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Abstract
Addressing the need for 3D anatomical structure visualization in liver disease diagnosis,
treatment, and medical education, this project has developed an Unreal Engine plugin capable
of loading medical images, running AI inference, and reconstructing 3D models. The plugin
can process liver MRI data in .nii.gz format, implement AI automatic segmentation based on
MONAI's SegResNet deep learning, perform 3D reconstruction and result analysis based on
the Marching Cubes algorithm. The system adopts a client-server architecture, achieving
automatic segmentation of MRI images and 3D visualization. The frontend uses Unreal
Engine to provide an interactive interface and real-time rendering, while the backend is based
on FastAPI and PyTorch for AI inference. Through RESTful API for cross-language
communication, it supports multi-organ segmentation of liver, blood vessels, and tumors, and
automatically generates 3D reconstruction models. In VR applications, a VR menu has been
developed that allows grasping and rotating operations on the liver and blood vessels in VR,
laying the foundation for further development of VR visualization tools.



4

Table of contents
1 Introduction .............................................................................................................................5
2 Previous Work ........................................................................................................................ 6
3 Technical Background ............................................................................................................ 7

3.1 Deep Learning Segmentation Methods ........................................................................7
3.2 3D Reconstruction Techniques and Algorithms ..........................................................7

4 Project Solution .......................................................................................................................8
4.1 AI Automatic Segmentation System ............................................................................8

4.1.1 Deep Learning Network Model Construction .................................................. 8
4.1.2 Model Training ................................................................................................. 8

4.2 3D Model Generation ................................................................................................ 13
4.3 UE Plugin Integrating AI Segmentation and 3D Reconstruction .............................. 15

4.3.1 User Interaction Layer (UE Interface) ............................................................ 16
4.3.2 Communication Coordination Layer (HTTP Client) ......................................16
4.3.3 Backend Service Layer (FastAPI) .................................................................. 16
4.3.4 AI Inference Layer (Deep Learning Engine) ..................................................17
4.3.5 Data Processing Layer (3D Reconstruction and Analysis) .............................17
4.3.6 UE Plugin Usage Workflow........................................................................... 17

4.4 VR Application .......................................................................................................... 20
5 Conclusion ............................................................................................................................ 22

5.1 Advantages and Innovations of the Plugin ................................................................ 22
5.2 Future Work ...............................................................................................................22

6 References .............................................................................................................................22



5

1 Introduction
The liver is the largest solid organ in the human body, with a complex anatomical structure
including liver parenchyma, hepatic blood vessels, and potentially existing tumors. The
anatomical structure of the liver is crucial for the diagnosis and treatment of liver diseases.
Magnetic Resonance Imaging (MRI), with its advantages of no radiation and high soft tissue
resolution, has become the preferred imaging method for liver anatomical structure and lesion
assessment. However, liver region segmentation and 3D visualization of MRI images in
clinical practice still face technical bottlenecks. On one hand, traditional manual
segmentation relies on physician experience, which is not only inefficient but also subject to
subjective errors, making it difficult to meet the timeliness requirements of surgical planning
and preoperative simulation. On the other hand, existing 3D reconstruction tools are mostly
standalone software, such as Mimics and 3D Slicer. Although they can achieve liver model
reconstruction, there is a "data gap" in connecting with virtual reality (VR) environments.
Reconstructed models need to undergo format conversion and lightweight processing before
they can be imported into VR platforms, a process that is cumbersome and prone to losing
anatomical details, limiting the application of VR in liver surgery navigation and medical
education.
In recent years, artificial intelligence (AI) technology has provided new techniques for
automatic liver MRI segmentation. Segmentation models based on U-Net and its improved
architectures have achieved precise liver region segmentation, significantly reducing the cost
of manual intervention. However, current research mostly focuses on optimizing the accuracy
of AI segmentation algorithms, neglecting the full-process integration of "segmentation -
reconstruction - VR interaction". Most AI segmentation models only output 2D masks or
offline 3D models, lacking deep coupling with mainstream VR development engines (such as
Unreal Engine), unable to support real-time rendering and interactive operations of real-time
segmentation results in VR. Unreal Engine, as a development tool with photorealistic
rendering capabilities and multi-platform VR compatibility, has been applied in the medical
VR field, but there is no specialized "AI segmentation - 3D reconstruction" integrated plugin
for liver MRI images.
Addressing the above issues, this research aims to develop an Unreal Engine plugin capable
of loading medical images, running AI inference, and reconstructing 3D models. The plugin
can provide full-process support for data preprocessing, AI segmentation invocation, real-
time 3D reconstruction, and VR interaction adaptation, bridging the data interface between
AI segmentation models and Unreal Engine, supporting direct embedding of SegResNet-
trained segmentation models into the plugin, achieving automatic MRI image segmentation
and 3D reconstruction of segmentation results, and laying the foundation for the next step of
VR interactive components (such as gesture control, model annotation, and cutting view).
This plugin provides efficient and convenient tool support for precise diagnosis and treatment
of liver diseases and medical education, promoting the deep integration and development of
medical imaging technology and VR technology.
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2 Previous Work
In the field of medical image analysis, automatic segmentation technology for liver MRI
images has made significant progress in recent years. Deep learning methods, especially U-
Net and its variants, have become mainstream. The 3D residual U-Net model proposed in
2023 performed excellently in liver MRI image segmentation, with Dice similarity
coefficients for liver parenchyma and tumor segmentation reaching 0.92±0.03, demonstrating
the potential of deep learning in complex liver anatomical structure segmentation. However,
these high-precision segmentation models mostly focus on improving algorithm accuracy,
with less consideration for seamless integration with subsequent visualization and interaction
platforms, especially lacking optimization for virtual reality (VR) environments.
3D reconstruction technology for medical images provides important support for clinical
diagnosis and surgical planning. Early liver 3D reconstruction mainly relied on traditional
image processing algorithms. For example, the Slice Growing Method (SGM) combined with
level set algorithm proposed by Alom et al., achieved differentiation between liver and
adjacent organs through curvature control, laying the foundation for 3D modeling of liver and
vascular structures.
In terms of data acquisition, MRI can non-invasively obtain soft tissue structure information
of the liver. The acquired MRI raw data needs to be preprocessed, including denoising,
interpolation, and filtering operations to improve image quality and accuracy of subsequent
processing. In the image segmentation stage, commonly used segmentation algorithms
include threshold method, region growing method, and morphology-based methods, through
which liver tissue is separated from MRI images.
Surface reconstruction and volume reconstruction are commonly used 3D reconstruction
methods. Surface reconstruction is suitable for organs with clear contours, constructing 3D
models by extracting feature points on the liver surface; volume reconstruction is more
suitable for displaying the complex internal structure of the liver, such as ray casting method,
emitting rays from the viewpoint, passing through 3D volume data, sampling at the
intersection of rays and voxels, calculating their color and transparency based on voxel
attributes, and then compositing these sampling points' colors and transparency to obtain the
final 2D projected image.
VR technology has shown great value in medical applications. Existing virtual reality
systems present the complex internal structure of human organs in high-fidelity 3D through
3D visualization technology, but mostly rely on preoperative static reconstruction models,
lacking dynamic update capabilities based on real-time AI segmentation, making it difficult
to respond to dynamic changes in anatomical structures during surgery.
In terms of visualization engines, Unreal Engine, with its powerful real-time rendering
capabilities, has gradually become an important platform for medical image 3D visualization.
Existing plugins mainly focus on rendering functions and have not integrated AI automatic
segmentation modules, resulting in users still needing to rely on external software to
complete image segmentation before importing into the engine for visualization, a process
that is cumbersome and difficult to achieve real-time updates. In summary, although liver
MRI segmentation, 3D reconstruction, and VR visualization technologies have each made
significant progress, there are still obvious technical barriers in clinical applications: high-
precision AI segmentation models lack deep integration with VR visualization platforms,
existing medical visualization plugins have difficulty meeting real-time and interactive
requirements, and these limitations provide a clear innovation direction for this research to
develop an Unreal Engine plugin integrating AI automatic segmentation and 3D
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reconstruction functions.

3 Technical Background
The core technologies of this project involve medical image AI automatic segmentation
technology and 3D reconstruction technology.

3.1 Deep Learning Segmentation Methods
Deep learning methods automatically learn image features through neural networks,
combined with a large amount of labeled data to train models, with good segmentation
accuracy and robustness, and have become a new technology for current liver segmentation.
Encoder-Decoder based segmentation models are the most classic architecture for medical
image segmentation, with the core being downsampling (Encoder) to extract high-level
semantic features and upsampling (Decoder) to recover spatial details. The representative
model is U-Net and its variants.
Basic U-Net model structure features:
Encoder: Gradually reduces feature map size through convolution and pooling, increases
channel number, and extracts global semantic features;
Decoder: Gradually enlarges feature map size through transpose convolution, reduces
channel number;
Skip connections: Directly pass low-level features from Encoder to corresponding layers in
Decoder, solving the detail loss problem during upsampling and improving boundary
segmentation accuracy.

3.2 3D Reconstruction Techniques and Algorithms
Methods for converting liver segmentation masks to 3D models mainly include voxel
stacking, surface reconstruction, parametric modeling, and deep learning direct generation. A
comparison of the four methods is as follows:
Voxel stacking directly stacks 2D masks in sequence to form a 3D voxel array, then displays
using a 3D rendering engine. This method is simple to implement and can fully preserve
segmentation accuracy, but has large data volume, non-smooth surfaces, average display
effect, and poor interactive performance, making it difficult to directly use for 3D printing or
fine mesh analysis.
Surface reconstruction extracts isosurfaces from voxel masks to generate triangular mesh
models. Common algorithms include Marching Cubes and Contour Stitching. This method
generates lightweight models with smooth surfaces, suitable for visualization and interaction,
and can be directly exported as STL/OBJ for 3D printing, but requires adjustment of
smoothing parameters, otherwise "jagged" edges may appear, and is sensitive to voxel
resolution.
Parametric modeling uses geometric shapes or statistical models to fit segmentation results.
This method produces compact models, facilitating shape analysis and biomechanical
modeling, but has difficulty fitting complex anatomical structures, depends on good
initialization and parameter adjustment, and may not fully reflect individual differences.
Deep learning direct generation uses 3D GAN or implicit neural representation (NeRF, SDF)
to directly generate 3D models from segmentation masks or original images. This method can
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generate high-fidelity, smooth models and can learn shape priors from data, but requires a
large amount of labeled data for training, has complex models, time-consuming inference,
and poor result interpretability.

4 Project Solution
This project is a medical image AI analysis plugin developed based on Unreal Engine,
focusing on intelligent analysis and 3D visualization of liver MRI images. The system adopts
a front-end and back-end separation architecture, combining deep learning technology to
achieve automatic segmentation and diagnostic assistance for liver, blood vessels, and tumors.

4.1 AI Automatic Segmentation System
A three-model cascade AI segmentation scheme is adopted, separately training liver
segmentation model, blood vessel segmentation model, and tumor segmentation model.

4.1.1 Deep Learning Network Model Construction
For each segmentation task, SegResNet is used as the deep learning network, which
combines U-Net structure with residual block design to enhance feature extraction capability
and optimize gradient propagation.

Figure 1 SegResNet Network Structure Diagram
MONAI's built-in 3D SegResNet is selected as the segmentation core. This network is
designed based on residual connections, which can effectively alleviate the gradient
vanishing problem of deep networks and is suitable for 3D medical image segmentation. The
configuration is as follows:
Input channels: in_channels=1 (single-channel MRI);
Output channels: out_channels=2 (corresponding to background class 0, liver class 1);
Network depth: Default 5 layers, adjustable through depth parameter, gradually extracting
spatial features from low-dimensional to high-dimensional.

4.1.2 Model Training
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(1) Dataset Loader
MONAI's CacheDataset and PyTorch's DataLoader are used to achieve efficient data loading.
CacheDataset caches preprocessed data in memory, avoiding repeated preprocessing in each
training iteration and improving loading speed; supports multi-threaded preprocessing,
further optimizing efficiency. DataLoader can shuffle sample order for training set, dedicated
batch processing concatenation, support variable-length data, and infer samples one by one
for validation set to avoid sliding window concatenation errors and maintain sample order.
The liver, blood vessel, and tumor datasets are shown in Figures 2 to 7.

Figure 2 Liver Dataset Image

Figure 3 Liver Dataset Label

Figure 4 Vessel Dataset Image
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Figure 5 Vessel Dataset Label

Figure 6 Tumor Dataset Image

Figure 7 Tumor Dataset Label

(2) Optimizer and Learning Rate Scheduling
Adam optimizer is selected with learning rate LEARNING_RATE=1e-4, momentum
parameters betas=(0.9, 0.999), suitable for stable convergence of medical image segmentation
tasks.
Learning rate scheduling adopts the Reduce Learning Rate on Plateau strategy. When the
validation metric Dice coefficient does not improve for patience=10 consecutive epochs, the
learning rate is multiplied by factor=0.5 to decay by 50%; if the scheduling criterion is that
the larger the Dice coefficient the better, set mode="max"; if the criterion is that the smaller
the validation loss the better, set mode=min.

(3) Loss Function Design
Segmentation loss adopts a hybrid loss composed of Dice loss and CE loss. CE loss
calculates loss in pixel units, calculating loss for each pixel and then summing, converging
faster. Dice loss calculates in class pixel set units, and after converging to a certain extent,
can further show higher precision in segmentation results.

(4) Evaluation Metrics
Dice coefficient is used to measure the overlap between segmentation results and gold
standard, with a range of [0, 1], where closer to 1 indicates more accurate segmentation.

(5) Training Process
Each model is trained for 100 epochs. The liver Dice similarity coefficient is 0.9302, proving
the effectiveness of this training method. The liver training process window is shown in
Figure 8, the vessel training process window is shown in Figure 9, and the tumor training
process window is shown in Figure 10.
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Figure 8 AI Training Liver Model

Figure 9 Vessel Training Process
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Figure 10 Tumor Training Process

Figure 11 Segmentation Results
Figures 11 and 12 show the model's segmentation results. Through the inference stage,
models that meet expectations were obtained. As shown in the figures, green represents liver,
red represents blood vessels, and yellow represents tumors, and text reports were generated.
Figure 13 is the text report window, showing liver, vessel, and tumor volumes and
percentages.
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Figure 12 Segmentation Results

Figure 13 Inference Result Structured Diagnostic Text Report Window
The model meets the expected functions, segmenting liver, blood vessels, and tumors. If
users input MRI images with tumors, yellow tumors can be detected. Of course, due to the
limited tumor dataset and small tumor size, missed diagnoses may occur. The model can meet
anatomical teaching needs. However, for clinical diagnostic needs, a large amount of liver
tumor data needs to be added.

4.2 3D Model Generation
The Marching Cubes algorithm is a commonly used algorithm in medical image 3D
reconstruction. Due to its relatively simple and fast computation, it has wide applications.
This project adopts the Marching Cubes algorithm. The basic idea of the algorithm is to
discretize continuous space, divide volume data into small hexahedral units (voxels), and
perform isosurface reconstruction on this basis. The construction of isosurfaces within each
voxel is achieved by determining the intersection points between the isosurface and voxel
boundaries, and using linear interpolation technology to determine the precise positions of
these intersection points. The value of each vertex of the voxel is compared with a preset
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threshold to determine whether the isosurface is within the voxel. Based on different
combinations of vertex values, a voxel can be decomposed into up to five triangles, and the
organization of these triangles depends on the intersection situation between the isosurface
and the voxel. The algorithm is implemented using an iterative strategy, systematically
traversing the entire volume dataset, connecting triangle patches generated by voxel division,
and finally completing 3D reconstruction. The eight vertices of a voxel have two states,
namely 0 and 1, corresponding to vertex values less than the isosurface value and vertex
values greater than the isosurface value, respectively, so there are a total of 2^8 = 256
combination states. According to the translation, rotation, and symmetry characteristics of
voxels, the 256 states can be simplified to 15 configurations, as shown in Figure 14.

Figure 14 15 Cases of Isosurface Intersecting with Cube
After determining the basic configuration, the specific position of triangle patch vertices can
be obtained by calculating the linear interpolation between the isosurface value and the vertex
values of the intersecting edges. Where P represents the intersection coordinate, P1 and P2
represent the coordinates of the two endpoints on the edge, V1 and V2 represent the values at
these two endpoints, and V represents the isosurface.

Using the Marching Cubes algorithm for modeling yields 3D models of liver, blood vessels,
and tumors, as shown in Figure 15:

Figure 15 3D Models
Finally, the system's terminal running interface is shown in Figure 16.
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Figure 16 Terminal Running Interface
The system's terminal running results are shown in Figure 17.

Figure 17 Terminal Running Results

4.3 UE Plugin Integrating AI Segmentation and 3D Reconstruction
The plugin adopts a layered design, with each layer focusing on specific functions and
achieving cross-layer collaboration through standardized interfaces, which is both convenient
for module maintenance and supports subsequent function expansion, such as adding
segmentation for kidneys, lungs, and other organs. The functions of each layer are as follows:
User Interaction Layer: Receives doctor operations, displays analysis progress, visualizes 2D
slices and 3D models, provides parameter configuration
Communication Coordination Layer: Encapsulates network requests, manages request
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lifecycle, handles timeout/retry, parses JSON responses
Backend Service Layer: Provides RESTful API, maintains task queue, coordinates AI model
invocation sequence, manages task status
AI Inference Layer: Medical image preprocessing, invokes segmentation models to
separately segment liver, blood vessels, and tumors, post-processing optimization of
segmentation results
Data Processing Layer: Converts segmentation masks to 3D meshes, calculates organ volume
and tumor diameter, generates structured diagnostic reports
Key core technology stack:
Frontend: Unreal Engine 5 + Slate UI framework
Backend: Python FastAPI + PyTorch + MONAI
Communication: HTTP/REST API
AI models: SegResNet, UNet
3D reconstruction: Marching Cubes algorithm + ProceduralMesh

4.3.1 User Interaction Layer (UE Interface)
Used for direct interaction between the plugin and users, the user interaction layer needs to
balance "functional completeness" and "operational simplicity", with core design around
three major scenarios: image input, process monitoring, and result interpretation. Main
functions include file and parameter configuration, result visualization, and diagnostic report
view. File and parameter configuration supports .nii.gz format file selection, provides path
validation for file existence and format compatibility, and configures segmentation tasks such
as liver, blood vessel, and tumor segmentation. Result visualization displays organ 3D
models through UE, supporting rotation and scaling. Diagnostic report view presents
quantified results in structured tables, such as tumor volume and percentage.

4.3.2 Communication Coordination Layer (HTTP Client)
The communication coordination layer encapsulates all network interaction logic between the
UE frontend and FastAPI backend, shielding underlying network details and providing a
"simple invocation, controllable exceptions" communication interface for the upper layer.
Core functions include request encapsulation and sending, response parsing and conversion,
and exception handling. Request encapsulation and sending submits analysis tasks and
queries progress and results. Response parsing and conversion receives backend JSON
responses, decodes Base64 strings of segmentation masks into TArray recognizable by UE,
and handles data format differences. Exception handling provides clear error prompts for
timeout and connection failures.

4.3.3 Backend Service Layer (FastAPI)
The backend service layer is built based on FastAPI, responsible for receiving frontend
requests, scheduling AI models, and managing task states, ensuring stability during
simultaneous use by multiple users. RESTful API includes health check interface, task
submission interface, progress query interface, and result retrieval interface; task queue and
state management uses Celery to build task queue, supports concurrent processing of multiple
user analysis requests, avoids backend resource overload; AI model invocation coordination
formulates model invocation sequence. Running the PC local server is shown in Figure 18.
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Figure 18 Running PC Local Server

4.3.4 AI Inference Layer (Deep Learning Engine)
The AI inference layer is the "technical core" of the plugin, responsible for converting liver
MRI images into precise segmentation masks. The core objective is to balance "high
precision" and "high efficiency", adapting to clinical dual demands for accuracy and speed.
Core functions include image preprocessing, segmentation model invocation, and post-
processing optimization. Image preprocessing performs format conversion and size
adjustment; segmentation model invocation includes: liver segmentation using SegResNet
model, blood vessel segmentation using SegResNet model; tumor segmentation using
UNet+Attention model, enhancing recognition capability for small tumors through attention
mechanism. Post-processing optimization includes denoising, hole filling, and result
restoration. Denoising removes isolated small regions in segmentation masks through
morphological filtering; hole filling fills holes in liver masks to ensure complete organ
morphology after 3D reconstruction; result restoration restores segmentation masks to
original image size according to the scaling ratio during preprocessing, avoiding position
offset.

4.3.5 Data Processing Layer (3D Reconstruction and Analysis)
The data processing layer converts AI-segmented 2D masks into intuitive 3D models and
quantified indicators. Core functions include 3D mesh generation, mesh optimization,
physical space mapping, and diagnostic report generation.
3D mesh generation: Based on the Marching Cubes algorithm, converts segmentation mask
voxel data into triangular meshes, extracting organ surface contours;
Mesh optimization: Reduces voxel staircase effect through Gaussian smoothing, removes
duplicate faces and unreferenced vertices.
Physical space mapping: According to MRI image header files, converts mesh voxel
coordinates to physical coordinates, ensuring 3D model size is consistent with real organs.
Diagnostic report generation: Generates text reports in the format of volume and percentage
quantified indicators.

4.3.6 UE Plugin Usage Workflow
Compile plugin in VisualStudio and enter UE:
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Figure 19 VisualStudio Compile Plugin to Enter UE
Ensure plugin is checked:

Figure 20 Plugin Checkbox

Figure 21 Plugin Location
Open plugin interface and connect to server:
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Figure 22 Plugin Open Interface, Connected to Server

Figure 23 UE Plugin Running Inference Results
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4.4 VR Application
Preliminary work on VR applications has been carried out. Loading and displaying liver 3D
models in UE, and displaying liver and blood vessel models in VR:

Figure 24 VR Application
This project has developed a VR menu, as shown in Figure 25. In VR, operations such as
grasping and rotating can be performed on the liver and blood vessels, as shown in Figures 26,
27, and 28. This lays the foundation for further VR applications.

Figure 25 VR Menu



21

Figure 26 VR Liver Grasping

Figure 27 VR Liver Rotation

Figure 28 VR Liver and Blood Vessels
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5 Conclusion
This project adopts a client-server architecture, achieving automatic segmentation of MRI
images and 3D visualization. The frontend uses Unreal Engine to provide an interactive
interface and real-time rendering, while the backend is based on FastAPI and PyTorch for AI
inference. Through RESTful API for cross-language communication, it supports multi-organ
segmentation of liver, blood vessels, and tumors, and automatically generates 3D
reconstruction models. The developed Unreal Engine plugin integrates liver MRI image AI
automatic segmentation and 3D reconstruction, laying the foundation for VR applications.
The plugin can process liver MRI data in .nii.gz format, implement AI automatic
segmentation based on MONAI's SegResNet deep learning, perform 3D reconstruction and
result analysis based on the Marching Cubes algorithm. The plugin integrating AI
segmentation and 3D reconstruction ensures the precision of AI segmentation while
achieving intuitive 3D visualization through UE, and provides quantified indicators and
reports. Results show that the system achieved good performance in liver, blood vessel, and
tumor segmentation tasks, with high-quality 3D models. The project has achieved its
expected goals. Future work can develop VR visualization tools based on this foundation,
providing users with immersive observation and operation on VR devices.

5.1 Advantages and Innovations of the Plugin
The Unreal Engine plugin integrating liver MRI image AI automatic segmentation and 3D
reconstruction for VR developed in this project has the following main advantages and
innovations:
(1) MRI image AI automatic segmentation based on SegResNet deep learning network
framework improves segmentation performance and system robustness.
(2) The system frontend uses Unreal Engine to provide an interactive interface and real-time
rendering, while the backend is based on FastAPI and PyTorch for AI inference.
(3) VR visualization tools can be further developed based on the plugin.

5.2 Future Work
Based on the current plugin development achievements and experience, future work includes:
(1) Develop VR visualization and interaction tools that can run on VR devices, allowing
users to wear VR devices, observe the liver and its internal structures in a virtual environment,
and interact naturally with the models, such as rotating, scaling, and cutting models.
(2) Expand to multiple organs: Add segmentation models for organs such as kidneys, lungs,
and pancreas in the "AI Inference Layer", enabling the plugin to support multi-site medical
image analysis.
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