriors and has to lead the troop to the enemy.

Thus, he has extra movement freedom besides the flocking properties. It is similar

to a leader boid.

The emergent behaviours that may arise in this situations are infinite. Normally,

after the clash of two armies, warriors will start to join in small groups, such as
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Figure 6.8: Warrior’s FSM

couples or three or four, fighting among them. Warriors that do not sight the enemy

will march together where, although the movement may be highly synchronous, their

physical properties will condition their march.

(a) Fighting behaviours (b) Sparse battlefield

(c) Dense battlefield (d) Marching troops

Figure 6.9: A Battlefield Simulation
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In order to enrich the battlefield, some extra behaviours were also developed. The

archer brain is very similar to the shooter droid, and the troll, although slower, is

capable to apply attacks much stronger than a current warrior.

(a) Flock of archer behaviours (b) Troll behaviour

Figure 6.10: Extra battle behaviours
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6.2.5 A Ballroom

To prove that not only war environments can be build with this approach, the next

behaviour intends to represent A Ballroom. To achieve this, the mechanism was

based in how an architecture client-server works, where the communication obtains

an important role.

Firstly, we have the brain of a dancer, which acts as a passive dancer most of

the time. She is waiting in the ballroom, moving randomly. The other brain is the

danceLeader, who will find for free dancers. The protocol works in this way: the

danceLeader may say “Shall we dance?” and the dancer will accept the request.

(a) danceLeader FSM (b) dancer FSM

Figure 6.11: FSM’s for A Ballroom Simulation

The individual behaviour here may have two stages. First, danceLeaders try

to find free dancers around the room and, once they find one, both start dancing

together. Thus, the emergent group behaviour that can be observed here is very

interesting; there will be many couples dancing and swinging graciously meanwhile

some others are still finding or waiting to be found.
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(a) Dancers finding partner (b) Couples swinging together

Figure 6.12: A Ballroom Simulation

6.2.6 One vs Many

In this scenario, there is one agent who has to avoid many other agents that try to

reach him. This brain was written combining forces which keep him anchored to the

centre and make him attack to the incoming enemies. If this agent feels surrounded,

he uses a super-attack to get rid of many enemies at the same time.

The brain of the enemies uses a simple state machine which distinguishes among

the states of goingToTheMiddle, attacking and onAir. This last state allows to the

enemies to know if they are in the air falling after a super attack.

(a) Blocking attacks of multiple enemies (b) Super attack to get rid of many enemies

Figure 6.13: One vs Many Simulation
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6.2.7 Jumping Party

This is another simple behaviour which includes two-state FSMs. One of the states

is onFloor, which will produce an impulse to generate a jump, and the other is

onAir, which works as in the last example.

(a) Jumpers’ states (b) Jumping dummies

Figure 6.14: Jumping Party Simulation
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Chapter 7

Application Design and

Implementation

7.1 Design

The developed application based on this approach was designed employing the Ob-

ject Oriented Paradigm, aiming for a scalable and flexible system. It counts with a

master class called CrowdEngine which is the heart of the application. The Crow-

dEngine stores all the agents and makes use of different classes in charge of other

functions. The abstract class CellPartition divides the space for an efficient han-

dling. Currently, there is an unique specialized CellPartition, the QuadraticGridCP,

but a CubicGridCP might be included. The abstract class PhysicsEngine is the

responsible of collisions and applying external physical forces such as gravity or fric-

tion. So far, there are two PhysicsEngine: CylinderPE and SpherePE. Finally, we

count with an auxiliar specialized Parser class to load agents from .txt files called

TXTParser.
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Figure 7.1: Class Diagram of the Application
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7.2 Implementation

The complete engine was implemented in the compiled language C++, employing

the NGL library and some QT functions. Nevertheless, the brains of the agents were

implemented in the scripted language Lua. In this way, it is not needed to recompile

the whole application to load and run a new behaviour.

The LuaAPI was used in order to exchange data from the state of the application

to the lua state which holds the brain-functions. Lua works using a stack, so when an

agent is executed, it pushes on the stack all the information the brain needs and calls

the brain-function. The brain pops the data and processes it, and then it will push

onto the stack all the information relative to the new tick. (Ierusalimschy & Celes,

2006)

One of the greatest advantages of this approach is the ability of script behaviours

and test them in a quick and comfortable way. Due to this, infinite emergent be-

haviours can be created.
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Chapter 8

Conclusion

This chapter closes the survey, giving a wide vision of the approach and its main

aspects. A synthesis of the method is explained, as well as a critique section which

deals with the disadvantages of it. Finally, lines for future work are exposed.

8.1 Summary

This study proposes a method to simulate crowds. The approach is based on the

principle that the group behaviour and motion a crowd describes is entirely depen-

dent on its individuals’ behaviours. Therefore, the group behaviour emerge from the

individuals and their interactions with themselves and the environment. Similarly

as the real world works, the crowd simulation is driven by the individual actions

and decisions and how realistic the crowd behaves relies on how realistic the indi-

viduals behave. This is a very interesting phenomenon where complexity emerges

from simplicity.

Taking into account the way this approach was faced, designed and the implemen-

tation that was proposed; it can be said that these aims were achieved successfully:

• Flexible and scalable approach due to scripted-based behaviours.
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• Robust and solid physically-based virtual world which holds the simulation.

• Scalable system which may include new cell partitions or physics engines in

the future.

• Easy and quickly testing of new behaviours which implements any kind of AI

techniques due to the brain’s independence.

• Adaptable to any sort of simulation.

8.2 Drawbacks

The main disadvantage of this approach is the unpredictable nature of an emergent

behaviour. It might sometimes happen that we obtain an undesired behaviour or

some collateral effect. Contrary to the motion planned approaches for crowds, sim-

ulations remain empirical and often tons of tests have to be done to achieve the

desirable configuration and motion of the crowd. But, on the other hand, this is

how real world works, since all the intelligence and decision capacity belongs to the

individuals and it is really hard if not impossible to predict how a real crowd will

behave.

Other drawback of this approach, or at least of how it is presented, is that the final

result of a crowd simulation is not shown. Due to this, it might seem an unfinished

project. What is presented here is a section of a pipeline, so the simulation is just

a collection of points with their transformations and states per tick. Take into

account that the aim of this thesis is to show the flexibility and adaptability of this

approach in order to create different crowd behaviours, not to develop a full and

complete scene.
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8.3 Future work

Some future work lines which will enhance the functionality and accuracy of the

approach are presented in this section:

• Import an environment, such as a terrain, from a 3D package.

• Export the simulation, allowing to associate each state to an animation, and

blending them altogether to generate smooth and realistic individual motions.

• Include a physics engine which handles collisions accurately.

• Integrate it in a real pipeline.
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