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Abstract

In modern computer graphics, objects are mostly represented by boundary representation
models like polygonal meshes. Such models only store information about an object’s bound-
ary and are relatively easy to render and often highly scalable. While this is sufficient for
a variety of applications like many types of computer animation and games, other uses re-
quire information about volume rather than just surface. Function representation (FRep)
allows defining objects as a set of geometric primitives with certain operations and relations.
Since objects are defined as mathematic functions as opposed to a list of points, models are
resolution independent and can be polygonised at any desired level of detail.

Building upon the current library developed at the NCCA and its Maya plugin, FRep mod-
elling functionality has been integrated into Houdini and its node-based environment. The
library is developed in C++ using the Houdini Development Kit (HDK) and comes as a set
of custom nodes.
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Chapter 1

Introduction

In the visual effects and games industry, the predominant modelling techniques are using
polygonal meshes. While these offer various benefits and are well integrated into current
pipelines, they only represent surfaces and have a given amount of detail. As a consequence,
information about an object internal structure cannot be stored and modelling of heteroge-
neous real-world objects is difficult. In other fields like CAD and 3D printing, the tradeoffs
cannot be circumvented without effort and alternative representations are needed.

One alternative is to use “Function representation in geometric modelling” as suggested by
Pasko et al. (1995). The so-called FRep allows the definition of objects, operations and
relations as a mathematical function as opposed to point data and meshes. A lot of research
in this field has been done at the NCCA. The FRep API (Kravtsov 2011) was taken as base
for this project.

This thesis documents the design and implementation of a custom plugin for Houdini that
was written in C++ using the Houdini Development Kit (HDK). Houdini is a high-end 3D
animation package developed by Side Effects Software and used heavily in the VFX industry.
Due to its node-based architecture, it is very suitable for procedural modelling. Moreover,
many of the concepts in the FRep API, like for example the tree and node structure, translate
and integrate very well into the software.

Chapter 2 gives an overview of the topic and related research. In Chapter 3, the relevant
concepts of the APIs used, namely the existing FRep API and the Houdini Development Kit,
are introduced. Chapter 4 documents the conceptual design of the plugin and further details
particular to the development environment and workflow. Furthermore, the modelling process
and key algorithms are explained. Chapter 5 presents results and gives an idea over potential
applications. The results are evaluated in Chapter 6 where future work and improvements
are discussed.
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Chapter 2

Previous work

There are different ways of representing objects digitally. This chapter gives a brief overview
of various representations and discusses the fundamental research relevant for this project.

2.1 Overview of representations

The most dominant way of representing objects in modern computer graphics are boundary
representation models, also known as BRep. Such models do not store any information about
objects’ inner properties. Figure 2.1 shows a triangle mesh, a popular type of a boundary
representation model. In film and games, most efforts are spent on creating visually pleasing
results rather than accurate models of reality. Therefore, boundary representation are often
sufficient and even preferred because they offer a rich set of operations and are comparatively
easy to render.

Figure 2.1: Example of a boundary representation: triangle mesh model

2



2.2 The Function Representation (FRep)

For other purposes, volumetric representations allow us to store the object’s internal structure
rather than only a limited surface information. This is especially important when modelling
real-life heterogeneous objects. There are a number of volumetric representations including
voxel representation, implicit surfaces and FReps.

2.2 The Function Representation (FRep)

The Function Representation (FRep) combines different models such as algebraic surfaces,
skeleton based “implicit” surfaces, CSG (Constructive Solid Geometry), sweeps, volumetric
objects, parametric models and procedural models. The representation defines a geometric
object by a single real continuous function of point coordinates as F (X) ≥ 0 (Pasko 2011).
This also lets us represent models independent from resolution.

A constructive tree defines functions and provides a visual overview of operations and pa-
rameters. Leaf nodes are primitives like a box, sphere, torus, etc. Non-leaf nodes contain
operations and relations. This functionality was implemented and made accessible via an
FRep API.

2.2.1 Operations

Besides Constructive Solid Geometry (CSG) based on R-function (see Figure 2.2), there is
also a number of blending operators offered by the FRep API.

Figure 2.2: Set-theoretic operations based on R-functions: (a) Union and (b) Intersection
(Kravtsov 2011)
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2.2 The Function Representation (FRep)

In addition to regular blending, bounded blending allows for the generation of smooth tran-
sitions between two or more surfaces. It also gives local control over how and where the
transitions happen using a bounding solid (see Figure 2.3).

Figure 2.3: Shape and position of 3D blend is controlled by the bounding ellipsoid. (Pasko
et al. 2005)

2.2.2 Polygonisation

The FRep API comes with its own polygoniser. The basic algorithm is based on march-
ing cubes which can lack accuracy when polygonising implicit surfaces with sharp features.
However, the API also implements another approach called “Dynamic Mesh Optimization
for Polygonized Implicit Surfaces with Sharp Features” as introduced by Ohtake et al. (2002)
(see Figure 2.4).

Figure 2.4: The leftmost and rightmost images demonstrate the initial and final triangle
surfaces, before and after optimisation. The two middle images show intermediate stages.
(Ohtake et al. 2002)
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Chapter 3

Technical background

Working with 3rd party code and frameworks can be challenging. Along with the technical
details, a fair understanding of the overall environment is required to make the right design
decisions later. This chapter gives an overview of the FRep API and the key HDK concepts
relevant to this project.

3.1 FRep API

This project is using the FRep API developed by (Kravtsov 2011). He describes the commu-
nication between API and applications as follows:

“The main and most common way of communication between the FRep API
and higher-level applications using FReps is through the parameters of the FRep
entities and through the creation of complex FRep trees containing the aforemen-
tioned entities.” (Kravtsov 2011)

3.1.1 Architectural overview

The FRep API itself makes use of a number of libraries and underlying APIs. Figure 3.1
shows the API in the context and in relation to the intermediate layer. The plugin developed
acts as intermediate layer between the external application (Houdini) and the API.

5



3.1 FRep API

Figure 3.1: Full structure of the modelling environment and basic tools for FRep modelling
(Kravtsov 2011)

3.1.2 Entities and nodes

FReps are represented using FRep entities inside the API. Some classes are templated (these
are named with the suffix _T) and can therefore operate on data of multiple types. Figure 3.2
gives an overview of the classes defining the FRep entities and nodes which are then used to
build FRep trees.

Some nodes and their children are extensively used in the plugin:

• ENTITY_T is representing an FRep entity with its parameters (see PARAMS_TYPE and
PARAMETER_TYPE), bounds, etc. It is also the base class for primitives like BOX_ENTITY_T
and SPHERE_ENTITY_T.
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3.1 FRep API

• ID_TYPE is an attribute of the entity class and used to identify an entity’s type such as
FREP_SPHERE_ID or FREP_BOX_ID.

• ENTITY_NODE_T can be created from an ENTITY_T and contain additional information
like parent and child nodes. This is used for FRep tree and traversal.

• ENTITY_FACTORY_T is a factory class generating entities.

Figure 3.2: The FRep entity UML-diagram (Kravtsov 2011)

3.1.3 The FRep tree

The next step is to create the nodes and entities shown in Section 3.1.2 and establish rela-
tionships between them. Nodes can represent both primitives and operations and combining
them to form an FRep tree can help us building complex models.

Figure 3.3 shows an example of such a tree as represented within Houdini. To explain the
details of the tree evaluation within the API would go beyond the scope of this project. It
is however important to understand that FRep nodes relate to one another and that child
nodes can be added to any node. The intermediate layer has its own tree traversal algorithm
to gather the required data as explained in Section 4.4.2.

7

ID_TYPE
FREP_SPHERE_ID
FREP_BOX_ID
ENTITY_NODE_T
ENTITY_T
ENTITY_FACTORY_T


3.1 FRep API

Figure 3.3: FRep tree in Houdini

3.1.4 Usage

There are a number of ways to interact with FRep models. Models can be created and
manipulated directly using a variety of programming languages. This could be a high-level
programming language like C++, a scripting language like Python or a simple but specialized
high-level programming language like “HyperFun” (Adzhiev et al. 1999) or “HyperJazz”
(Adzhiev et al. 1996). Each of these methods have different effects on performance and code
maintainability.

Another way is to allow the user to manipulate FRep models via a graphical user interface.
The “Model-View-Controller” design pattern (Gamma et al. 1995) describes this sort of
interaction as shown in Figure 3.4. In this scenario, the controller of our intermediate layer
would be responsible for passing on the information of the view to the FRep API and therefore
syncing the user interface with the internal models. Further details on the implementation
of the intermediate layer are discussed in Section 4.3.2.
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3.2 Houdini Development Kit (HDK)

Figure 3.4: A Model-View-Controller diagram: The general design pattern (Kravtsov 2011)

3.2 Houdini Development Kit (HDK)

3.2.1 Extending Houdini

There are several ways to extend Houdini’s capabilities. For one, the node-based architecture
allows bundling any sort of nodes into so-called Houdini Digital Assets (HDA) that can be
equipped with attributes and controls. They are also capable of using inputs and outputting
data.

VEX is an interpreted language within Houdini. It is fairly easy to use and offers a set of
functions to allow modification of point attributes. While this makes it very scalable and
optimised for multi-threading, VEX is unable to create or destroy geometry.

In order to create custom expressions, commands or operators like SOPs, COPs, DOPs, etc.,
the Houdini Development Kit is required. The HDK is a set of C++ libraries used by the
creators of Houdini themselves to create nodes and interfaces. It is the SDK Houdini itself is
built with.

Alternatively, the Houdini Object Model (HOM) can be used to create SOPs using the Python
scripting language. Compared to the HDK, it offers increased flexibility, but can also be slower
due to the overhead introduced by Python.

For this project, both the HDK and HOM have been evaluated. The Python API provides
a module named inlinecpp (SideFX 2011c) enabling the programmer to write functions in
C++. However, due to the many interactions between the Houdini component and the FRep
API, this method seemed to be too limited. Another reason to choose the HDK was better
extendability for future work and possibly more complex optimisations.
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3.2 Houdini Development Kit (HDK)

3.2.2 Operators and attributes

Houdini is organised into a hierarchy of nodes. There are several levels, starting at the
“directory” levels, internally called Networks, like obj, shop, ch, out and others. Operations
and objects related to geometry are found in Surface operators (SOPs) within the Object
Manager (path /obj). Figure 3.5 shows a set of interconnected nodes within a geometry
object (/obj/geo3).

Figure 3.5: Houdini’s node based system

Internally, all nodes are subclasses of OP_Node. As stated in the HDK documentation (SideFX
2011a), custom nodes do not inherit from this base node directly. Instead, node types are
grouped into different network types like SOP_Node for surface operators as shown in Fig-
ure 3.6. Custom nodes like FRep_Node create an operator defining properties like node name,
attributes and the allowed number of inputs.

Furthermore, custom nodes define a list of PRM_Template items for every attribute. This
definition contains the type, attribute name, UI name, default value(s) and range. Examples
of often used attributes are dropdown lists, toggles, labels or numeric input fields like float
and int.
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3.2 Houdini Development Kit (HDK)

Figure 3.6: Basic class diagram for custom Houdini nodes (adapted from SideFX (2011a))

3.2.3 The SOP Node

SOP nodes are distinguished between generators and filters. Generators do not require any
input, instead they generate geometry purely based on their parameters. Filters on the
other hand alter geometry and apply a set of operations to it. In the case of this project,
nodes always except at least one input. Even the FRep node itself that outputs the mesh
after polygonisation is retrieving his attributes from connected nodes during traversal (see
Section 4.4.2).

As shown in the previous section, the first step in creating a custom SOP is to sub-class
SOP_Node, register the operator and start defining attributes. The method which contains
the actual code to manipulate the geometry is called cookMySop and is called automatically
as soon as the node is evaluated or refreshed.

Another useful concept which helps users understand what the SOP is working with, is the
option of adding guide geometry. This geometry is not part of the operator and is only
displayed as guiding information, as used to display the bounding box of the polygonisation
(see Figure 3.7).
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3.2 Houdini Development Kit (HDK)

Figure 3.7: Providing guide geometry (blue lattice) in a custom node

3.2.4 Geometry

The main geometry libraries in Houdini are GB, GD, GEO and GU. It is beyond the scope of
this thesis to explain all of these in detail, but here a brief overview: GB is the geometry base
class on which GD (for 2D geometry) and GEO (for 3D geometry) are based on. GU is a library
sub-classed off the GEO library containing higher level tools and classes like GU_Detail.

For 3D geometry, the detail class is used as a container for points, primitives and attributes.
A GEO_Point represents a point in space; multiple points can form a primitive, in which case
a GEO_Vertex object is created to store the reference to the point (see Figure 3.8). For this
project, meshes are all triangulated, so each primitive consists of 3 vertices.
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3.2 Houdini Development Kit (HDK)

Figure 3.8: Geometry Structure in Houdini (SideFX 2011b)
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Chapter 4

Design and implementation

To design a system well requires knowledge of all components and appropriate use of the
tools at disposal. After all, design is not just what something looks like, it is how it works.

Many design decisions made throughout the project were based on best practises and exam-
ples from Houdini and its HDK. The main goal was to integrate FRep modelling capabilities
into a environment familiar to existing Houdini users rather than inventing complicated new
workflows.

4.1 System overview

General naming conventions and coding standards have been respected and kept consistent
with the Maya plugin and FRep library itself, wherever possible and not conflicting with
HDK’s coding guidelines.

There are three main QtCreator projects:

• QtRep: The port of the FRep API from Windows to Mac OS X (see Section 4.3.1 on
GCC compatibility). The output is a dynamic library libQtRep.dylib on Mac OS.
On Windows, this would correspond to a .dll, on Linux to a .so file.

• frep-houdini: The intermediate layer (see Section 3.1.1), making use of libQtRep.
dylib and containing all custom FRep nodes for Houdini.

• houdini-test: A standalone test project that uses libQtRep.dylib and allows to make
calls to the FRep API. This is useful for testing and debugging the interaction with the
FRep library.
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4.1 System overview

The core of the intermediate layer consists of a set of custom Houdini nodes (see Figure 4.1).
They all inherit from FRep_Node which forms the base for primitives and operations. At the
same time FRep_Node is responsible for traversing the nodes (see Section 4.4.2), building the
FRep tree and outputting the mesh (see Section 4.4.3).

+ myConstructor(i_net : OP_Network, i_name : const char, i_op : OP_Operator) : OP_ERROR
+ getId() : unsigned int
+ fillParameters(i_entity : ENTITY_BASE_T<float>*, i_now : double, i_srcNode = NULL : OP_Node) : BOOL
+ fillParametersTransform(i_entity : ENTITY_BASE_T<float>, i_now : double, i_thisNode : OP_Node) : BOOL
+ cookMySop(i_context : OP_Context&) : OP_ERROR
+ cookMyGuide1(i_context : OP_Context&) : OP_ERROR
- gather(i_now : double) : OP_ERROR
- generateMesh(i_node : ENTITY_NODE_T<float>*, i_now : double) : OP_ERROR
- retrieveChildren(i_node : OP_Node, i_now : double) : ENTITY_NODE_T<float>*

- m_templateList[] : PRM_Template
- m_variables[] : CH_LocalVariable
- m_attrNames[] : PRM_Name

FRep_Node

Box_Node CSG_Node Bend_Node Metamorph_Node

SOP_Node

Sphere_Node

Torus_Node

Cone_Node

Cylinder_Node

Blend_Node

Bounded_Blend_Node

Twist_Node

Taper_Node

Deform_Point_Node

Instancer_Node

Sphere_Sweep_Node

Figure 4.1: Class diagram of custom Houdini nodes
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4.2 Development environment

4.2 Development environment

4.2.1 Installation and setup

The Houdini Development Kit (HDK) is part of Houdini and installed under $HFS/toolkit.
All required header files, makefiles and samples are available in Houdini Master as well as
the free Apprentice version. This project was developed using QtCreator in order to allow
deployment to other platforms. The operating system used during development was Mac OS
X 10.7.

After the installation, the $HFS environment variable points to the installation directory,
which is typically /Library/Frameworks/Houdini.framework/Resources on a Mac.

4.2.2 Makefiles

There are several ways of compiling HDK code. Using the hcustom command-line tool is very
convenient and useful for testing, but also limited to a single C++ source file and therefore
not appropriate for the library. The alternative is using Makefiles which are shipped with
the HDK and provide sample Makefiles for Linux and Windows.

For the Mac, Schmidt (2011) provides a makefile which was used as a base. Additionally,
running hcustom -e My_Node.cpp outputs the compiler and linker commands executed by
hcustom and offers an insight into the way plugins are compiled and bundled. This is par-
ticularly helpful when compiling from console or for debugging compiler and linker flags.

4.2.3 IDE Integration and debugging

It is worth mentioning a number of best practices that have been discovered throughout the
development, especially since effective workflows on different platforms using various IDEs
are scarcely documented.

Unfortunately, Houdini’s plugin architecture does not (officially) support loading and reload-
ing of plugins. Instead, they are loaded upon startup which requires Houdini to be closed and
reopened every time a change to a library is made. During the development of the project,
the following workflow has proven to be most effective:

1. Apply changes to the code and build project from within QtCreator. Using custom
build steps as shown in Figure 4.2, make install can be run from within the IDE using
the standard shortcut. Note that one can also add a custom build step for make clean
to rebuild the project entirely.

16

$HFS/toolkit
$HFS
/Library/Frameworks/Houdini.framework/Resources
hcustom
hcustom
make
install
make
clean


4.2 Development environment

2. Start Houdini from Terminal. This could also be done automatically via a custom build
step. However, the terminal window is at the same time used for logs and therefore
useful to display.

3. Optional: The debugger can then be attached to the running application within QtCre-
ator via the menu Debug => Start Debugging => Attach to Running External Appli-
cation... (see Figure 4.3).

Figure 4.2: Using custom build steps in QtCreator to compile and bundle the Houdini
library from within the IDE
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4.3 Using the FRep API

Figure 4.3: Debugging using QtCreator

4.3 Using the FRep API

4.3.1 GCC compatibility

Various adjustments to the existing FRep library (see Section 3.1) were required for it to be
used in the HDK plugin. A dynamic library was built and the code, originally developed on
Windows using Visual Studio’s compiler, was made GCC compatible.

This very time-consuming task was at the same time necessary groundwork. Having a
standard-compliant code base then allows for cross-platform development. The original li-
brary heavily relies on templates and some notations needed to be adjusted in order to work
with the usually more strict GCC. Although being platform-independent for the most part,
some platform-specific code in the FRep library had to be ported as well.

4.3.2 Custom intermediate layer

The set of Houdini operators create a custom intermediate layer, allowing communication
between FRep API and Houdini (see Figure 4.4). These patterns were adapted from the ex-
isting plugin for Autodesk Maya (Kravtsov 2011). Furthermore, existing naming conventions
were kept and pre-existing standards respected to ensure portability and maintainability.
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4.4 Procedural function-based modelling in Houdini

Figure 4.4: The interaction with the FRep API (Kravtsov 2011)

4.4 Procedural function-based modelling in Houdini

4.4.1 The modelling workflow

Modelling using FRep nodes is very similar to the traditional approach of procedural mod-
elling in Houdini. FRep nodes can be classified as primitives and operations. In order to
keep the workflow as natural as possible without forcing users to adapt to new nodes, FRep
Houdini’s built in primitives Box, Sphere, Torus, Cone and Tube (called Cylinder in the FRep
API) can be used.

Making use of Houdini’s native primitive nodes also enables us to reuse guide geometry and
handles. Figure 4.5 shows a basic example of an ordinary box and sphere being fed into
an FRep blend node. The FRep node at the end of the tree (frep_node6) is needed for
polygonisation and outputting the mesh.

In addition to the already mentioned primitive types, the intermediate layer (or to be more
precise, the traversal algorithm described in Section 4.4.2) is also aware of the Transform
SOP which can be employed for scaling, translating and rotating (see Figure 4.6).
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4.4 Procedural function-based modelling in Houdini

Figure 4.5: Using built-in primitive types as guide geometry

Figure 4.6: Transform node for scale, translation and rotation

4.4.2 Tree traversal

Gathering the necessary information to build the FRep tree works differently in Maya and
Houdini. In Maya, the architecture requires every node to be independent, so all the attributes
need to be passed and kept up to date. In Houdini, this is slightly easier to integrate and
one node can be used to gather all its input nodes recursively and build the tree from that.

This node at the end of the tree (in Houdini typically at the bottom) is represented by the
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4.4 Procedural function-based modelling in Houdini

FRep_Node class. The traversal of the nodes is controlled by one single, recursive function
called retrieveChildren. Not only is this function responsible for traversing all child nodes,
it also creates the corresponding FRep entities and nodes as well as fills them with the
parameters provided by the user in Houdini.

The function is run with the (only) child of the FRep_Node as input and returns a full FRep
tree consisting of FRep nodes and their children. The algorithm (see Algorithm 1) can be
structured in five phases:

1. Variables like factory and returnNode are initialised. Also, further flags to indicate
the type of the current node are defined.

2. A new frepNode instance is created. This is achieved either by casting the current
node, if it is an actual FRep node, or by manually creating it in case the current node
is one of Houdini’s built-in primitives (Sphere, Box, Torus, Cone, etc.). Additionally, a
new FRep entity of the corresponding type is created. The node holding that entity is
also marked to be returned.

3. The FRep API offers a transform entity which can be appended to a node to per-
form operations. In case we are using an FRep node that can be transformed or even
Houdini’s own transform SOP, create the necessary FRep entity. Then, create the cor-
responding node and add it as child of the original node. In this manner, an “invisible”
FRep transform is added right after the node it transforms.

4. In the last step, the algorithms determines what to return. If the current node is an
FRep object (either by being one of the FRep nodes or one of Houdini’s primitives
representing one), fill the entity and run this whole procedure for every child of this
node. Alternatively, if this is just an ordinary node that should be ignored by this
system, run retrieveChildren on its input (child). If the node is irrelevant to the
FRep system and has no inputs, return NULL.
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4.4 Procedural function-based modelling in Houdini

Function: retrieveChildren(thisNode)

// Phase 1: Initialisation
factory ← Create factory
returnNode ← Node to be returned (initially NULL)
isFRepNode ← Is the node one of our own FRep nodes?
isHoudiniGeoNode ← Is Houdini geometry node like Sphere, Box, Torus, etc.?
isTransformNode ← Is Houdini transform node?

// Phase 2: Create FRep node and entities
if isFRepNode or isHoudiniGeoNode then

if isFRepNode then
frepNode ← cast thisNode as FRep_Node

else if isHoudiniGeoNode? then
frepNode ← create FRep node for Houdini native primitive

end
newEntity ← create entity of frepNode.getTypeId() via factory
newFrepNode ← create node based on newEntity
returnNode ← newFrepNode

end

// Phase 3: Add transform node
if isFRepNode or isTransformNode then

transformEntity ← create entity with the transforms of thisNode
transformNode ← create node based on transformEntity
transformNode.addChild(newFrepNode)
returnNode ← transformNode

end

// Phase 4: Fill parameters and run on child nodes (if any)
if isFRepNode or isHoudiniGeoNode then

frepNode.fillParameters()

foreach child in inputNodes do
childNode ← retrieveChildren(child)

if Child is FRep node then newFrepNode.addChild(childNode)
end
return returnNode

else if thisNode has input then
return retrieveChildren(input)

else
return NULL

end
Algorithm 1: Recursive node traversal function
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4.4 Procedural function-based modelling in Houdini

4.4.3 Polygonisation

As mentioned in Section 4.4.1 about the FRep modelling workflow, an frep_node is added
to the end of the network. This node has two main tasks. The first is traversing all nodes
in order to gather all parameters and build the FRep tree as described in Section 4.4.2. The
second task of the node is to pass the tree to the polygoniser of the FRep API and then
assign the generated mesh data to Houdini’s geometry structures.

The polygoniser has a number of attributes that can be manipulated via the user interface.
The bounding box, grid resolution and surface generation method can be defined. An example
of the analytic method is shown in Figure 4.7.

Figure 4.7: Polygonisation using analytic normals and a subdivision level of 3

Assigning the data received from the polygoniser is fairly straight-forward, keeping the inter-
nal structure of Houdini’s geometry architecture (see Section 3.2.4) in mind.

4.4.4 FRep Operations

Blending

There is a variety of operations possible. For conventional boolean modelling, the CSG node
can be used for union, intersection and subtraction operations (see Figure 4.8). The Blend
node is similar to the CSG node but provides more user control, offering three parameters to
control the blending and achieve various results as shown in Figure 4.9. This concept is taken
even further using bounded blend nodes, allowing local control of blending (see Figure 4.10).
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4.4 Procedural function-based modelling in Houdini

Figure 4.8: Example of a CSG node used to perform a subtract operation

Figure 4.9: Example of the blend node in use with different blend values: 1 10 1, 1 50 50,
1 1 10
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4.4 Procedural function-based modelling in Houdini

Figure 4.10: Bounded blending using three spheres

Taper, Bend, twist and deform point

Other operators allow relatively complex operations with very little effort. All operations
shown in Figure 4.11 and Figure 4.12 are entirely based on a simple box primitive. Each of
the meshes is therefore produced using three nodes only: box node, FRep operation (taper,
bend, twist or deform point) and the FRep base node for polygonisation.

Figure 4.11: Example of the taper node
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4.4 Procedural function-based modelling in Houdini

Figure 4.12: Examples of bend, twist and deform point operations

Sphere sweep

The Sphere sweep node (see Figure 4.13) allows “drawing” three-dimensional lines by pro-
viding a standard Houdini curve as input and specifying a radius inside the sweep node.

Figure 4.13: Sphere sweep node using a standard Houdini curve as input

Offset

Figure 4.14 shows the offset node which allows to extract a mesh inside (Offset value < 1) or
outside the original surface (Offset value > 1).
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4.4 Procedural function-based modelling in Houdini

Figure 4.14: Offset node using different offset values: -0.5 (left), 0 (middle), 0.5 (right)

Metamorphosis

Probably one of the best examples of the benefits of FRep is when morphing two objects
with completely different topologies. Figure 4.15 shows an example of such an operation in
five steps from alpha = 0 to alpha = 1.

Figure 4.15: Metamorphosis from a cone to a torus

Instancer

The instancer node can output based on any sort of input geometry. In the example in
Figure 4.16, a torus is used to create a grid-like structure. Figure 4.17 shows a more complex
example using two torus objects for the instancer. The result then gets intersected with a
bigger torus.
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Figure 4.16: Instancer node output based on torus

Figure 4.17: More complex example of the instancer node.
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Chapter 5

Results and analysis

Like traditional polygon modelling, FRep modelling offers the same vastness of possibilities.
Virtually anything can be created, any attribute of an object can be controlled and changed
over time. This chapter tries to provide an idea of what is possible by showing some examples,
but also outlining some of the limitations of the current system.

5.1 Modelling

To demonstrate some of the modelling capabilities, a real-world object (see Figure 5.1) and a
simple character (see Figure 5.2) have been created. As shown in the example of the screw,
such an object can be created with very few nodes.

Figure 5.1: Screw model with its corresponding node network and optimisation for sharp
features
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5.2 Animation

Figure 5.2: Penguin FRep model

5.2 Animation

Just like every other node attribute in Houdini, FRep attributes can be animated using
keyframes. In Figure 5.3, a truck was modelled and its backdoor rotated over time around
a pivot point. The keyframe animation can be controlled further using the animation graph
(see Figure 5.4).

Figure 5.3: Truck showing keyframe animation
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5.3 Morphing

Figure 5.4: Animation graph of the truck animation

5.3 Morphing

The fact that objects are mathematical functions allows us to interpolate between these
functions. For the user, all that is needed is to connect two objects using a metamorphosis
node. Figure 5.5 shows an example of metamorphosis of two objects with different topologies.

Figure 5.5: Metamorphosis of simple 3D character to a screw
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5.4 Limitations

5.4 Limitations

All of the functionality the FRep API offers is still not integrated at this stage. However,
the project has been designed with extendability in mind. There is a list of known issues and
limitations to the current system:

• The node type is currently determined by comparing node names (e.g. frep_bend).
Therefore, if the node is renamed, the tree traversal algorithm ceases to recognise it.
However, suffixes can still be added (i.e. frep_bend_arm will work). To solve this,
nodes would have to be identified by their class type which would be one of the first
issues to fix in a potential future version.

• The polygonisation can not be canceled using the escape key like it is good practice in
Houdini. This has to do with the fact that Houdini’s interrupt has to be placed within
the loop of a critical operation. Since the polygonisation is part of the FRep API, this
is not possible.

• When animating FRep attributes, like alpha in the metamorph node, the nodes are
not refreshed. The current work around is to set two keyframes to an attribute of any
other Houdini native node in the network (even if it is not changing values). The reason
might lie in the evaluation of animatable attributes in custom nodes, but needs further
investigation.

• There can only be one FRep base node per network, so it is not possible to feed a final
FRep node back into another one. This behaviour is correct, but an appropriate error
message should be displayed.

• Bypassing a node currently has no effect on the system. The solution would be to
query this flag for every node during tree traversal and simply ignore bypassed nodes
(continue the execution of the recursive function).

Some open questions remain in terms of deploying the project to other platforms. One of
the downsides of using the HDK rather than Python, is the requirement for the plugin to be
recompiled on every platform using the same compiler Houdini was compiled with.
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Chapter 6

Conclusion

Basing a project on an external library (which had to be ported first), while at the same time
tackling a complex SDK like the Houdini Development Kit was certainly an ambitious goal. In
retrospect, the objective of bringing FRep modelling capabilities to Houdini while respecting
existing guidelines and UI paradigms, was achieved. Particularly the degree of integration
into the Houdini environment is very promising for future projects and applications.

The FRep API offers a vast set of features. Some nodes and features could not be integrated
given the short duration of this project. There is also a list of known issues and limitations
to the system, as discussed in Section 5.4. Choosing the HDK over Python was the right
decision and, apart from having performance benefits, offering a clean and solid foundation
for future development.

6.1 Applications

The technology can have applications in industries like film and games, especially as comput-
ers get faster and more accurate representations of the real-world are desired. Furthermore,
being able to blend and morph objects regardless of topology is challenging using current
methods.

Since FReps are resolution-independent, they are ideal for use in digital manufacturing and
3D printing. Additional nodes could be developed to allow export from Houdini to various
file formats like STL.
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6.2 Future work

6.2 Future work

In addition to addressing known issues (see Section 5.4), there are various nodes in the
FRep API that remain to be implemented. Other limitations are connected to the nature of
function-based modelling itself. For example, it can be very difficult for a user to imagine the
influence of each of the attributes in a blend operation. Developing new tools and techniques
to allow more intuitive FRep modelling and teaching artists to use these appropriately is
another area for further research.

Houdini has its own iso surface node to polygonise implicit functions. It might be interesting
to investigate potential performance benefits when integrating Houdini’s polygoniser into the
current system. On the other hand, optimisations to the polygonsier like the support for
sharp features would go missing.

Performance is still an issue, especially as models become more complex and higher resolutions
are applied. To leverage multiple CPU cores or the GPU, additional efforts are needed, as
shown with the CUDA integration in the Maya plugin (Kravtsov 2011).

As further packages are targeted, the integration process into other modelling systems can
be automated using a set of translators in order to avoid manual labour-intensive work as
shown in Figure 6.1.

Figure 6.1: A set of application and platform specific translators (Kravtsov 2011)
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