
1

Unreal Engine Reusable Stylised
Framework

Haohan Zhang

MSc Computer Animation and Visual Effects

Bournemouth University

September 2025

2

Abstract

Stylized rendering has grown increasingly important in contemporary games and animation,

particularly within anime-inspired visual styles. While traditional cartoon shaders offer distinct

lighting bands and outlines, their implementation in production environments often yields

mediocre results. This project focuses on exploring a reusable real-time cartoon shader

framework implemented in Unreal Engine 5.5. It aims to establish a relatively efficient workflow

for achieving stylized rendering across different styles, integrating physically based rendering

with non-photorealistic techniques for character rendering. This approach provides a stable

and fast process for cartoon rendering while offering solutions with greater artistic flexibility.

3

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Jon Macey, and Jian Chang for

their continuous guidance, encouragement, and invaluable feedback throughout the course of

this project. Their professional advice and patient guidance helped me overcome many

challenges.

Additionally, I am grateful to my family and friends for their unwavering encouragement and

understanding during my studies. Their support has been a constant source of motivation.

4

Contents

Abstract... 2

Acknowledgements ... 3

List of Figures ... 6

1 Introduction .. 7

2 Related Work ... 8

3 Technical Background.. 9

3.1 Non-Photorealistic Rendering (NPR) .. 9

3.2 Toon Shading Principles ... 9

3.3 Outline Rendering Techniques .. 10

3.4 Physically Based Rendering (PBR) ... 10

3.5 Unreal Engine 5.5 Rendering Pipeline .. 11

4 Solution .. 12

4.1 Post Process Materials ... 12

4.1.1 Hatching .. 12

4.1.2 Ink .. 13

4.1.3 Outline ... 15

4.1.4 Toon Shader .. 16

4.1.5 Vignette ... 18

4.1.6 Mixer .. 18

4.1.7 Integration and Workflow ... 19

4.2 NPR+PBR Character Rendering Material ... 19

4.2.1 Shader Structure .. 20

4.2.2 Usage for Character Assets ... 21

4.2.3 Technical Impact .. 22

5 Conclusions ... 23

6 References .. 25

7 Appendices .. 28

5

7.1 Appendix A: Blueprints .. 28

7.2 Appendix B: Material Instance Parameters ... 32

7.3 Appendix C: HLSL code .. 34

6

List of Figures

Figure 4-1: Original Scene Render

Figure 4-2: Rendering effect with MI_Hatching material added during post-processing

Figure 4-3: Original Scene Render

Figure 4-4: Rendering effect with MI_Ink material added during post-processing

Figure 4-5: Original Scene Render

Figure 4-6: Rendering effect with MI_Outines material added during post-processing

Figure 4-7: Original Scene Render

Figure 4-8: Rendering effect with MI_ToonShader material added during post-processing

Figure 4-9: Rendering effect with MI_Mixer (Hatching, Outlines and ToonShader) material

added during post-processing

Figure 4-10: Characters rendered using the M_PBR_NPR material.

Figure 4-11: Standard cartoon-style rendered characters.

7

1 Introduction

In recent years, the demand for stylized rendering in computer animation and games has

grown significantly, particularly in titles adopting anime-inspired or “cartoon” aesthetics. The

popularity of games like The Legend of Zelda series and Genshin Impact, alongside films such

as Spider-Man: Across the Spider-Verse, demonstrates increasing acceptance of non-

photorealistic rendering styles.

Traditional NPR and cartoon shading methods have established effective techniques for

stylized lighting and contour rendering (Gooch et al., 1998), but these methods are often

designed for specific use cases and lack the modularity required for contemporary production

environments (Barla et al., 2006). In contrast, modern game engines like Unreal Engine and

Unity have introduced Shader Graph tools and official documentation for stylized rendering

(Epic Games Developer, 2025; Unity Technologies, 2019), making these techniques more

accessible to non-programmers. However, built-in tools remain limited: shadow boundaries

often flicker during animation, gradient textures require manual adjustments, and reusing

shader components across projects remains cumbersome. Emerging stylized games also

reveal studios exploring combinations of non-photorealistic rendering (NPR) with physically

based rendering (PBR). This approach balances artistic style with technical realism, though

its implementation grows more complex.

For stylized artists, these limitations create cumbersome workflows. On one hand, stable and

efficient cartoon shading is crucial for maintaining consistent visual styles across game

characters and environments. On the other hand, the lack of reusable frameworks forces

teams to repeatedly build similar solutions, leading to inefficient production. Therefore, this

project focuses on implementing a shader framework that is not only visually convincing but

also parametric, reusable, and relatively friendly to the art workflow.

This project addresses the issue by developing a reusable real-time cartoon shader framework

within Unreal Engine 5.5. The framework will implement several stylised effects rapidly and

reliably, leveraging the engine's updated post-process materials. It offers artists seeking to

experiment with rendering stylised characters using a blend of non-photorealistic rendering

(NPR) and physically based rendering (PBR) techniques a relatively straightforward approach,

granting them greater creative scope and artistic freedom.

8

2 Related Work

Non-photorealistic rendering (NPR) has been an active research field in computer graphics

for more than two decades, focusing on techniques that go beyond realism to achieve stylised,

illustrative, or cartoon-like appearances. One of the earliest influential works in this area is the

lighting model proposed by Gooch et al. (1998), which replaced traditional Phong shading with

cool-to-warm colour interpolation, enhancing shape perception while maintaining clarity.

Decaudin (1996) introduced one of the earliest practical algorithms for cartoon-style contour

rendering, laying the foundation for many subsequent edge-detection methods. Gooch et al.

(2001) further explored real-time stylised rendering, establishing the feasibility of interactive

cartoon shading in animation and games.

Building on these foundations, more advanced cartoon shading techniques have been

developed to provide greater flexibility. Barla et al. (2006) proposed X-Toon, a framework that

allows the use of lookup tables to control diffuse and specular responses, giving artists finer

stylistic control. These methods reflect a broader trend in NPR research: balancing artistic

flexibility with computational efficiency. As technology has advanced, stylised rendering has

also become increasingly diverse. Line rendering has remained a recurring research theme;

Kim et al. (2015) provided a comprehensive tutorial on drawing lines from 3D models, covering

both geometry-based and image-space edge detection methods.

The application of cartoon shading in the game industry demonstrates its practical significance.

Stylised rendering has been a key factor in the success of games such as The Legend of

Zelda series and Borderlands, which employ carefully designed shading and contour

techniques to reinforce their art direction. More recently, miHoYo’s Genshin Impact has

popularised an anime-inspired NPR pipeline that integrates quantised lighting bands, stable

shadows, and custom shaders for hair and eyes (Gdcvault.com, 2021). Such large-scale

productions indicate that NPR is not only of academic interest but also a cornerstone of

contemporary game art.

Game engines have also incorporated support for stylised rendering into their workflows. Unity

provides Shader Graph nodes for toon shading and rim lighting (Unity Technologies, 2019),

while Unreal Engine’s documentation offers guidance on stylised materials and post-

processing (Epic Games Developer, 2025). These official resources highlight the growing

demand for accessible and reusable NPR techniques in standard pipelines. However, despite

9

these advances, existing engine-level tools often lack stable shadow boundaries and flexible

gradient control, requiring technical artists to extend or customise shaders.

In summary, this project aims to bridge this gap by developing a reusable, parameterised toon

shading framework in Unreal Engine, designed to provide a relatively stable and streamlined

workflow for artists.

3 Technical Background

3.1 Non-Photorealistic Rendering (NPR)

Traditionally, computer graphics has focused on photorealism, which involves simulating the

physical properties of light to generate lifelike images. In contrast, non-photorealistic rendering

(NPR) aims to create stylised, illustrative, or artistic images rather than strict realism (Gooch

et al., 2001). NPR encompasses techniques such as painterly rendering, shadow lines,

cartoon rendering, and line art. Within this broad category, cartoon rendering (also termed

‘cartoon-style rendering’ or ‘anime-style rendering’) stands as one of the most widely

employed methods due to its relevance in animation and gaming.

Cartoon shading typically simplifies the shading model by quantising continuous light values

into discrete banded areas, creating sharp distinctions between light and shadow. This

produces the distinctly ‘flat’ yet expressive appearance characteristic of animation and comic

art (Todo et al., 2009). Beyond shading, NPR techniques often incorporate contour detection

to draw outlines around objects, further enhancing the image's illustrative quality.

3.2 Toon Shading Principles

At the core of toon shading is the modification of the standard Lambertian lighting equation:

𝐼 = 𝑘𝑑 ⋅ max⁡(𝑁 ⋅ 𝐿)

10

where 𝑁 is the surface normal, 𝐿 is the light direction, and ⁡𝑘𝑑 is the diffuse color. Instead

of using the raw dot product, toon shading maps this value into discrete levels using a

ramp function or thresholding. For example, a two-band toon shader may render pixels

either fully lit or fully shadowed, whereas multi-band ramps provide smoother stylized

gradations.

Key extensions of this model include:

• Specular highlights: Quantized or threshold-based highlights to simulate the

sharp, stylized shine often seen in hair or polished surfaces.

• Rim lighting: An additional lighting term emphasizing object silhouettes relative to

the camera, frequently used in anime to enhance readability.

• Ramp textures: Custom 1D textures that map lighting intensity to color, enabling

a wide variety of stylistic effects beyond simple hard bands.

3.3 Outline Rendering Techniques

Outlines are another crucial element in cartoon shading, enhancing the hand-drawn effect.

There are primarily two approaches:

• Geometry-based outlines (mesh extrusion): The object's mesh is rendered

again using inverted normals and extended vertices, producing stable and efficient

outlines.

• Image-space outlines (post-process edge detection): Utilising depth and

normal buffers, edges are detected through filters such as the Sobel operator. This

method captures both external outlines and internal feature lines.

Modern NPR systems typically combine both approaches: mesh extrusion for stable external

outlines and screen-space methods for internal detail lines (Liao, 2023).

3.4 Physically Based Rendering (PBR)

By contrast, Physically Based Rendering (PBR) has become the industry standard for

photorealistic rendering in modern engines. PBR materials rely on physically based models to

11

simulate the interaction between diffuse reflection, specular reflection, and roughness,

enabling consistent image generation under varying lighting conditions (Kumar, 2020).

Key components of PBR include:

• Energy conservation: Ensuring a material reflects no more light than it receives.

• Fresnel effects: Angle-dependent reflections.

• Micro-surface models: Employing statistical models of surface roughness to

calculate realistic highlights.

Whilst PBR excels at photorealism, it frequently conflicts with the stylised objectives of NPR.

Consequently, PBR+ cartoon-shading hybrid rendering for stylised characters seeks to retain

PBR's physical realism whilst overlaying NPR techniques to achieve stylistic control.

•

3.5 Unreal Engine 5.5 Rendering Pipeline

Unreal Engine 5.5 introduces several features related to stylised rendering:

• • Deferred rendering pipeline: Efficiently handles multiple lights while still permitting

customised post-processing.

• • Material Parameter Collection (MPC): Provides a mechanism for passing global

values (e.g., light direction) to shaders.

• • Post-Processing Materials: Enable screen-space effects such as outline detection

and colour quantisation.

These features make Unreal Engine particularly well-suited for implementing reusable stylised

rendering frameworks, combining advanced rendering infrastructure with the scalability of

stylised workflows.

12

4 Solution

4.1 Post Process Materials

To address the limitations of standard Unreal Engine materials in achieving stable and

expressive non-photorealistic rendering, this section employs Unreal Engine's post-process

materials to implement a modular shader framework for stylized rendering in real-time

environments. This solution centers on six core components—Hatching, Ink, Mixer, Outline,

Toon Shader, and Vignette—collectively forming a versatile toolkit. Each module exposes key

parameters via Material Instance, enabling users to rapidly preview rendering effects and

adjust styles at the asset/level layer without modifying textures.

4.1.1 Hatching

The Hatching module introduces line-based shading reminiscent of traditional pen-and-ink

illustrations. Two layers of rotated texture coordinates are sampled and blended to generate

primary and secondary hatch directions. By adjusting UV scale, rotation, and blend thresholds,

artists can simulate variable shading density corresponding to light intensity. This achieves

expressive shadow rendering, complementing the cartoonish flat colors with additional texture

and detail (Figure 4-1 & Figure 4-2).

Key Parameters (MI_Hatching):

• Overall Hatching UV Scale – density of hatching lines. Lower → denser shading.

• Hatching Thickness – adjusts line width. Negative values produce very thin lines.

• Overall Hatching Rotation – rotates the entire hatch pattern.

• Primary Hatching Area / Secondary Hatching Area – threshold values controlling

where each hatching layer appears. Higher → only darkest regions are affected.

• Secondary Hatching Rotation / Offset – avoids moiré patterns and increases textural

richness.

Impact:

• Primary ≈ 8–12, Secondary ≈ 14–18 produces subtle tonal layering.

• Angling secondary rotation at 25°–45° mimics cross-hatching in traditional illustration.

13

Figure 4-1: Original Scene Render

Figure 4-2: Rendering effect with MI_Hatching material added during post-processing

4.1.2 Ink

The Ink module is designed to replicate the bold contouring typical of hand-drawn comic art.

Building on screen-space normal and depth information, outlines are extracted via

thresholding and composited back into the scene. The Ink implementation includes toggles for

black-on-white or white-on-black presentation, expanding its usability for different artistic

contexts such as manga or storyboard visualization. Unlike a simple Sobel filter, this module

supports parameterized width and intensity, providing control over stylistic expressiveness

(Figure 4-3 & Figure 4-4).

14

Key Parameters (MI_Ink):

• Two Tone – enables dual thresholds for shadows (dark + light).

• Darker Shadows Cutoff / Color – darkest areas, usually pure black. Higher cutoff →

fewer areas covered.

• Lighter Shadows Cutoff / Color – lighter shadow band.

• Denoise – smooths transition edges, stabilizing shading in motion.

Impact:

• Close-up characters: Darker cutoff ≈ 0.08–0.12, Lighter cutoff ≈ 0.18–0.25.

• For distant backgrounds, increase cutoff values to avoid overly large black areas.

Figure 4-3: Original Scene Render

Figure 4-4: Rendering effect with MI_Ink material added during post-processing

15

4.1.3 Outline

Complementing the Ink channel, the Outline module employs geometry-based extrusion

techniques. Mesh normals are inverted and offset to generate stable outlines around the

model, proving particularly effective for character rendering. When combined with Ink's

screen-space outlines, this dual approach strikes a balance between stability and internal

detail capture. The two outline sources within this design—Depth-Based Outlines and Diffuse-

Based Outlines—are dedicated to achieving stable outer contours under varying conditions,

complemented by optional ‘diffuse-contrast’ inner lines. This resolves issues of scale and

detail fidelity at varying distances within UE5 (Figure 4-5 & Figure 4-6).

Key Parameters (MI_Outlines):

• Line Width (near / far) – outline thickness for near vs. distant objects.

• Threshold (near / far) – sensitivity to depth or color changes. Higher → captures finer

details.

• Blend Distance – defines near-to-far transition range.

• Exponential Blend Distance / Exponent – non-linear scaling for large outdoor

scenes. Default exponent = 2.

• Diffuse Based Outlines – supplements depth-based lines, useful for flat but patterned

surfaces.

• White Background – outputs outlines on a pure white canvas for concept art export.

• Debug Plane – visualizes where blending transitions occur.

Impact:

• Recommended values: Near Width ≈ 1.0–1.5, Far Width ≈ 0.1–0.3.

• Outdoor shots: enable Exponential Blend with Distance ≈ 15–25, Exponent ≈ 2.

• Use Diffuse outlines for low-contrast materials (fabric, ceramic tiles).

16

Figure 4-5: Original Scene Render

Figure 4-6: Rendering effect with MI_Outines material added during post-processing

4.1.4 Toon Shader

The Toon Shader module forms the core of this framework. It achieves quantized diffuse

illumination through gradient textures, stable shadow boundaries, and an optional specular

reflection threshold. Parameters such as band count, softness, and edge intensity are

presented via material instances. This ensures consistency across multiple assets whilst still

affording artists flexibility to experiment with stylistic variations. The module guarantees stable

cartoon shading under camera and light animation, thereby overcoming common limitations

of simpler implementations (Figure 4-7 & Figure 4-8).

17

Key Parameters (MI_ToonShader):

• Diffuse Color Brightness – boosts albedo contribution after toon quantization.

• Mix in Original Lighting – Combined with the original lighting

• Shadows 1–4 (Cutoff & Color) – up to four discrete shadow bands. Each cutoff =

threshold; color defines tone.

• Denoise – stabilizes shadow bands.

• Outline Distance Blend – consistent outline behavior with the Outline module.

Figure 4-7: Original Scene Render

Figure 4-8: Rendering effect with MI_ToonShader material added during post-processing

18

4.1.5 Vignette

The vignette module introduces an additional post-processing layer that simulates the soft,

fading effects characteristic of traditional illustration and photography. Implemented as a

screen-space radial mask, it darkens or fades the edges of the image, thereby directing visual

focus towards the subject. Whilst the vignette effect is somewhat more subtle compared to

other modules, it contributes to elevating the overall cinematic quality of the rendering pipeline

and enhances visual readability.

Key Parameters (MI_Vignette):

• Intensity / Hardness / UV Scale – per-vignette control of strength, softness, and

radius.

• Color – tone of vignette (neutral, warm, or cool).

• Hatched Vignette – applies hatching lines within vignette areas for illustration-like

style.

• Vignette Texture Slots (T_Vignette1–4) – customizable feathering and shape masks.

4.1.6 Mixer

The Mixer module functions as a synthesizer, blending multiple NPR layers—such as Hatching

and Ink—with the Toon Shader base layer. By assigning adjustable weights to each input, the

Mixer facilitates the blending of visual styles, encompassing everything from flat cartoon

rendering to textured illustration. As it enables rapid exploration of blended aesthetics without

requiring new shader code, it significantly reduces the time needed to produce hybrid artistic

styles (Figure 4-9).

Key Parameters (from MI_Mixer):

• Features Toggles – switch on/off Hatching, Ink, Outlines, Vignette, White BG.

• Outlines Distance Blend – ensures global consistency of line scaling.

• Lighting-only Source Option – ensures modules derive from lighting data only,

aligning with Greyshade behavior.

19

Figure 4-9: Rendering effect with MI_Mixer (Hatching, Outlines and ToonShader) material

added during post-processing

4.1.7 Integration and Workflow

All modules are implemented as material functions within Unreal Engine 5.5 and combined

via the master material. This solution exposes parameters through material instances,

enabling artists to customise shading at the resource or project level without modifying the

underlying shader graph. The workflow is also highly convenient, requiring artists only to

create a PostProcessVolume within the current level and add Post Process Materials.

The solution's modular design permits selective activation of different effects. For instance, in

scenarios demanding high performance, only the Toon Shader and Outline effects may be

enabled, whilst Hatching and Vignette effects can be disabled. Conversely, for concept art

rendering or pre-production visualisation, Mixer can combine multiple stylisation modules to

achieve experimental effects.

In summary, this solution extends Unreal Engine's standard stylised rendering capabilities

through a modular NPR framework. By integrating Hatching, Ink, Outline, Toon Shader,

Vignette, and Mixer, the framework ensures both stability and stylistic diversity.

4.2 NPR+PBR Character Rendering Material

This shader primarily offers artists wishing to experiment with PBR+NPR character rendering

a straightforward approach. Some HLSL code for the effects has already been written in the

custom parameters. It requires only creating material instances for all base textures and

20

assigning them to a master material (M_PBR_NPR). By adjusting parameters, the entire

character's rendering can be achieved.

4.2.1 Shader Structure

The master material (M_PBR_NPR) is composed of several key functional blocks:

1. Texture Calibration (Base Color)

Inputs a standard BaseTex (albedo) and applies optional RGB calibration and

tonemapping before mixing with toon ramp colors.

The calibration ensures consistency across scanned PBR textures and hand-painted

stylized textures.

2. Lighting Model

Uses Dot (Normal, LightDir) with SkyAtmosphereLightDirection(0) to compute diffuse

shading.

Supports Signed Distance Field (SDF) based shadow masking for sharper stylized

edges, selectable with a UseSDF? parameter.

A Ramp gradient is applied to quantize shading into discrete toon bands.

3. Ramp Color Mixing

A Ramp texture (1D LUT or gradient) is sampled using the shadow mask.

Provides control over shadow thresholds and highlight falloff, allowing multiple bands

(e.g., light / midtone / shadow).

The artist can override with Final Color or additional MatCap inputs.

4. MatCap Integration

A camera-facing MatCap lookup is calculated using world normals and camera vectors

(see Matcap block screenshot).

This allows painterly rim-lighting, anisotropic sheen, or eye reflections without complex

PBR setup.

Separate MatCap Main (base shading) and MatCap Mask (selective blending) are

provided.

5. RMO Map Support

Standard Roughness / Metallic / AO packed maps (RMO_Tex) are supported.

21

Artists may override with color sliders (Metallic_Color, Roughness_Color) or MatCap-

based replacements (Metallic_Matcap, Roughness_Matcap).

This enables mixing between physically-based surface response and stylized

overrides.

6. Highlight / Specular Control

Custom nodes introduce NoseHighlight (anime-style facial highlights) and optional

extra rim light.

Allows exaggeration of specific anatomical features beyond standard BRDF.

4.2.2 Usage for Character Assets

• For clothing

Uses BaseTex with RMO map.

Ramp factor ≈ 2.0 for moderate cel-band separation.

Metallic and Roughness overridden with MatCaps for a more “illustrated fabric” look.

Produces believable folds with stylized shading transitions.

• For the eyes

Ramp_NoShadow for consistent flat tones (to avoid noisy shadow flicker on eyes).

MatCap provides anime-style circular highlight.

Shadows are disabled to maintain clean readability.

• For the skin

Ramp banding with 2–3 tones.

NoseHighlight and MatCap rim light accentuate form without realistic subsurface

scattering.

Allows dynamic expression while keeping “anime look.”

• For hair

Customise hair highlights using Matcap to enhance dimensionality.

Ramp_Hair adjusts hair colour variation and gradients.

22

4.2.3 Technical Impact

This material provides characters with greater detail compared to conventional cartoon

rendering (e.g., shadows, highlights, cloth/metal textures) while achieving more harmonious

overall coloration (Figure 4-10 & Figure 4-11). Through blending controls, artists can also

choose to use either PBR-based or NPR-based rendering exclusively by adjusting blend

values, offering greater flexibility in rendering expression. Additionally, when creating

characters of the same type, artists can opt to replace only the textures to quickly render

another character, enhancing flexibility.

Figure 4-10: Characters rendered using the M_PBR_NPR material.

Figure 4-11: Standard cartoon-style rendered characters.

23

5 Conclusions

This project successfully achieved its primary objectives by developing a reusable real-time

stylised rendering framework within Unreal Engine 5.5. The shader system was constructed

using a modular and reusable approach, incorporating master materials, material functions,

and adjustable material instances. This design facilitates easy adaptation across different

projects and assets. The BR+NPR shader strikes a balance between physically based realism

and stylisation. Artists can smoothly interpolate between fully photorealistic PBR shading and

flat cartoon shading by adjusting exposed parameters, thereby simulating the hybrid workflows

employed in some game productions. The framework performs well on Windows platforms,

significantly accelerating workflows. For simple post-processing operations, the instruction

count is approximately 150, while complex character shaders require around 300–350

instructions.

Despite these achievements, the project retains certain limitations:

Shader Complexity: Compared to traditional PBR-only materials, PBR+NPR hybrid shaders

are relatively expensive, limiting scalability for large scenes or background assets.

Environment Integration: The PBR+NPR framework is primarily optimised for character

rendering. Applying the same techniques to environments, props, or atmospheric effects

requires additional adjustments.

Workflow Streamlining: PBR+NPR character rendering requires artists to manually create

material instances for each character texture, presenting a slight inconvenience.

Future work can address these limitations through targeted improvements:

Unified Lighting Model: Develop a single, consistent lighting and shadow model to inform post-

process NPR effects and per-material shaders, enhancing visual coherence.

Creative Tools: Implementing editor utilities—such as custom gradient editors, MatCap

preview tools, or node-based stylisation controls—would streamline artistic workflows.

Model Import: Create streamlined import tools that automatically generate corresponding

material instances and parameters during character import.

Procedural Stylisation: Integrating procedural noise functions or machine learning techniques

to dynamically generate gradients, shadows, or shadow patterns could expand stylistic

diversity.

24

Overall, this project demonstrates considerable technical artistry and offers further insights for

advancing stylised rendering workflows and their industry applications.

25

6 References

West, R. and Mukherjee, S. (2024) “Stylized Rendering as a Function of Expectation,” ACM

Transactions on Graphics (TOG), 43(4), pp. 1–19. Available at:

https://doi.org/10.1145/3658161.

Tang, C. et al. (2010) “Stable stylized wireframe rendering,” Computer Animation and Virtual

Worlds, 21(3-4), pp. 411–421. Available at: https://doi.org/10.1002/cav.370.

Petikam, L., Anjyo, K. and Rhee, T. (2021) “Shading Rig: Dynamic Art-directable Stylised

Shading for 3D Characters,” ACM Transactions on Graphics (TOG), 40(5), pp. 1–14. Available

at: https://doi.org/10.1145/3461696.

Todo, H., Anjyo, K. and Igarashi, T. (2009) “Stylized lighting for cartoon shader,” Computer

Animation and Virtual Worlds, 20(2-3), pp. 143–152. Available at:

https://doi.org/10.1002/cav.301.

Epic Games Developer. (2025). Stylized Rendering | Unreal Engine 4.27 Documentation |

Epic Developer Community. [online] Available at:

https://dev.epicgames.com/documentation/en-us/unreal-engine/stylized-

rendering?application_version=4.27 [Accessed 15 Sep. 2025].

Gdcvault.com. (2021). ‘Genshin Impact’: Crafting an Anime Style Open World. [online]

Available at: https://gdcvault.com/play/1027538/-Genshin-Impact-Crafting-an [Accessed 14

Sep. 2025].

Liao, J. and 2023 13th International Conference on Information Technology in Medicine and

Education (ITME) Wuyishan, China 2023 Nov. 24 - 2023 Nov. 26 (2023) “The Research of

Cel-Shading in Non-photorealistic Rendering,” in 2023 13th International Conference on

https://doi.org/10.1145/3658161
https://doi.org/10.1002/cav.370
https://doi.org/10.1145/3461696
https://doi.org/10.1002/cav.301

26

Information Technology in Medicine and Education (ITME), pp. 569–572. Available at:

https://doi.org/10.1109/ITME60234.2023.00119.

Polycount. (2025). Documentation: Concept Art Shader 2 - for Unreal Engine. [online]

Available at: https://polycount.com/discussion/236761/documentation-concept-art-shader-2-

for-unreal-engine [Accessed 15 Sep. 2025].

Gooch, B. and Gooch, A. (2001) Non-Photorealistic Rendering. Natick: CRC Press LLC.

Available at:

https://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=5939381 (Accessed:

September 13, 2025).

Gooch, A., Gooch, B., Shirley, P. and Cohen, E. (1998) 'A non-photorealistic lighting model

for automatic technical illustration', Proceedings of the 25th Annual Conference on Computer

Graphics and Interactive Techniques (SIGGRAPH '98), New York, NY, USA: Association for

Computing Machinery, pp. 447–452. Available at: https://doi.org/10.1145/280814.280950.

Barla, P., Thollot, J. and Markosian, L. (2006) 'X-toon: an extended toon shader', Proceedings

of the 4th International Symposium on Non-photorealistic Animation and Rendering (NPAR

'06), New York, NY, USA: Association for Computing Machinery, pp. 127–132. Available at:

https://doi.org/10.1145/1124728.1124749.

エピック ゲームズ ジャパン (2023). Stylized Rendering Insights from Japan (Unreal Fest

Gold Coast 2023). [online] Docswell. Available at:

https://www.docswell.com/s/EpicGamesJapan/5DEVPV-2023-12-01-082936 [Accessed 15

Sep. 2025].

Unity Technologies (2019). Unity - Manual: Unity User Manual (2019.2). [online] Unity3d.com.

Available at: https://docs.unity3d.com/Manual/index.html.

https://doi.org/10.1109/ITME60234.2023.00119
https://doi.org/10.1145/280814.280950
https://docs.unity3d.com/Manual/index.html

27

Philippe Decaudin (1996). Cartoon Rendering of 3D Scenes, Cel Shading (Philippe Decaudin).

[online] Sourceforge.net. Available at:

https://phildec.users.sourceforge.net/Research/Cartoon.php [Accessed 15 Sep. 2025].

Bui, Kim, J. and Lee, Y. (2015) “3D-look shading from contours and hatching strokes,”

Computers & Graphics, 51, pp. 167–176. Available at:

https://doi.org/10.1016/j.cag.2015.05.026.

Kumar, A. (2020) Beginning PBR texturing : learn physically based rendering with

allegorithmic’s substance painter. [United States]: Apress. Available at:

https://doi.org/10.1007/978-1-4842-5899-6.

https://doi.org/10.1016/j.cag.2015.05.026

28

7 Appendices

7.1 Appendix A: Blueprints

Figure A.1 Hatching Blueprint

Figure A.2 Ink Blueprint

29

Figure A.3 Mixer Blueprint

Figure A.4 ToonShader Blueprint

30

Figure A.5 Vignette Blueprint

Figure A.6 M_PBR_NPR Blueprint

31

Figure A.7 Hatching Function Blueprint

Figure A.7 Ink Function Blueprint

32

Figure A.8 Outlines Function Blueprint

7.2 Appendix B: Material Instance Parameters

Figure B.1 M_PBR_NPR Material Instance Parameters part1

33

Figure B.2 M_PBR_NPR Material Instance Parameters part2

Figure B.3 M_Ink Material Instance Parameters

34

Figure B.4 ToonShader Material Instance Parameters

7.3 Appendix C: HLSL code

Figure C.1 Texture Colour Correction HLSL Code

