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Abstract

The realistic simulation of smoke motion has always been a popular demand in
the visual effects industry. However, systems that implemented this fluid be-
havior have been predominately non-interactive, high-quality offline rendering
systems. The purpose of this thesis has been to provide an efficient and inter-
active tool for the realistic simulation of smoke. A fast and efficient method for
real-time Eulerian smoke simulation on the GPU is presented. The implemented
application uses an OpenCL gas solver, along with a real-time iso-surface ex-
traction method for the rendering of the fluid.

5



Chapter 1

Introduction

Realistic smoke effects have always been a popular demand in the visual effects
industry (Stam, 1999). Being a moving unit by definition, smoke enriches any
scenery, even a standstill landscape. The more realistically smoke is rendered,
the more sight-attracting it becomes. Therefore, it is very important to render
smoke as carefully and meticulously as it could be, in order to get its full value
in the visual scenery.

The motion of smoke can be observed in many places in everyday life (e.g.,
the billowing smoke of a cigarette, or the fumes from an exhaustion pipe) and
hence, the viewers have certain expectations of what they see in a movie. Smoke
is a type of fluid, and the realistic simulation of fluid motion has started to
interest the computer graphics community since the 1980’s. However, the study
of fluids and fluid dynamics has a much longer history (Griebel et al., 1997).

1.1 Computer animation system requirements

In computer animation applications, the appearance and the motion of the
fluids are of great importance; physical accuracy plays a subsidiary role which
sometimes is even irrelevant. Moreover, it is essential to the animator who is
using the application to get interactive feedback and control on the simulation.
In other words, it is important to the user to have the ability to tamper with
the simulation, despite physical inaccuracies that may occur. Real-time results
can significantly enhance an animation production pipeline as it speeds-up the
look-development of the fluid effect.

1.2 Goal and objectives

The purpose of this thesis is to try to provide computer animators with a reliable
and easy to handle tool, which will enable them to create realistic scenes with
the use of smoke simulation. The basic requirements of the application are the
following:

6
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• Interactive feedback.

• Control over the simulation.

• High resolution simulations.



Chapter 2

Fluid simulation

This chapter serves as a brief introduction to fluid dynamics and fluid simula-
tion. Firstly, fluid flow is defined along with a suitable mathematical model.
Subsequently, some fundamental concepts of numerical simulation will be es-
tablished, in order to finally construct a practical framework for the simulation
of smoke.

2.1 Fluid motion

2.1.1 Fluids
Fluids, by definition are substances which cannot resist shear stress when at
rest (Griebel et al., 1997). They pose little resistance to deformation and are
characterized by their ability to take the shape of their container. Fluids can be
categorized in two basic types: gases (e.g., smoke, air) and liquids (e.g., water,
oil)1. They can also be distinguished as either compressible or incompressible,
in respect to whether their volume remains constant over time. However, in
computer animation it is very common to assume an incompressible and ho-
mogeneous fluid (Harris, 2004). The incompressibility condition implies that
the fluid’s volume doesn’t change or, more specifically, that the volume of any
sub-region remains constant over time. Additionally, the homogeneity of the
fluid denotes that its density is constant in space. As a result, the density of
the fluid remains constant in both time and space. It must be noted, however,
that this simplifying assumption does not constrain the realistic simulation of
any type of fluid.

2.1.2 Fluid flow
Fluid flow describes the motion of fluids. This motion is created by both inter-
actions between fluid particles and by those between the fluid and solid objects

1Plasmas and plastic solids are also fluids; however, they are of a lesser importance in the
field of computer animation.

8
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Figure 2.1: A uniform laminar stream of smoke passing through a perforated
plate. Instability of the shear layers leads to turbulent flow downstream. Pho-
tograph taken from (Van Dyke, 1988).

(Griebel et al., 1997). Fluid flow is determined by two elementary properties:
viscosity and inertia. Viscosity describes a set of frictional forces that push the
fluid towards a resting condition, while inertia represents a fictitious force that
is proportional to the mass acted upon (it is thus proportional to the density of
the fluid).

In order to understand the interaction between these two elementary prop-
erties laminar flow can be examined, since it is the simplest type of flow 2. In
laminar flow the fluid can be conceptualized as a set of individual layers (e.g.,
a deck of playing cards); when these layers are set in uniform motion and the
forward motion on the bottom layers stops, then the layers above will continue
to slide due to their inertial force. Additionally, the force on the bottom layers
transmits to other layers through friction (viscosity).

In turbulent flows on the other hand, due to small friction particles belonging
to different layers are seen to mix. This effect leads to an increased effective vis-
cosity called “turbulent eddy viscosity”. Figure 2.1 shows the transition between
a laminar and a turbulent flow.

2.2 Mathematical description of flow

Fluid flows in computer animation can be described mathematically by a set
of partial differential equations: the incompressible Navier-Stokes equations
(Griebel et al., 1997). These equations describe the interdependence between
velocity and pressure in space and time (Bridson, 2007).

∂�u

∂t
+ �u ·∇�u+

1

ρ
∇p = �f + ν∇ ·∇�u (2.1)

2From the latin word lamina which means thin sheet.
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∇ · �u = 0 (2.2)

Equation 2.1 is the momentum equation. It actually represents Newton’s
second law, according to which a body of mass subject to a net force undergoes
acceleration (�F = m�a). In simple terms, this equation describes the accelera-
tion of the fluid due to forces acting upon it. The momentum equation stands
actually for 3 equations in a wrapped up form, because the fluid’s velocity �u

is a vector quantity. With some minor rearrangements, equation 2.1 can be
rewritten as follows:

∂u

∂t
= −�u ·∇u− 1

ρ
∇p+ ν∇ ·∇u+ fx

∂v

∂t
= −�u ·∇v − 1

ρ
∇p+ ν∇ ·∇v + fy

∂w

∂t
= −�u ·∇w − 1

ρ
∇p+ ν∇ ·∇w + fz

Equation 2.2 is the continuity equation. This equation enforces the pre-
viously mentioned incompressibility condition. Thus, the momentum and con-
tinuity equations describe the motion of an incompressible and homogeneous
fluid.

The incompressible Navier-Stokes equations at first sight may appear com-
plicated. However, when the role of all individual terms in the formulas becomes
clear then the actual meaning of these equations is fully revealed and it can be
easily comprehended. In the following sub-section the equation terms will be
dissected into their elementary components.

2.2.1 Terms in the Navier-Stokes equations
The most significant quantity which characterizes the state of the fluid at any
specific time is its velocity �u (Harris, 2004). The velocity of the fluid is rep-
resented as a vector field �u : R3 → R3. A vector field is a map that assigns
a vector-valued function �u(x) for every position x = (x, y, z), in a subset of a
Cartesian space. A vector field can be visually represented by assign each point
in the field an arrow pointing to a vector direction (e.g., see figure 2.2).

The symbol p represents the pressure of the fluid and signifies the force per
unit area that the fluid exercises on its surroundings (and itself) (Bridson, 2008).
Pressure builds up in the fluid when force is applied, as fluid molecules in the
vicinity of the force push on those that lie farther away (Harris, 2004). The
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Figure 2.2: A vector field plot. Figure modified from (Weisstein, 2011).

Figure 2.3: A visual representation of a scalar field. Figure taken from (Biały,
2010).

pressure of the fluid is a scalar field; i.e., a map p : R3 → R that assigns each
point x in the Cartesian space a scalar-valued function p (x). A scalar field can
be visually represented by mapping the intensity of the field to a colour value
(e.g., see figure 2.3).

The greek letter ρ in equation 2.1 represents the constant density of the fluid.
For water, ρ is approximately 1000 kg/m3, and for air it is about 1.3 kg/m3

(Bridson, 2008). The greek letter ν in the momentum equation represents the
fluid’s kinematic viscosity (a viscous acceleration). Finally, the vector quantity
�f represents any external forces that act upon the fluid.
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2.2.1.1 Differential operators

The Nabla (or del) operator ∇ in equations 2.1 and 2.2 has three different
applications: the gradient, the divergence and the Laplacian operators (Harris,
2004).

The gradient of a scalar field is a vector of partial derivatives of the scalar
field (Bridson, 2008) (see equation 2.3). The gradient points in the direction
of steepest descent, so the negative pressure gradient points away from high-
pressure regions, towards low-pressure regions. Thus, the pressure gradient
represents the imbalance in pressure or how high pressure regions push on lower-
pressure regions.

∇p =

�
∂p

∂x
,
∂p

∂y
,
∂p

∂z

�
(2.3)

The divergence operator is the sum of partial derivatives of a vector field
(it can only be applied to vector fields) and its output is a scalar quantity (see
equation 2.4). Divergence’s physical significance is the rate at which “density”
exits a given region of space. Thus, in the absence of creation or destruction of
matter, the density within a region of space can change only by flowing into or
out of that region.

∇ · �u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
(2.4)

The Laplacian is the divergence of the gradient. It measures how far lies a
quantity from the average around it. As a result, the Laplacian of the velocity
field once integrated over the fluid volume provides a viscous force. In vector
fields the Laplacian is applied on every component separately (see equations 2.5
to 2.7).

∇ ·∇u = ∇2
u =

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
(2.5)

∇ ·∇v = ∇2
v =

∂2v

∂x2
+

∂2v

∂y2
+

∂2v

∂z2
(2.6)

∇ ·∇w = ∇2
w =

∂2w

∂x2
+

∂2w

∂y2
+

∂2w

∂z2
(2.7)

2.2.2 The Euler equations
In the turbulent flow of smoke, viscosity does not play a significant role, that is
why it is possible to drop it completely. The incompressible Navier-Stokes equa-
tions without the viscosity term are called the incompressible Euler equations
and they describe incompressible, inviscid fluids (Bridson, 2008) (see equations
2.8 and 2.9).
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∂�u

∂t
= −�u ·∇�u− 1

ρ
∇p+ �f (2.8)

∇ · �u = 0 (2.9)

From now on and until the conclusion of this thesis the Euler equations will
be assumed as the employed mathematical model of fluid flow.

2.3 Solving the Euler equations

The Euler equations cannot be solved analytically for every physical configura-
tion (Harris, 2004). However, numerical integration techniques can be used to
solve these equations incrementally, by discretizing the fluid domain.

There are two distinct approaches to discretize a physics problem in order
to numerically simulate it: the Lagrangian and the Eulerian approach (Wicke
et al., 2007). Lagrangian methods discretize the material, and thus the simu-
lation elements move with it. In fluid simulation particle based discretizations
are used, so that each particle has a position �x and a velocity �u. Each particle
of the discretization represents a part of the fluid, so mass loss due to numer-
ical error is not an issue. Moreover, moving boundaries and free surfaces are
easy to control, since the discretization moves along with the fluid. However,
Lagrangian methods are not accurate in dealing with spatial derivatives on an
unstructured particle cloud (Bridson, 2008). A popular Lagrangian method in
computer graphics is the Smooth Particle Hydrodynamics method.

Eulerian methods discretize the space in which the fluid moves and thus the
fluid moves through the simulation elements, which are fixed in space. The
simulation domain is divided into a set of volume elements called voxels. The
discretization of space does not depend on the fluid and for this reason large
deformations such as those occurring in fluid motion can be managed efficiently.
Eulerian methods are more robust in numerically approximating the spatial
derivatives of the Euler equations. However, since the discretization of the
simulation domain does not change with the fluid’s shape, interface tracking
and moving boundaries can be troublesome. Also, mass loss is possible to occur,
due to numerical dissipation and as a result it may lead to an incorrect viscous
force. Figure 2.4 shows a comparison between the Eulerian and the Lagrangian
methods.

Hybrid methods that combine the two approaches also exist. In such meth-
ods, particles can be advected through the velocity field and measurements can
be made on each particle. For example, smoke concentration can be measured
for each particle in the simulation.

In this thesis the Eulerian approach has been selected for the discretization
of the fluid domain, due to the numerical accuracy that it offers.
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Figure 2.4: A sphere of material discretized using Eulerian and Lagrangian
methods. Figure modified from (Wicke et al., 2007).

Figure 2.5: A cell-centered grid. Figure taken from (Stam, 1999).

2.3.1 Discretizing the fluid
In the Euler discretization, the vector and scalar-valued functions must be
mapped onto a parameterized space, usually a Cartesian grid (Stam, 1999).
The simplest structure that can be employed is a collocated (cell-centered) grid.
In such a discretization, both vector and scalar fields are sampled at the center
of each cell (see figure 2.5).

Using this method all the differential operations can be approximated using
finite differences. The central differences for each one of the differential opera-
tors is described bellow3:

Gradient:

(∇p)i,,j,k =
pi+1,j,k − pi−1,j,k

2δx
,
pi,j+1,k − pi,j−1,k

2δy
,
pi,j,k+1 − pi,j,k−1

2δz

Divergence:

(∇ · �u)i,j,k =
ui+1,j,k − ui−1,j,k

2δx
+

vi,j+1,k − vi,j−1,k

2δy
+

wi,j,k+1 − wi,j,k−1

2δz

3The subscripts i,j,k represent a cell’s position in the grid.
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Laplacian:

�
∇2

u
�
i,j,k

=
ui+1,j,k − 2ui,j,k + ui−1,j,k

(δx)2
+
ui,j+1,k − 2ui,j,k + ui,j−1,k

(δy)2
+
ui,j,k+1 − 2ui,j,k + ui,j,k−1

(δz)2

�
∇2

v
�
i,j,k

=
vi+1,j,k − 2vi,j,k + vi−1,j,k

(δx)2
+
vi,j+1,k − 2vi,j,k + vi,j−1,k

(δy)2
+
vi,j,k+1 − 2vi,j,k + vi,j,k−1

(δz)2

�
∇2

w
�
i,j,k

=
wi+1,j,k − 2wi,j,k + wi−1,j,k

(δx)2
+
wi,j+1,k − 2wi,j,k + wi,j−1,k

(δy)2
+
wi,j,k+1 − 2wi,j,k + wi,j,k−1

(δz)2

2.3.2 Numerical simulation
In the field of computational fluid dynamics there are many methods to dis-
cretize the Euler equations. In computer animation the method of splitting is
the most commonly used (Bridson 2008), (Crane et. al. 2007), (Harris, 2004).
In this method each equation is split up into its component parts and each part
is solved separately, one at a time (Bridson 2008). Thus, the simulation is di-
vided in steps (or modules) and the output of the first step becomes the input of
the second and so forth. It should be noted that the order of the steps is crucial
for the correct functioning of the simulation. The basic simulation pipeline is
described bellow:

Advection step:

∂�u

∂t
+ �u ·∇�u = 0

External forces step:

∂�u

∂t
= �f

Pressure step:

∂�u

∂t
+

1

ρ
∇p = 0 : ∇ · �u = 0

However, it is still not apparent how these modules can be solved. The
following subsection will describe a decomposition of the equations that will
lead to a form that is compliant to a numerical solution.

2.3.3 Helmholtz-Hodge decomposition theorem
Any vector can be represented as a sum of basis vector components (Harris,
2004). For example, a vector �u = (u, v, w) can be represented as �u = uî+vĵ+wk̂,
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Figure 2.6: The velocity field can become divergent-free when the pressure
gradient is subtracted. Figure taken from (Stam, 2003).

where î, ĵ and k̂ are unit basis vectors that are aligned on the axis of a Cartesian
space. In the same way a vector field can be represented as a sum of vector
fields. In a region of space D with a differentiable boundary ∂D, and normal
direction n, the Helmholtz-Hodge theorem states that a vector field �w on D can
be uniquely represented as:

�w = �u+∇p (2.10)

Where �u is a divergence-free vector field, parallel to ∂D (�u · n = 0 on ∂D).
Thus, the theorem states that any vector field is the sum of a mass conserving

(divergent-free) field and the gradient of a scalar field. This result allows the
definition of an operator P which projects the divergent velocity field �w onto its
divergence free part (�u = P �w) (Stam, 1999). The operator is defined implicitly
by applying the divergence operator on both sides of equation 2.10.

∇ · �w = ∇2
p

A solution to this equation, which is often called the Poisson-pressure equa-
tion, can be used to compute the divergent free velocity field by subtracting the
pressure gradient from the divergent velocity field (see figure 2.6):

�u = P �w = �w −∇p

Using the projection operator P , the Euler equations can be rewritten as
follows4:

∂�u

∂t
= P

�
− (�u ·∇) �u+ ν∇2

�u+ �f

�
(2.11)

The solution of equation 2.11, over a single time step, can be defined as an
operator S(�u) that takes the current velocity field �u as its parameter (Harris,
2004). S(�u) is defined as the composition of three operators: A(�u) for the

4P�u = �u andP∇p = 0
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Figure 2.7: Each step of the simulation produces a vector field �w. At the last
step, field �w2 is projected to a divergent-free space using the pressure projection
method. Figure modified from (Stam, 1999).

advection step, F for the external force application step, and P for the pressure
projection step (the operators are applied from right to left):

S (�u) = P ◦ F ◦ A (�u) (2.12)

The output of every operator is the new state of the velocity field. When the
velocity field reaches step 2, it will most probably be divergent. The pressure
projection operator projects the divergent velocity field to its divergent free part
(figure 2.7 provides a visualization of this procedure, where every velocity field
�w corresponds to a step of the simulation).

2.3.4 Solving the Poisson pressure equation
The Poisson equation on a 3-dimensional domain Ω with a differentiable bound-
ary ∂Ω follows the form (Noury et al., 2011):

∇2
p = −f on Ω ⊂ R3 (2.13)

Where p signifies the solution of the Poisson equation and f is known. In
most cases, equation 2.13 has no close-form solution for any given right-hand
side f and domain Ω. For this reason, a discretization scheme can be used and
an approximation of the solution p can be sought in a finite-dimensional space.
A very popular discretization method is the finite-volume method, where the
average of p is approximated over a set of mesh cells that cover Ω. This mesh
is comprised by a set T of non-overlapping cells Ci:

Ω =
�

i∈T
Ci, Ci ∩ Cj = ∅, ∀i �= j ∈ T
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Using this discretization in 3 dimensions the Poisson equation in cell Ci,j,k

can be written as5:

6pi,j,k − pi−1,j,k − pi+1,j,k − pi,j−1,k − pi,j+1,k − pi,j,k−1 − pi,j,k+1 = −h
2
fi,j,k

(2.14)
Or, in matrix form:

Ap = f (2.15)

Where A ∈ R3x3 represents a sparse matrix, p ∈ R3 represents the vector
that contains the cell averages and f represents the right-hand side of equation
2.14.

2.3.4.1 Iterative methods

The sparse matrix A displays two properties that make it invertible with a
unique solution: it is symmetric and positive definite:

p = A
−1

f

For small grid dimensions, this matrix can be inverted using a direct method
(e.g., Gaussian elimination), however, such methods have many drawbacks: they
have a O

�
N3

�
complexity, and require a lot of memory for storing the inverse

matrix (which is usually full) (Noury et al., 2011). For this reason iterative
methods can be used instead. In such methods an approximation of the Poisson
solution can be found using preconditioned iterations:

vα+1 =
�
I − P

−1
A
�
vα + P

−1
f (2.16)

Where, vα and vα+1 are the approximate solutions at iteration α and α+ 1
respectively, and P represents a preconditioned in the linear system Ap = f .

The various available iterative solvers use different preconditioners. How-
ever, in most cases, these preconditioners are constructed by decomposing the
sparse matrix A into three components: L : the lower-triangular part of the ma-
trix, D : the matrix diagonal, and U : the upper-triangular part of the matrix
(see figure 2.8).

2.3.5 Boundary conditions
In the Eulerian discretization scheme that has been used, the fluid is moving
inside a 3D cube. However, so far its behavior on the boundaries has not been
defined. The simplest boundary condition for the velocity field is the no-stick
condition 6 (Bridson, 2008). For a static obstacle the condition specifies that
the normal component of velocity must be zero at the boundary:

5Where h is the size of the uniform grid cells.
6It applies to inviscid fluids.
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Figure 2.8: Decomposition of the sparse matrix A. L: the low-triangular part,
D, the diagonal, and U: the upper-triangular part. Figure modified from (Noury
et al., 2011).

�u · n̂ = 0

For, dynamic obstacles, however, the no-stick condition specifies that the
normal component of the fluid velocity must be equal to the normal component
of the obstacle velocity:

�u · n̂ = �uobst · n̂

Using this condition the fluid is free to slip along the tangential direction of
the obstacle.

A common boundary condition for the pressure field is the pure Neumann
condition where: ∂p

∂n = 0, for x ∈ ∂Ω (Harris, 2004). This means, that the rate
of change of pressure along its normal component, must equal to zero at the
boundary.

2.4 Solving for additional scalar fields

The main application of a fluid solver in computer animation is to use the
velocity field to move objects in a realistic fashion (Stam, 1999). In smoke
simulation it is required to move smoke particles according to the velocity field.
However, it is very computationally expensive to keep track of every particle.
For this reason, the smoke particles can be replaced by a continuous density
function. This function stores the concentration of smoke particles in every cell
of the grid.
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Additional scalar fields can also be advected. A general formula that de-
scribes the evolution of a quantity in the velocity field is described in equation
2.17:

∂q

∂t
= − (�u ·∇) q + S (2.17)

In this equation q defines any quantity that is represented as a scalar field
and S defines any sources that increase the amount of this quantity.



Chapter 3

Previous work

This chapter will describe previous works on fluid simulation in the field of
computer animation. The examination of these previous implementations has
been arranged in chronological order, as each new work has been influenced by
previous models.

3.1 Fluid solvers in computer animation

Before describing the research on GPU smoke solvers, it is crucial to examine
the structure of some well known fluid solver designed for computer animation
applications. For this reason, a short introduction will follow that will describe
CPU models that have been implemented.

3.1.1 Foster and Metaxas (1996)
Foster and Metaxas (Foster and Metaxas, 1996) developed one of the first meth-
ods in computer animation that numerically solves the incompressible Navier-
Stokes equations1. They used an explicit finite difference approximation of the
equations that could be solved using an explicit Eulerian scheme. However,
their method was not stable for any arbitrary time-step and that is why they
imposed the following constraint on the velocity field:

1 > max[u
δt

δx
, v

δt

δy
, w

δt

δz
]

3.1.2 Stam (1999)
Stam (Stam, 1999) was the first to introduce an unconditionally stable method
for simulating fluids. He used implicit integration schemes in every simulation

1Previous methods used procedural turbulence techniques that produced a pseudo-fluid
movement (Stam, 1999).

21
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Figure 3.1: The semi-Lagrangian advection method. Figure taken from (Harris,
2004).

step2 and hence large time-steps could be used, without compromising the sta-
bility of the solver. The most important feature of his proposed solver was the
advection scheme; the so-called semi-Lagrangian advection, where the method
of characteristics is used to solve the partial differential equations. In simple
terms, the semi-Lagrangian advection method updates the velocity (or, indeed,
any other scalar field) at a grid point xi,j,k by tracing back in time a source value
from the grid. To intuitively understand this, the advection can be thought of
as a Lagrangian process where particles move through the velocity field. At any
time t a particle can be moved from position xi,j,k, using the negative velocity
�ui,j,k (t) (the velocity at grid position xi,j,k ). Using the negative velocity, will
move the particle in its position one time-step ago. However, the particle will
most likely end up in a position in-between grid cells or even outside the grid.
In order to find an approximate value from that position, trilinear interpolation
can be used on the closest neighboring cells. The resulting value will then be
used as the updated value in position xi,j,k. Figure 3.1 describes this process.

Although this advection scheme is unconditionally stable, it introduces nu-
merical dissipation to the simulation (Bridson, 2008). In order to overcome this
problem, higher accuracy interpolation schemes can be used.

3.1.3 Fedkiw et al. (2001)
Fedkiw et al. (Fedkiw et al., 2001) described a method for the visual simulation
of smoke. Their solver has many similarities with Stam’s method; however,
in order to simulate the movement of the smoke particles, they have added a

2With the only exception of the force application step, where explicit integration can be
safely used.
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temperature and a density field. Both these fields affect the evolution of the
velocity field: dense smoke has a tendency to fall downwards, because of gravity,
while hot smoke tends to rise, due to buoyant forces. In order to accommodate
these interactions, they used a simple model, where a buoyant force proportional
to the smoke velocity and temperature is added to the velocity field:

fbuoy = −αρz + β(T − Tamb)z (3.1)

Where ρ represents density, T represents temperature, Tamb represents the
ambient temperature of the air, z is the buoyancy direction and α and β are
two positive constants.

3.2 GPU implementations

In this section three GPU based smoke solvers will be described.

3.2.1 Harris (2004)
Harris (Harris, 2004) described one of the first GPU methods for stable fluid
simulation on the GPU. His 2D solver follows the method proposed by Stam.
For the representation of the simulation fields 2D textures are used and the sim-
ulation kernels run on fragment programs. Every simulation step is preformed
by rendering a 2D quad and executing the appropriate fragment program. The
fragment programs that are used by the solver are described below:

• Advect: this program performs the semi-Lagrangian advection step.

• Diffuse: this program is responsible for the viscous diffusion step. How-
ever, as stated before, this step can be skipped in smoke simulation.

• Apply force: in this module, force is applied to the velocity field.

• Divergence: this program calculates the divergence of the velocity field.
The divergence field is used in the Poisson solver, in order to perform the
pressure projection step.

• Jacobi: this program uses the Jacobi iteration method to solve the Pois-
son equations.

• Subtract gradient: this kernel calculates the pressure gradient using
finite differences, and it subtracts it from the velocity field. This is the
part of the simulation where the incompressibility condition is enforced.

• Boundary: the simulation boundary values are stored in 4 line primi-
tives. These primitives hold values for both the velocity and the pressure
boundary conditions.
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Figure 3.2: Voxelization of complex geometry. The collision and velocity texture
maps are displayed on the right. Figure taken from (Crane et al., 2007).

3.2.2 Crane et al. (2007)
Crane et al. (Crane et al., 2007) expanded Harris’ method and introduced a
more advanced solver that can be used in any rasterization-based rendering
paradigm. One of the new features that they introduced to their model was the
handling of dynamic obstacles. They use a voxelization scheme, where every
geometry can be mapped to a voxel map. They store two separate texture
maps for this operations: one for the collision data (where a voxel is marked
either as occupied or as free) and one for the velocity data (where the obstacle
velocity data are stored on the object’s boundary) (see figure 3.2). This method
facilitates the enforcement of the no-stick boundary conditions and thus allows
the fluid to flow around a moving obstacle.

3.2.3 Rideout (2011)
Rideout (Rideout, 2011) created a solver that is based on the two previous
implementations. It uses frame-buffer operations for the execution of the sim-
ulation programs, and every field is represented as a 3D texture. The solver
also features an impulse application step where smoke density and temperature
are introduced to the simulation. The managing of both boundary and obstacle
conditions is handled using voxel maps (similar to the approach of Crane et al.)
so all the simulations collision and velocity data are stored in one texture. The
pipeline of this application is displayed in figure 3.3:
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Figure 3.3: The application diagram of Rideout’s implementation. Figure taken
from (Rideout, 2010).



Chapter 4

Implementation

In this chapter the implemented smoke simulation application is described.
Firstly, the OpenCL standard will be discussed and subsequently the design
and implementation of the application will be analyzed.

4.1 OpenCL overview

OpenCL is an open standard for programming in heterogeneous systems, that is,
systems comprised of multiple parallel processing units (referred to as devices
in the OpenCL lingo) like multicore CPUs and GPUs (Noury et al., 2011),
(Munshi et al., 2011). The OpenCL pipeline can be divided into two distinct
parts. In the first part, a CPU based host runs OpenCL API commands that
create memory objects on the devices, manage the execution of parallel programs
and control the interactions between host and devices (in the same way that
the OpenGL/GLSL pipeline works) (Noury et al., 2011). In the second part,
parallel programs (called compute kernels) written in the OpenCL C language
are executed on the devices (in the same way as shader programs).

4.1.1 Execution model
When the host issues a kernel execution command, the OpenCL runtime system
generates an integer index space (Munshi et al., 2011). This space can have an
N-dimension range of values and thus it is referred to as the kernel NDRange.
The compute kernel is executed once for each point in the NDRange. Each
thread of the executing kernel is called a work-item and is uniquely identified
by its index space coordinates. These coordinates constitute the global ID of
the work-item.

The NDRange is divided into groups of work-times; these thread ranges
are called work-groups. Every work-group has an ID in the NDRange and every
work-item in the group has a local ID defining its local coordinates. This division
scheme is described in figure 4.1.

26
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Figure 4.1: A 2D NDrange displaying all the possible work-item coordinate
categorizations, G: global coordinates, W: work-group coordinates, L: local co-
ordinates. Figure taken from (Munshi et al., 2011).

4.1.2 Memory model
OpenCL specifies two kinds of memory objects: buffer objects and image ob-
jects. Buffers are contiguous blocks of memory indexed by 1D coordinates and
composed of any available OpenCL data type (int, float, half, double, int2, int3,
int4, float2, ...) (Noury et al., 2011). Any data structure can be mapped onto
a buffer and its data can be accessed through pointers (Munshi et al., 2011).

Images have many similarities with OpenGL textures: they both support
an automatic caching mechanism and their data are accessed through sampler
objects (Noury et al., 2011). Samplers can filter the image data using multilinear
interpolation, and, furthermore, they allow the configuration of out of bound
access behavior.

In addition to the memory object types, the OpenCL memory model specifies
5 regions, where data can be allocated (Munshi et al., 2011):

• Host memory: this region is exclusively visible by the host. It is used
for interactions between the host and OpenCL objects.

• Global memory: this region gives access to reading and writing opera-
tions to all the work-items in every work-group. Global memory connects
the host and the employed devices by enqueuing reading and writing op-
erations. It has a large scale capacity, but it also has high latency.

• Constant memory: it represents a region of global memory that stays
constant through a kernel execution (similar to a shader uniform). Data
stored in constant memory can only be read by the compute kernels.
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• Local memory: this region can be accessed by a work-group. It has a
very limited size, but it provides faster data access than global memory.

• Private memory: this region is visible only to a single work-item.

4.1.3 OpenCL / OpenGL interoperation
OpenCL supports an interoperation model with OpenGL (Noury et al., 2011).
Using the appropriate extension, the interoperation model allows the creation
of OpenCL buffers and images using existing OpenGL buffers and textures.
However, when OpenCL commands are to be issued to these reference objects,
pending OpenGL operations must be completed (or if the appropriate extension
is supported, synchronization methods can be employed).

4.1.4 Compute engine
In the implemented application, a dedicated class has been created for the man-
aging of the OpenCL context and all OpenCL commands, the compute engine
class 1. The compute engine holds a map structure for every program object,
kernel, memory object and image sampler that is created in the OpenCL con-
text. It also creates a command queue for every available compute device and
handles all the host API calls.

4.2 Memory objects

The simulation output by itself has no visual importance until it is rendered. As
it will be later detailed, the application employs a gas solver that is implemented
in OpenCL. However, in order to allow the interoperation with OpenGL, the
appropriate memory objects must be created. The following subsections will
detail the memory objects that are used by the application.

4.2.1 Textures and buffers
In order to facilitate the use of OpenGL memory objects, dedicated wrapper
classes have been created. The buffer object class allows the creation and han-
dling of buffer objects, such as array buffers and pixel buffers. The class manages
the binding of the buffers to selected OpenGL targets and handles data loading
operations.

For the creation of texture objects, 4 classes have been created. A texture
base class with the subclasses: texture 1D, texture 2D and texture 3D. In the
same fashion with the buffer object class, the texture classes manage all the
texture object functionalities (see figure 4.2).

1This class is modified from (Apple Inc., 2011).
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Figure 4.2: The application memory objects.

4.2.1.1 Texture image unit stack

When a texture object is created, it must be attached to a texture image unit.
The number of the available image units depends on the GPU capabilities and
the OpenGL implementation. Although it is possible to attach two or more
textures on the same unit, when these textures are used in the same shader
only one of them will be sampled (and it is undefined which one). In order to
facilitate the creation of textures in a rendering context,2 a utility class has been
created: the texture image unit stack. It is a stack structure that stores all the
available texture image units and returns the next available unit.

4.2.2 Ping-pong volumes
Texture objects can be ideal candidates for the representation of the simulation
fields. They internally support trilinear interpolation and allow configurable
out of bounds behavior, features which are fundamental in the gas solver func-
tionality. However, currently most OpenCL implementations do not support
in-kernel writing operation on 3D images. For this reason, a turnaround can be
employed in order to overcome this restriction. A referenced pixel buffer object
(PBO) can be used as the writing target in the compute kernels: at the end of
each solver cycle, the PBO data can be uploaded to a 3D texture by enqueuing a
copy command. Although the copy command adds overhead to the application,
it still remains a GPU located operation, so the simulation data never actually
leave the GPU. In order to accommodate for these reading and writing opera-
tions, a ping-pong volume class has been created. It is a volume object that uses
a PBO for all writing operations and a 3D texture for all reading operations. It
uses a swap method for the uploading of the PBO data to the texture. In this
way, the benefits of 3D texture data access in OpenCL are preserved by adding
an extra step to the data writing operation. In order to reference the OpenGL
memory objects of the volume, two references must be created in OpenCL: a
3D image reference and a buffer reference.

2A context where multiple shaders share a common set of resources.
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Algorithm 4.1 The advection kernel.

// check f o r ob s t a c l e s and boundary
IF ( c e l l [ i , j , k ] == SOLID) THEN
{

f i e l d [ i , j , k ] = 0 ;
EXIT

}

// f i nd c e l l c oo rd ina t e s "back in time"
[ i0 , j0 , k0 ] = [ i , j , k ] − dt ∗ V[ i , j , k ] ;

f i e l d [ i , j , k ] = d i s s i p a t i onFac t o r ∗ V[ i0 , j0 , k0 ] ;

Algorithm 4.2 The buoyancy application kernel.

IF (T[ i , j , k ] > ambientTemperature ) THEN
{

V[ i , j , k ] += (
dt ∗ (T[ i , j , k ] − ambientTemperature )
∗ buoyancyLi ft − D[ i , j , k ] ∗ gasWeight

) ∗ buoyancyDirect ion ;
}

4.3 The gas solver

This section will detail all the different modules of the implemented gas solver.

4.3.1 Advection
The advection kernel performs semi-Lagrangian advection on the velocity, tem-
perature and density fields. In order to find the coordinates of the particle one
time-step back, forward Euler integration is used. Algorithm listing 4.1 displays
the pseudocode of the kernel where cell[i,j,k] corresponds to a grid position at
point (i,j,k), field[i,j,k] corresponds to any field value at the current position and
V stands for the current velocity.

4.3.2 Buoyancy application
The buoyancy application kernel is responsible for the buoyant force that makes
dense smoke sink and hot smoke rise. The buoyant force is applied to cells where
the temperature is greater than the ambient temperature. Algorithm listing 4.2
displays the pseudocode of the kernel, where T represents the temperature field
and D represents the density field.
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Algorithm 4.3 The impulse application kernel.

IF ( c e l [ i , j , k ] == INSIDE−SPLAT−REGION) THEN
{

D[ i , j , k ] = densityAmount ;
T[ i , j , k ] = temperatureAmount ;

}

Figure 4.3: Iso-surface voxelization for a sphere surface. The obstacle object
contains an instance of the simulation boundary.

4.3.3 Impulse application
The impulse application kernel acts as a source for temperature and smoke
density. The sources are added using a Gaussian splat; that is, cells that are
inside the splat radius will be assigned a specified amount of temperature and
density. Algorithm listing 4.3 displays the kernel pseudocode:

4.3.4 Adding obstacles
Obstacles are added into the simulation, using implicit surfaces. In order to
voxelize the surfaces, an implicit surface is sampled on the simulation grid; if a
cell contains an iso-value that is less than zero, then this cell is marked as solid.
In order to merge the boundary checks with the obstacle collision detection,
every obstacle object contains an instance of the simulation boundary (see figure
4.3). The gas solver also supports the use of dynamic obstacles; however, moving
obstacles have not yet been implemented in the application and all obstacles are
assumed to be stopped with zero velocity (the boundary is also considered an
obstacle with zero velocity).

4.3.5 Pressure projection
In the pressure projection step, the differentiation operators of the incompress-
ible Euler equations are approximated using central differences. In order to
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Figure 4.4: A 3D stencil, used for the calculation of central differences. The red
cell represents the current cell. Figure modified from (Noury et al, 2011).

calculate these finite differences, a 3D stencil can be used for the allocation of
the neighboring cells (see figure 4.4).

The pressure projection step involves 3 kernels:

• Divergence computation kernel: where the divergence of the velocity
field is calculated and the pressure field is set to zero.

• Poisson solver: where the Poisson-pressure equation is solved, using the
divergence of the velocity field.

• Pressure gradient subtraction kernel: where the pressure gradient is
calculated and subtracted from the divergent velocity field.

4.3.5.1 Divergence computation

In the divergence computation kernel, the divergence of the velocity field is
calculated, using central differences. Moreover, an obstacle check is being per-
formed and if a neighboring cell is occupied by a solid, the obstacle velocity is
used on that component. At the end of the program, the pressure field is set to
zero, in order to be ready for processing by the Poisson solver. Algorithm listing
4.4 displays the kernel pseudocode, where O represents the obstacle array and
P represents the pressure field.
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Algorithm 4.4 The divergence computation kernel.

// f i nd v e l o c i t y s t e n c i l (up , down , r i ght , l e f t , f r on t and back )
Vu = V[ i , j +1,k ] ;
Vd = V[ i , j −1,k ] ;
Vr = V[ i +1, j , k ] ;
Vl = V[ i −1, j , k ] ;
Vf = V[ i , j , k+1] ;
Vb = V[ i , j , k−1] ;

// f i nd ob s t a c l e s t e n c i l
Ou = O[ i , j +1,k ] ;
Od = O[ i , j −1,k ] ;
Or = O[ i +1, j , k ] ;
Ol = O[ i −1, j , k ] ;
Of = O[ i , j , k+1] ;
Ob = O[ i , j , k−1] ;

// i f c e l l i s s o l i d use ob s t a c l e v e l o c i t y
IF (Ou == SOLID) THEN { vU = oU ; }
IF (Od == SOLID) THEN { vD = oD; }
IF (Or == SOLID) THEN { vR = oR ; }
IF (Ol == SOLID) THEN { vL = oL ; }
IF (Of == SOLID) THEN { vF = oF ; }
IF (Ob == SOLID) THEN { vB = oB ; }

// compute d ive rgence f i e l d
d ive rgence [ i , j , k ] = (Vr . x − Vl . x + Vu. y − Vd. y + Vf . z − Vb. z ) / 2∗ c e l l S i z e ;
P [ i , j , k ] = 0 ;
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4.3.5.2 Pressure gradient subtraction

The pressure gradient subtraction kernel calculates the pressure gradient and
subtracts it from the velocity field. It also sets the boundary conditions by using
the neighboring pressure on solid cells, and by enforcing the no-stick condition.
Algorithm listing 4.5 displays the pseudocode of the kernel.

4.3.5.3 Poisson solver

A common iterative method for the solution of the Poisson-pressure equation
is the Jacobi iteration method (Noury et al., 2011). This method can be par-
allelized easily on a GPU implementation and has been used by Harris, Crane
et al. and Rideout (Rideout, 2011), (Crane et al., 2007), (Harris, 2004). The
Jacobi method uses the diagonal of the sparse matrix A (see equation 2.15) as
its preconditioner Pj = D. Thus, equation 2.16 can be written as 3:

vα+1 =

�
I − 1

6
A

�
vα +

1

6
f (4.1)

Equation 4.1 can be easily translated into a compute kernel (see algorithm
listing 4.6).

4.3.6 Adding turbulence
The solvers allows additional control over the simulation by adding procedural
noise to the velocity field. The periodic noise function adds randomness to
the buoyancy direction and allows the configuration of a trigonometric driving
function (sine, cosine, and tangent functions). This method provides additional
control over the fluid motion and enhances the smoke detail.

4.4 Real-time rendering

The most interesting output in the smoke simulation is its density field. In this
section, two volume rendering technique that produce a visual output of the
simulation data will be described.

4.4.1 The marching cubes algorithm
The marching cubes algorithm was originally developed for the visualization
of medical data (mainly data from MRI or CT scans) (Lorensen and Cline,
1987). However, it can also be used for the visualization of any scalar field.
The algorithm performs a polygonization operation on constant density data,
which are represented in the form of a 3D array. The algorithm progresses in
the following steps:

3In a 3D Laplace matrix the diagonal is equal to 6, thus, D−1 = 1
6 I (Noury et al., 2011).
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Algorithm 4.5 The pressure gradient subtraction kernel.

IF ( c e l l [ i , j , k ] == SOLID) THEN
{

V[ i , j , k ] = OBSTACLE VELOCITY;
EXIT

}

// f i nd pr e s su r e s t e n c i l
Pu = P[ i , j +1,k ] ;
Pd = P[ i , j −1,k ] ;
Pr = P[ i +1, j , k ] ;
Pl = P[ i −1, j , k ] ;
Pf = P[ i , j , k+1] ;
Pb = P[ i , j , k−1] ;

// f i nd ob s t a c l e s t e n c i l
Ou = O[ i , j +1,k ] ;
Od = O[ i , j −1,k ] ;
Or = O[ i +1, j , k ] ;
Ol = O[ i −1, j , k ] ;
Of = O[ i , j , k+1] ;
Ob = O[ i , j , k−1] ;

// use cente r p r e s su r e f o r s o l i d c e l l s
Vobstac le = ( 0 , 0 , 0 ) ;
Vmask = ( 1 , 1 , 1 ) ;

IF (Ou == SOLID) THEN { Pu = P[ i , j , k ] ; Vobstac le . y = Ou. z ; Vmask . y = 0 ; }
IF (Od == SOLID) THEN { Pd = P[ i , j , k ] ; Vobstac le . y = Od. z ; Vmask . y = 0 ; }
IF (Or == SOLID) THEN { Pr = P[ i , j , k ] ; Vobstac le . x = Or . y ; Vmask . x = 0 ; }
IF (Ol == SOLID) THEN { Pl = P[ i , j , k ] ; Vobstac le . x = Ol . y ; Vmask . x = 0 ; }
IF (Of == SOLID) THEN { Pf = P[ i , j , k ] ; Vobstac le . z = Of . x ; Vmask . z = 0 ; }
IF (Ob == SOLID) THEN { Pb = P[ i , j , k ] ; Vobstac le . z = Ob. x ; Vmask . z = 0 ; }

// en f o r c e the no−s t i c k boundary cond i t i on
Vold = V[ i , j , k ] ;
g rad i ent = (Pr − Pl , Pu − Pd , Pf − Pb) ∗ g rad i en tSca l e ;
Vnew = Vold − grad i ent ;
V[ i , j , k ] = (Vmask ∗ Vnew) + Vobstac le ;



CHAPTER 4. IMPLEMENTATION 36

Algorithm 4.6 The Poisson solver kernel.

// f i nd pr e s su r e s t e n c i l
Pu = P[ i , j +1,k ] ;
Pd = P[ i , j −1,k ] ;
Pr = P[ i +1, j , k ] ;
Pl = P[ i −1, j , k ] ;
Pf = P[ i , j , k+1] ;
Pb = P[ i , j , k−1] ;

P [ i , j , k ] = ( Pl + Pr + Pd + Pu + Pf + Pb − (h∗h) ∗ f [ i , j , k ] ) / 6 ;

1. The scalar field is being examined in respect to a user-defined threshold
value. When implicit surface modeling is considered, this value should be
0, so that it defines the points that lie on the surface.

2. The finite volume of the discretization is comprised of cubes that form a
grid structure. For every cube, a set of vertices that are intersected by
the surface are calculated. These vertices are calculated on the edges of
each cube. The exact position of a vertex is configured through a linear
interpolation scheme which follows the sampled values. This calculation
is performed with the use of an edge look-up table.

3. For the actual triangulation of the vertices, a triangulation look-up table
is used (Bourke, 1994). This table defines the sequence of the vertices
in a manner that can be rendered by a graphics API (usually counter
clockwise).

4. Finally, the normals for each vertex are computed by calculating the sur-
face gradient at each cube corner and by linearly interpolating between
these gradient values.

Due to the fact that a cube has 8 vertices, there are totally 28 = 256 ways
by which a surface can intersect a cube. However, because of two symmetrical
properties of the topology of the cube these cases can be reduced to 14 unique
patterns. These patterns are depicted in figure 4.5:

The class of each cube can be represented using a single byte. The byte is
initialized with 0 and for each vertex that satisfies the threshold condition (an
iso value in the case of implicit surfaces) we assign a 1. The numbering of the
vertices and the edges of each cube are depicted in figure 4.6.

The edges that are intersected by the surface can be determined by calcu-
lating the class (index) of the cube. In order to find the exact position of every
triangle vertex, a linear interpolation can be performed with two weights: each
weight corresponds to the sampled value at the two vertices that belong to an
intersected edge. The intersected edges are determined by an edge, look-up
table. The edge table returns a 12 bit number for every cube class (256 cells),
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Figure 4.5: The marching cubes cases. Figure taken from (Favreau, 2006).

Figure 4.6: Cube edge and vertex indices. Figure taken from (Lorensen and
Cline, 1987).
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each bit corresponds to an edge; its value is zero, if the edge is not intersected
by the iso-surface, and one, if the edge is intersected by the iso-surface (Bourke,
1994).

The triangulation table holds the sequence of vertex indices. It is a 2D table
which has 256 rows (one for each cube class) and 16 rows, since the maximum
number of produced triangles is 5. The last row marks the end of a triangle
sequence (for the classes that produce 5 triangles).

4.4.1.1 Surface shading

The last part of the marching cubes algorithm calculates a normal for each
vertex. The normal vector is required if any BRDF (Bidirectional Reflectance
Distribution Function) model is to be used. One of the most common methods
to compute the iso-surface normals is to use the gradient of the field function,
which is actually the normal of the surface (Bloomenthal, 2001), (Nielson et al.,
2002) (see equation 4.2).

N (x, y, z) = ∇F (x, y, z) =

�
∂F

∂x
(x, y, z) ,

∂F

∂y
(x, y, z) ,

∂F

∂z
(x, y, z)

�
(4.2)

Consequently, a numerical differentiation method can be employed for the
approximation of the spatial derivatives. This calculation must be performed
for every cube’s vertex and the normal for every triangle vertex can be found
through interpolation along the cube edges.

4.4.1.2 GPU marching cubes

Programmable geometry shaders are a relatively new addition to the graphics
pipeline. They take place after vertex processing and before viewport clipping
(Wright et al., 2010). Unlike vertex and fragment (or pixel) shaders, where each
processing cycle accesses only one unit (vertex or fragment), geometry shaders
have access to whole primitives (e.g, lines, triangles). Geometry shaders can
perform a certain amount of tessellation (their capabilities are not immense,
however) by producing new geometry and they can also discard geometry.

One of the first implementations of the marching cubes algorithm was pre-
sented in SIGGRAPH 2006 by Tariq (Tariq, 2006) (for DirectX10). A similar
approach has been also demonstrated by Crassin (Crassin, 2007) (for openGL).

The VolumeMesher class encapsulates all the functionality that is required
for the rendering of a scalar field, using the GPU marching cubes algorithm 4.
The look-up tables and the density field are stored in textures and only the grid
cell centers are uploaded to the vertex processor. Apart from the configuration

4It also supports the dividing cubes algorithm, which renders the whole voxel cubes that
are occupied by the field.
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Figure 4.7: A slice of the velocity field rendered a 2D plane. The vector values
are biased and clamped to the range [0,1].

of the iso-level threshold, the class allows the selection of sampling channels
from the textures, so that vector field components can also be rendered.

4.4.2 Volume slice rendering
At the initial development steps of the application, it was important to visualize
more that one field at a time, because the printing of a field’s data does not
provide intuitive and fast feedback. For this reason, the volume slicer class was
created. The volume slicer renders one slice of a 3D texture in a 2D plane. The
user can move the plane’s position and the program samples the texture from
the relevant position (see figure 4.7).

4.5 Application structure

The application’s main functionality is en-captured in the fluid engine class. The
OpenGL window has an instance of the fluid engine and sends command request
according to the user interface input. Figure 4.8 shows the main structure of
the application.
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Figure 4.8: The application class diagram.



Chapter 5

Conclusion

In this last chapter the outcomes of the proposed application are discussed,
pinpointing issues that were encountered.

5.1 Results

The solver can produce interactive and realistic smoke flow at a resolution of
32x32x32. Figure 5.1 demonstrates an example simulation at this resolution:

Implicit surface obstacles can be used in order to sculp the smoke according
to their shape. Figures 5.2 and 5.3 show interactions of smoke with static
obstacles.

Interesting results can be attained when noise is introduced to the velocity
field. Figure 5.4 exhibits a turbulent buoyant force that is driven by a trigono-
metric function (pure noise, sine, cosine and tangent functions respectively).

A grid resolution of 64x64x64 produces especially detailed results. Figure
5.5 shows two example smoke simulations at that resolution.

5.2 Efficiency

The application was developed on a Macbook pro using an NVIDIA GeForce
320M, with 256 MB of virtual memory. Although the speed of the application
was not extraordinary high, it could still provide real time interaction with the
system. Table 5.1 demonstrates the average frames per second for 4 different
grid resolutions.

5.3 Known issues

One problem that has not been resolved in the final implementation is related
with the advection step. The advected fluids display a slight tendency to follow
the vector (-1,-1,-1). A solution to this problem could be a more accurate

41
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Figure 5.1: A 32x32x32 grid example simulation.

Figure 5.2: Smoke interacting with a sphere.

Grid resolution FPS
8x8x8 38

16x16x16 20
32x32x32 7
64x64x64 3

Table 5.1: The application speed on different grid resolutions.
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Figure 5.3: Smoke interacting with a torus.

Figure 5.4: Interesting fluid motion can be achieved using the periodic noise
function. The figures show an example smoke simulation using the standard
noise function, the sine driven function, the cosine driven function and the
tangent driven function.
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Figure 5.5: Two example simulations at a resolution of 64x64x64. The right
picture was produced with the use of the periodic noise method.

advection scheme, such as the MacCormack method. However, this deviation is
not always visible and it dissolves if the external forces are strong enough.

Another issue that is apparent in the application is the polygonal represen-
tation of the fluid. Even though the mesh is accurate and it is rendered fast, the
outcome does not look like a gaseous fluid; it rather appears more like a plastic
solid (like clay). However, the focus of this thesis has been placed more on the
simulation process than on photorealistic rendering.

5.4 Future work

Future work might concentrate on the implementation of a GPU ray-caster,
so that the generated smoke may look more like a gaseous fluid. Additionally,
it would be interesting, if a faster Poisson solver could be implemented (for
example, a multi-grid solver).



Chapter 6

Bibliography

1. Apple Inc., 2006. OpenCL procedural grass and terrain example. Cuper-
tino: Apple Inc.. Available from: http://developer.apple.com [Accessed
25 May 2011].

2. Biały, S., 2010. Scalar field [figure]. http://en.wikipedia.org. Available
from: http://upload.wikimedia.org/wikipedia/en/f/fe/Scalarfield.jpg [Ac-
cessed 30 May 2011].

3. Bloomenthal, J., 2001. Implicit surfaces. In: Henderson, H., ed., Encyclo-
pedia of Computer Science and Technology. New York, NY, USA: Marcel
Dekker, Inc..

4. Bourke, P., 1994. Polygonising a scalar field. Cupertino: http://paulbourke.net
Available from: http://paulbourke.net/geometry/polygonise [Accessed 1
April 2011].

5. Bridson, R., 2008. Fluid simulation for computer graphics. Natick, MA,
USA: A K Peters.

6. Bridson, R. and Muller-Fischer, M., 2007. Fluid simulation: SIGGRAPH
2007 course notes. ACM SIGGRAPH.

7. Crane, K., Llamas, I., and Tariq, S., 2007. Real-time simulation and
rendering of 3D fluids. In Nguyen, H., editor, GPU Gems 3. Indiana, IN,
USA: Addison-Wesley Professional.

8. Crassin, C., 2007. OpenGL geometry shader marching cubes. http://paulbourke.net
Available from: http://paulbourke.net/geometry/polygonise [Accessed 1
April 2011].

9. Favreau, J., M., 2006. Marching cubes cases [figure]. http://commons.wikimedia.org.
Available from: http://en.wikipedia.org/wiki/File:MarchingCubes.svg [Ac-
cessed 3 April 2011].

45



CHAPTER 6. BIBLIOGRAPHY 46

10. Fedkiw, R., Jos, S., and Henrik, J., 2001. Visual simulation of smoke. In
SIGGRAPH ’01: Proceedings of the 28th annual conference on computer
graphics and interactive techniques, pages 15–22. ACM.

11. Foster, N., and Metaxas, D., 1996. Realistic animation of liquids. Graph-
ical models and image processing, 58(5).

12. Griebel, M., Dornsheifer, T., and Neunhoeffer, T., 1997. Numerical Sim-
ulation in Fluid Dynamics: A Practical Introduction. (Monographs on
Mathematical Modeling and Computation). SIAM: Society for Industrial
and Applied Mathematics.

13. Harris, M. J., 2004. Fast fluid dynamics simulation on the GPU. In R.
Fernando, ed., GPU Gems: Programming Techniques, Tips and Tricks for
Real- Time Graphics, pages 637–665. Indiana, IN, USA: Addison-Wesley
Professional.

14. Lorensen W. E., and Cline, H. E., 1987. Marching cubes: A high resolution
3D surface construction algorithm. ACM Siggraph Computer Graphics,
21(4) : 163– 169.

15. Munshi, A., Gaster, B., Mattson, T., Fung, J., and Ginsburg, D., 2011.
OpenCL programming guide. Addison-Wesley Professional.

16. Nielson, G. M., Huang, A., and Sylvester, S., 2002. Approximating nor-
mals for marching cubes applied to locally supported isosurfaces. VIS
2002. IEEE, pages 459–466.

17. Noury, S., Boivin, S., and Le Maitre, O, 2011. A fast Poisson solver for
OpenCL using Multigrid methods. In Engel, W., ed., GPU Pro 2. A K
Peters.

18. Rideout, P., 2010. Simple fluid simulation. http://prideout.net/blog/.
Available from: http://prideout.net/blog/?p=58 [Accessed 28 May 2011].

19. Rideout, P., 2011. 3D Eulerian grid. http://prideout.net/blog/. Available
from: http://prideout.net/blog/?p=66 [Accessed 28 May 2011].

20. Stam, J., 1999. Stable fluids. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’99, pages
121– 128, New York, NY, USA: ACM, Press/Addison–Wesley Publishing
Co.

21. Stam, J., 2003. Real-time fluid dynamics for games. In Proceedings of
the Game Developer Conference, pages 1–17.

22. Tariq, T., 2006. DirectX10 Effects. In SIGGRAPH 2006, page 626. Word-
ware Publishing.

23. Van Dyke, M., 1988. Album of Fluid Motion. Parabolic Press, Inc., 4th
edition.



CHAPTER 6. BIBLIOGRAPHY 47

24. Weisstein, E. W., 2011. Vector field plot. MathWorld - A Wolfram web re-
source. Available from: http://140.177.205.23/VectorField.html [Accessed
1 June 2011].

25. Wicke, M., Keiser, R., and Gross, M., 2007. Fluid simulation. In Gross,
M. and Pfister, H., eds., Point-based graphics. Morgan Kaufmann.

26. Wright, R. S. , Haemel, N. , Sellers, G., and Lipchak, B., 2010. OpenGL
SuperBible: Comprehensive Tutorial and Reference. Addison-Wesley Pro-
fessional, 5th edition.


	1 Introduction
	1.1 Computer animation  system  requirements
	1.2 Goal and objectives

	2 Fluid simulation
	2.1 Fluid motion
	2.1.1 Fluids
	2.1.2 Fluid flow

	2.2 Mathematical description of flow
	2.2.1 Terms in the Navier-Stokes equations
	2.2.1.1 Differential operators

	2.2.2 The Euler equations

	2.3 Solving the Euler equations
	2.3.1 Discretizing the fluid
	2.3.2 Numerical simulation
	2.3.3 Helmholtz-Hodge decomposition theorem
	2.3.4 Solving the Poisson pressure equation
	2.3.4.1 Iterative methods

	2.3.5 Boundary conditions

	2.4 Solving for additional scalar fields

	3 Previous work
	3.1 Fluid solvers in computer animation
	3.1.1 Foster and Metaxas (1996)
	3.1.2 Stam (1999)
	3.1.3 Fedkiw et al. (2001)

	3.2 GPU implementations
	3.2.1 Harris (2004)
	3.2.2 Crane et al. (2007)
	3.2.3 Rideout (2011)


	4 Implementation
	4.1 OpenCL overview
	4.1.1 Execution model
	4.1.2 Memory model
	4.1.3 OpenCL / OpenGL interoperation
	4.1.4 Compute engine

	4.2 Memory objects
	4.2.1 Textures and buffers
	4.2.1.1 Texture image unit stack

	4.2.2 Ping-pong volumes

	4.3 The gas solver
	4.3.1 Advection
	4.3.2 Buoyancy application
	4.3.3 Impulse application
	4.3.4 Adding obstacles
	4.3.5 Pressure projection
	4.3.5.1 Divergence computation
	4.3.5.2 Pressure gradient subtraction
	4.3.5.3 Poisson solver

	4.3.6 Adding turbulence

	4.4 Real-time rendering
	4.4.1 The marching cubes algorithm
	4.4.1.1 Surface shading
	4.4.1.2 GPU marching cubes

	4.4.2 Volume slice rendering

	4.5 Application structure

	5 Conclusion
	5.1 Results
	5.2 Efficiency
	5.3 Known issues
	5.4 Future work

	6 Bibliography

