

An Automated Time and Activity Tracking System for VFX Production

Pipelines

Siddhant Bhausaheb Sawkar (s5629020)

Master’s Project Thesis

MSc Computer Animation and Visual Effects

Bournemouth University

August 2025

Acknowledgement

I would like to express my sincere gratitude to my supervisors, Jon Macey, and Jian Chang

for their invaluable guidance, support, and encouragement throughout this project. Their

expertise and feedback were instrumental in shaping the direction and successful completion

of this thesis.

Additionally, I would like to thank the academic and technical staff at the National Centre for

Computer Animation for providing the resources and knowledge that made this project

possible.

Abstract

In the global Visual Effects (VFX) industry, how artists are paid can differ greatly from one

region to another. A key reason for this disparity is the challenge of accurately tracking work

hours, as manual methods are often unreliable. This thesis presents a practical solution: an

automated time-tracking system designed specifically for the way VFX artists work. The

system plugs directly into major creative software like Autodesk Maya and Blender, using

their native Python APIs to monitor activity. It intelligently detects when an artist is working

and when they are idle, ensuring that only active work time is recorded. The tool is built on a

client-server architecture, with a central Flask server managing the data in a SQLite database.

The final result is a reliable platform that provides artists, studios, and freelancers with a clear

and verifiable record of their work hours, complete with reporting and data export

capabilities. This project demonstrates how a targeted technical solution can provide the

foundation for more transparent and equitable pay in the global creative industry.

Table of Contents

List of Figures..VI

1. Introduction...1

2. Related Work..2

2.1 Commercial Production Tracking Solutions

2.2 General-Purpose Time Tracking Software

2.3 Open-Source and Alternative Solutions

2.4 Academic and Industry Research

3. Technical Background...5

3.1 System Architecture: The Client-Server Model

3.2 Backend Technologies

3.3 DCC Integration Technologies

3.4 Client-Side and Reporting Technologies

4. Implementation Overview..8

4.1 System Architecture and Execution Flow

4.2 Server and API Development

4.3 Database Schema Design

4.4 The dcc_client Module and Idle Detection

4.5 Blender Addon Integration

4.6 Maya Scripting Integration

4.7 The Artist Reporting Application

4.8 The Web-Based Manager Dashboard

4.9 Core Time Calculation Logic

5. Conclusion...15

 References

Appendices

Source Code

API Endpoint Documentation

List of Figures

Figure 4.1: Diagram of the database schema.

Figure 4.2: Blender UI panel showing the login and task selection state.

Figure 4.3: Maya UI window for login and task selection.

Figure 4.4: Artist reporting application's dashboard.

Figure 4.5: Web-based manager dashboard.

1

1. Introduction

The Visual Effects (VFX) industry is a fiercely competitive, time-sensitive place. To stay

profitable, studios of all sizes must accurately bid on projects and effectively manage their

resources. To keep clients' trust, freelance artists who make up a sizable portion of the

workforce must provide clear and accurate billing. Accurate data, specifically the precise

amount of time spent on each task in the production pipeline, is essential to these business

operations.

Accurate time tracking, however, has long been a problem for the sector. A major bottleneck

that frequently results in inconsistent and unreliable data is the use of manual logging. This

absence of precise data has broad ramifications that impact the entire industry globally. It can

result in underbidding on projects, which can cost studios money or force them to work

"crunch" overtime. It causes blind spots, which makes it challenging for production managers

to spot inefficiencies and distribute resources wisely.

Inaccurate data is a fundamental issue that contributes to systemic labor problems. According

to a recent survey conducted by the VFX-Union, roughly 70% of VFX employees said they

had worked unpaid overtime (VFX-Union, 2022). The risk is high, and the reward is

frequently low for artists in what has been called a culture of "insane hours" and low pay

(Welk, B, 2023). The fundamental requirement for a verifiable record of work is universal,

even though these problems are more severe in areas with project-based pay structures.

Through the development and implementation of an automated time and activity tracking

system, this project tackles this industry wide issue. A client-server application, the system is

designed to work directly with industry-standard Digital Content Creation (DCC) programs

like Blender and Autodesk Maya. The system offers a precise, verifiable, and non-intrusive

2

record of hours worked by automating the tracking process and integrating features like idle

detection. The goal is to develop a tool that benefits all parties involved: giving studios the

business data they require for precise management and bidding, giving independent

contractors an effective billing system, and guaranteeing that every artist has an open record

of their work.

2. Related Work

2.1 Commercial Production Tracking Solutions

Production tracking is a well-established concept in the creative industries, and there are a

number of robust commercial software options available. An analysis of these systems serves

as a basis for comprehending the issue domain and determining the areas in which this

project makes an additional contribution.

Flow Production Tracking (formerly ShotGrid) from Autodesk is one of the most well-

known solutions (Autodesk, 2024). In addition to time tracking, this all-inclusive platform

provides asset management, review and approval processes, and deep integration with

numerous DCC apps. Similar to this, ftrack offers a versatile production tracking and project

management solution that is popular in the media and entertainment sector (Foundry, 2025).

What's Missing: Despite their strength, these platforms' main drawbacks are their expense

and complexity. For smaller studios, teams, or independent contractors whose primary need

is precise time tracking, their all-inclusive studio management system design may be too

much. Entry barriers are created by their large feature sets, which frequently come with a

high learning curve and a substantial financial investment.

3

Solution: In order to close this gap, this project concentrates on one crucial function:

automated time tracking that is integrated with DCC. It offers the essential advantages of

precise time logging without the overhead and expense of a full-scale production

management suite by offering an open-source, lightweight, and simple-to-deploy substitute.

2.2 General-Purpose Time Tracking Software

There are many general-purpose time-tracking apps, such as Toggl Track (Toggl, 2025) and

Harvest (Harvest, 2025), in addition to the VFX-specific tools. Freelancers and consultants

from a wide range of industries use these tools extensively because they are great for basic

time logging across multiple tasks.

What's Missing: These tools' primary flaw in a VFX setting is their shallow integration with

DCC software. Artists are required to manually start, stop, and annotate timers because they

function outside of the creative applications. Human error, like forgetting to start or stop the

timer, is common in this manual process, which also fails to automatically capture the context

of the work being done (e.g., the specific project or task).

Solution: The VFX Time Tracker addresses this issue by operating entirely within the DCC

applications. In order to guarantee that the tracked time accurately reflects the work being

done, it uses activity monitoring and idle detection in addition to automating the start and

stop process based on file events. This gives the artist much more dependable data and

relieves them of the burden of manual tracking.

2.3 Open-Source and Alternative Solutions

4

Popular substitutes have also been created by the open-source community. For example,

Kitsu is a popular production tracking tool for VFX and animation (CGWire, 2025). Prism

Pipeline is another useful tool that offers a framework for handling VFX workflows.

What's Missing: Although these tools are easier to use than their commercial counterparts,

automated time tracking is frequently not given priority. Prism is more concerned with asset

and pipeline management, while Kitsu primarily uses manual time tracking. Although they

show a desire for open, community-driven solutions, their main selling point is not a specific,

automated time tracking feature.

Solution: The goal of this project is to address this particular need in the open-source

community. It can be used as a stand-alone application or possibly incorporated into other

open-source pipelines to fill the gap in automated, transparent time tracking.

2.4 Academic and Industry Research

Research in this field, both academic and commercial, frequently focuses on the relationship

between technology, workflow effectiveness, and the human elements of creative production.

Reports from the industry, including those issued by groups like the Visual Effects Society,

usually emphasize the necessity of increased production practice standardization and

efficiency (Visual Effects Society, 2020). Although these resources usually don't offer

comprehensive technical designs for time tracking systems, they do provide insightful

information about the demands of the industry and the difficulties that a program such as the

VFX Time Tracker seeks to solve. Furthermore, studies on human-computer interaction

(HCI) indicate that users are more likely to embrace automated, non-intrusive data collection

techniques than those that necessitate frequent manual input (Shneiderman, 2010).

5

3. Technical Background

3.1 System Architecture: The Client-Server Model

The VFX Time Tracker system was developed using a combination of programming concepts

and well-established software technologies. The client-server model upon which the

architecture is built enables centralized data management and the communication of

numerous, dispersed clients with a single, authoritative source. The main.py, dcc_client.py,

and server.py files all use this architecture, which was selected for its scalability and

separation. The client (the reporting application and the DCC plugins) are in charge of the

user interface and interaction, while the server manages all business logic and data

persistence.

3.2 Backend Technologies

The system's backend, which is stored in server.py, is in charge of managing data,

authentication, and business logic.

Flask Web Framework: Flask, a lightweight and adaptable Python web framework, is used

in the construction of the server (Ronacher, A., 2010). Flask was selected because of its ease

of use and low boilerplate, which make it perfect for developing a targeted RESTful API. The

server.py-defined API offers endpoints for data retrieval (/api/get_logs), session control

(/api/session/start, /api/session/stop), and user management (/api/register, /api/login). The

implementation handles requests and routes according to standard Flask patterns (Ronacher,

2010). To ensure that user credentials are not saved in plain text, the werkzeug.security

library is used to generate and verify password hashes.

6

SQLite Database: The system uses SQLite, a standalone, serverless SQL database engine,

for data persistence. Because SQLite doesn't require a separate database server, it's easy to set

up and deploy. Schema.sql defines the database schema, which is intended to store data about

tasks, users, and work sessions in an organized, relational structure. The built-in sqlite3

module in Python is used to manage the database interaction, adhering to the guidelines

outlined in the official Python documentation (Python Software Foundation, 2025).

3.3 DCC Integration Technologies

This project's deep integration with DCC software is one of its primary features. This is

accomplished by utilizing the native Python scripting APIs offered by each application in a

hybrid method that blends automatic event handling with a user-driven workflow.

Blender Python API (bpy): A standard extension is used to implement the Blender

integration. Blender_tracker_integration.py's main logic makes use of the bpy.app.handlers

module. These handlers serve as a "safety net" to guarantee that sessions are saved and are

persistent callback routines that Blender runs in response to particular events, including

quit_post (before to Blender exiting) (Blender Foundation, 2025).

The Maya integration follows a similar methodology to the Autodesk Maya Python API

(maya.cmds). Upon starting, Maya automatically runs the userSetup.py script.

cmds.scriptJob() is the foundation of the activity tracking in maya_tracker_integration.py.

This command generates background-running jobs that run code in response to

SelectionChanged and other events. This gives the server a reliable way to receive regular

heartbeats, which is necessary for the idle detection system (Autodesk, 2024).

3.4 Client-Side and Reporting Technologies

7

The DCC plugins and two separate reporting apps are the two client kinds that are part of the

system.

• HTTP Communication (Requests): The requests library is used by all clients to

communicate with the Flask server. Making HTTP queries to the API endpoints is

made easier with the help of this library.

• Concurrency for Idle Detection (threading): Python's built-in threading module is

used to build the idle detection technique in dcc_client.py. To monitor for user

inactivity without freezing the main DCC application, a session starts a secondary,

non-blocking thread (Python Software Foundation, 2025).

• Desktop GUI (Tkinter): Tkinter, the standard Python GUI toolkit, is used to create the

stand-alone artist reporting application in main.py. The sv_ttk theme is used for a

more contemporary appearance and feel.

• Data Visualization (Matplotlib & Pandas): The system creates charts using the

Matplotlib library to present informative reports in the desktop application. The

Pandas library is used to initially collect the data for these charts (McKinney, 2010).

• Web Frontend (HTML, Tailwind CSS, Chart.js): This web application is the

dashboard that the manager sees. Tailwind CSS, a utility-first CSS framework, is used

to style the index.html file. A well-known JavaScript charting package called Chart.js

8

is used to render the dashboard's interactive charts (Chart.js, 2025). The client-side

JavaScript also includes functionality to convert the currently filtered data into a CSV

file for download.

4. Implementation Overview

4.1 System Architecture and Execution Flow

A client-server architecture was used in the project's construction. The run.py script starts the

process by first determining whether the SQLite database is there and, if not, initializing it

with the schema.sql file. The Flask server is then launched, enabling access to the web

dashboard and API.

4.2 Server and API Development

The server.py file is the project's central component. This script creates a number of API

endpoints that customers can communicate with using Flask (Ronacher, A., 2010). For

example, the Maya plugin sends user data to the /api/login endpoint when a user submits their

information. As a typical and safe procedure, the server then uses functions from the

werkzeug.security package to compare the supplied password with a hash that is stored in the

database (Ronacher, 2010). Passwords are never saved in plain text. A confirmation is sent

back by the server if the login is successful. In a similar manner, when an artist selects "Start

Tracking," the client makes a request to /api/session/start, and the server adds the current

timestamp to a new item in the database's sessions table.

4.3 Database Schema Design

9

The schema.sql file defines the whole data structure, which is then controlled by a SQLite

database. Because SQLite doesn't require a separate server process, this decision was made

for simplicity's sake. The four main tables that make up the schema are users, tasks, sessions,

and activity_events. A specified list of production tasks, such as "Modeling" or "Animation,"

is contained in the tasks table, while login information is stored in the users table. Every work

period is documented in the sessions table, which is the most crucial table. In addition to

storing important information like the start time, finish time, and total length, each row in this

database represents a block of time and is associated with a particular user and work.

Figure 4.1: Diagram of the database schema.

4.4 The dcc_client Module and Idle Detection

In order to prevent writing identical code for the Blender and Maya plugins, a shared

dcc_client.py module was developed. A DCCClient class, which manages all server

communication, is included in this module. One of the main functions of the project is idle

detection, which is the client's responsibility when an artist begins a session. Python's

10

threading module is used to launch a background thread (Python Software Foundation, 2025).

Because doing the idle check in the main DCC thread would block the entire application, this

was a crucial technical detail.A straightforward loop that determines the time since the last

activity was recorded is executed by the background thread. In order to prevent time spent

away from the keyboard from being charged, the client automatically asks the server to pause

the session if this duration is over a certain threshold (for example, ten minutes).

4.5 Blender Addon Integration

The Blender integration was developed as a standard add-on. The user interface is configured

by the main __init__.py file, which adds a new panel to the sidebar of the 3D View. The artist

enters in to this panel, chooses their task from a drop-down menu that is filled with server

data, and then manually hits "Start Tracking." Additionally, blender_tracker_integration.py

contains the actual event handling functionality. As a safety net, it makes use of Blender's

application handlers (bpy.app.handlers). To prevent data loss, the quit_post handler, for

example, makes sure that the session is automatically halted and stored if an artist exits

Blender without manually stopping the timer (Blender Foundation, 2024).

11

4.2 Blender UI panel showing the login and task selection state.

4.6 Maya Scripting Integration

Because of the way Maya handles startup scripts, the methodology was a little unusual. When

Maya is launched, a userSetup.py file is placed in the scripts directory and executed

automatically. This script calls the main integration code from maya_tracker_integration.py

using the evalDeferred command. This is a crucial step since, as Autodesk (2024) notes, it

avoids attempting to generate the tracker's login window until Maya's user interface has

completely loaded. Activity monitoring starts as soon as the user logs in and chooses a task.

ScriptJob commands, which are strong event listeners, are used to do this. To listen for events

such as SelectionChanged, a job is established.This event resets the idle timer each time it

occurs by sending a "heartbeat" to the server to indicate that the user is engaged.

12

4.3 Maya UI window for login and task selection.

4.7 The Artist Reporting Application

Tkinter was used to create the main.py file, a stand-alone desktop application that allows

artists to view their own monitored data. The user is shown a dashboard with a calendar to

choose a certain day after logging in. The application sends a call to the server's /api/get_logs

endpoint when a day is chosen. The Pandas library is then used to process the returned data

and aggregate the time spent on each job and application (McKinney, 2010). Matplotlib is

then used to show this condensed data. Using the FigureCanvasTkAgg class, a common

integration technique, the charts—like a pie chart for task breakdown—are embedded straight

into the Tkinter window (Hunter, 2007).

13

Figure 4.4: Artist reporting application's dashboard.

4.8 The Web-Based Manager Dashboard

The system has a web-based dashboard for managers, which is provided in index.html, in

addition to the artist-facing capabilities. A Flask route in server.py serves this dashboard

directly. It offers a comprehensive summary of studio output. For a contemporary, responsive

14

design, Tailwind CSS is used to style the page after it was constructed using regular HTML.

Client-side JavaScript powers all of the dynamic information, including tables and charts.

The site calls the server's /api/dashboard_stats endpoint via AJAX when it loads. The

pertinent data is retrieved by the server, processed by Pandas, and returned as a JSON

object.The data is then displayed as interactive pie and bar charts by the JavaScript on the

page using the Chart.js library (Chart.js, 2025). This enables managers to filter data by date

or artist and view real-time updates to the findings. The "Export to CSV" button is a crucial

component of this dashboard. The client-side JavaScript handles all of this functionality. It

provides managers with an easy and efficient way to obtain the raw data for additional

analysis in other software by taking the currently filtered dataset, formatting it into a CSV

string, and then using a Blob object and an anchor tag to initiate a file download in the

browser.

Figure 4.5: Web-based manager dashboard.

15

4.9 Core Time Calculation Logic

The reasoning used to determine the length of work sessions, especially how it takes into

account times of inactivity, determines how accurate the time tracker is. When a session is

paused or terminated, this logic is implemented by the server-side code in server.py.

The length of the pause is computed and added to the session's total paused_duration when a

session is resumed following a period of inactivity. Let 𝑇_𝑝𝑎𝑢𝑠𝑒_𝑠𝑡𝑎𝑟𝑡 be the timestamp at

which the idle state was initially identified, and 𝑇_𝑟𝑒𝑠𝑢𝑚𝑒 be the timestamp at which the

user returns to an active state. The following formula is used to determine the current pause's

duration, 𝐷_𝑝𝑎𝑢𝑠𝑒_𝑐𝑢𝑟𝑟𝑒𝑛𝑡, in minutes:

𝑫_𝒑𝒂𝒖𝒔𝒆_𝒄𝒖𝒓𝒓𝒆𝒏𝒕 = 𝟔𝟎(𝑻_𝒓𝒆𝒔𝒖𝒎𝒆 − 𝑻_𝒑𝒂𝒖𝒔𝒆_𝒔𝒕𝒂𝒓𝒕)

The pause time that has already been accrued for that session is then increased by this value.

The total active duration (𝐷_𝑎𝑐𝑡𝑖𝑣𝑒) is computed at the end of a session. Let

𝑇_𝑠𝑡𝑎𝑟𝑡, 𝑇_𝑒𝑛𝑑, 𝑎𝑛𝑑 𝐷_𝑝𝑎𝑢𝑠𝑒𝑑_𝑡𝑜𝑡𝑎𝑙 represent the start and end times of the session,

respectively, and the total accumulated pause duration in minutes. Next, the active duration is

provided by:

𝑫_𝒂𝒄𝒕𝒊𝒗𝒆 = 𝟔𝟎(𝑻_𝒆𝒏𝒅 − 𝑻_𝒔𝒕𝒂𝒓𝒕) − 𝑫_𝒑𝒂𝒖𝒔𝒆𝒅_𝒕𝒐𝒕𝒂𝒍

This guarantees that the artist's labor is measured more fairly and accurately by only

recording the time they were actively working.

5. Conclusion

16

This project effectively illustrates how the entire VFX industry can gain a great deal from an

automated time tracking system that integrates with DCC. Studios can bid on projects more

precisely, allocate resources more effectively, and communicate with clients more openly

thanks to the system's accurate data. It provides freelance artists with a dependable and

verifiable way to bill, fostering stronger business ties and guaranteeing just compensation. It

offers a vital tool for verifying hours worked and guarding against unpaid overtime for all

artists, regardless of location or payment model.

The created application offers a reliable, non-intrusive, and user-friendly solution to the

problems with manual time logging. The main goal of developing a precise and automated

time tracker was accomplished.

This project's future work could concentrate on a few important areas:

• Improved Reporting: More advanced reporting features, like tracking project budgets,

artist performance metrics, and payroll system data export options, could be added in

the future.

• Further DCC Integration: The system might be expanded to accommodate additional

popular DCC programs used in the visual effects sector, like Adobe Substance

Painter, SideFX's Houdini, and Foundry's Nuke.

• Machine Learning for Task Prediction: To further reduce manual input, an advanced

feature might automatically suggest or assign the right task based on an analysis of an

artist's workflow.

• Cloud Deployment and Scalability: Using more scalable database solutions like

PostgreSQL, the system could be modified for deployment on cloud platforms like

AWS or Google Cloud in order to accommodate larger studios.

17

References

Autodesk, 2024. Maya Python API Documentation. [online]. Available

from:https://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_Maya_Pytho

n_API_html[Accessed 26 August 2025].

Autodesk, 2024. Flow Production Tracking. [online]. Available from:

https://www.autodesk.com/products/flow-production-tracking/overview [Accessed 26 August

2025].

Blender Foundation, 2025. Blender Python API Documentation. [online]. Available from:

https://docs.blender.org/api/current/ [Accessed 26 August 2025].

CGWire, 2025. Kitsu. [online]. Available from: https://www.cg-wire.com/kitsu [Accessed 26

August 2025].

Chart.js, 2025. Chart.js Documentation. [online]. Available from:

https://www.chartjs.org/docs/latest/ [Accessed 26 August 2025].

http://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_Maya_Python_API_html
http://help.autodesk.com/view/MAYAUL/2024/ENU/?guid=Maya_SDK_Maya_Python_API_html
https://www.autodesk.com/products/flow-production-tracking/overview
https://www.autodesk.com/products/flow-production-tracking/overview
https://docs.blender.org/api/current/
https://docs.blender.org/api/current/
https://www.cg-wire.com/kitsu
https://www.chartjs.org/docs/latest/

18

Foundry, 2025. ftrack. [online]. Available from: https://www.ftrack.com/ [Accessed 26

August 2025].

Harvest, 2025. Harvest: Time Tracking Software With Invoicing. [online]. Available from:

https://www.getharvest.com/ [Accessed 26 August 2025].

Hunter, J. D., 2007. Matplotlib: A 2D Graphics Environment. Computing in Science &

Engineering, 9(3), pp.90-95. Available from: https://ieeexplore.ieee.org/document/4160265

[Accessed 26 August 2025].

McKinney, W., 2010. Data Structures for Statistical Computing in Python. In: Proceedings

of the 9th Python in Science Conference, pp. 51-56. Available from:

https://proceedings.scipy.org/articles/Majora-92bf1922-00a[Accessed 26 August 2025].

Prism Pipeline, 2025. Prism Pipeline - Animation and VFX Pipeline. [online]. Available

from: https://prism-pipeline.com/ [Accessed 26 August 2025].

Python Software Foundation, 2025. The Python Standard Library. [online]. Available from:

https://docs.python.org/3/library/ [Accessed 26 August 2025].

Ronacher, A., 2010. Flask Documentation. [online]. Available from:

https://flask.palletsprojects.com/ [Accessed 26 August 2025].

Welk, B., 2023. VFX Workers Are Ready to Unionize: ‘The Risk Is So High, the Reward Is So

Low’. [online]. IndieWire. Available from: https://www.indiewire.com/features/general/vfx-

http://www.ftrack.com/
https://www.getharvest.com/
https://www.getharvest.com/
https://ieeexplore.ieee.org/document/4160265
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://conference.scipy.org/proceedings/scipy2010/mckinney.html
https://proceedings.scipy.org/articles/Majora-92bf1922-00a
https://prism-pipeline.com/
https://docs.python.org/3/library/
https://flask.palletsprojects.com/
https://flask.palletsprojects.com/
https://www.indiewire.com/features/general/vfx-workers-unionize-high-risks-low-wages-insane-hours-1234814830/

19

workers-unionize-high-risks-low-wages-insane-hours-1234814830/ [Accessed 26 August

2025].

Shneiderman, B., 2010. Designing the User Interface: Strategies for Effective Human-

Computer Interaction. 5th ed. Pearson.

Toggl, 2025. Toggl Track. [online]. Available from: https://toggl.com/track/ [Accessed 26

August 2025].

VFX-Union, 2022. 2022 Survey Results. [online]. Available from: https://vfxunion.org/2022-

survey-results/ [Accessed 26 August 2025].

Visual Effects Society (VES), 2020. The VES Handbook of Visual Effects: Industry Standard

VFX Practices and Procedures. 3rd ed. Focal Press.

https://www.indiewire.com/features/general/vfx-workers-unionize-high-risks-low-wages-insane-hours-1234814830/
https://toggl.com/track/
https://vfxunion.org/2022-survey-results/
https://vfxunion.org/2022-survey-results/

20

Appendices

Source Code

https://github.com/ohsidno/VFX_Time_Tracker.git

API Endpoint Documentation

This section provides a summary of the key API endpoints created in server.py that enable

communication between the clients and the server.

User Management

• Endpoint: /api/register

• Method: POST

• Description: Creates a new user account.

• Request Body (JSON):

• username (string): The desired username.

• password (string): The desired password.

• Success Response (201):

• status: "success"

https://github.com/ohsidno/VFX_Time_Tracker.git

21

• message: "User created successfully."

• Error Response (409):

• status: "error"

• message: "User [username] is already registered."

• Endpoint: /api/login

• Method: POST

• Description: Authenticates a user and returns their information.

• Request Body (JSON):

• username (string): The user's username.

• password (string): The user's password.

• Success Response (200):

• status: "success"

• user: { "id": (int), "username": (string) }

• Error Response (401):

• status: "error"

• message: "Invalid username or password."

• Session Management

22

• Endpoint: /api/session/start

• Method: POST

• Description: Starts a new time tracking session.

• Request Body (JSON):

• user_id (int): The ID of the user.

• task_id (int): The ID of the selected task.

• dcc_name (string): The name of the DCC application (e.g., "maya").

• project_name (string): The name of the project.

• scene_name (string): The name of the scene file.

• Success Response (201):

• status: "success"

• session_id: The ID of the new session.

• Endpoint: /api/session/stop

• Method: POST

• Description: Stops an active session and calculates the final duration.

• Request Body (JSON):

23

• session_id (int): The ID of the session to stop.

• Success Response (200):

• status: "session_stopped"

• Endpoint: /api/session/heartbeat

• Method: POST

• Description: Updates the last_heartbeat timestamp for an active session.

• Request Body (JSON):

• session_id (int): The ID of the active session.

• Success Response (200):

• status: "acknowledged"

• Data Retrieval

• Endpoint: /api/tasks

• Method: GET

• Description: Retrieves the list of all available tasks.

• Success Response (200):

• status: "success"

• tasks: [{ "id": (int), "task_name": (string) }, ...]

24

• Endpoint: /api/get_logs

• Method: GET

• Description: Retrieves all stopped sessions for a specific user on a specific date.

• Query Parameters:

• user_id (int): The ID of the user.

• date (string): The date in 'YYYY-MM-DD' format.

• Success Response (200):

• status: "success"

• logs: [{...session details...}]

