BOURNEMOUTH UNIVERSITY

MASTER THESIS

Virtual Garment Creation and Cloth
Simulation: A Tool for Unreal Engine 5

Author: Supervisor:
Marisa LIEBNER Jon MACEY
Prof. Jian CHANG

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

n

Computer Animation and Visual Effects

August 22, 2025

https://www.bournemouth.ac.uk/study/courses/msc-computer-animation-visual-effects
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com

BOURNEMOUTH UNIVERSITY

Abstract

Faculty of Media and Communication
National Centre for Computer Animation

Master of Science

Virtual Garment Creation and Cloth Simulation: A Tool for Unreal Engine 5

by Marisa LIEBNER

This paper presents a lightweight Unreal Engine 5 plugin that unifies 2D pattern
drafting, automatic mesh generation and real-time cloth simulation via Chaos Cloth
into a single, in-editor workflow. By leveraging UE’s native geometry and UI mod-
ules, the system enables users to sketch flat patterns, generate triangulated meshes
and preview drapes and collisions without external tools. While pattern authoring
and mesh generation proved robust and performant, integrating seam constraints
and cloth simulation entirely in C++ revealed challenges around module access.
Nonetheless, the prototype delivered plausible drapes suitable for both real-time
previews and cinematic pipelines, reducing iteration time and demonstrating the
untapped potential of UE’s native systems for digital garment production.

HTTPS://WWW.BOURNEMOUTH.AC.UK/STUDY/COURSES/MSC-COMPUTER-ANIMATION-VISUAL-EFFECTS
https://www.bournemouth.ac.uk/about/our-faculties/faculty-media-communication
https://www.bournemouth.ac.uk/about/our-faculties/faculty-media-communication/national-centre-computer-animation

ii

Contents

Abstract i
1 Introduction 1
2 Literature Review 3
2.1 Clothand Seam Simulation 3
2.2 Recent Advances in Physics Modelling 5
23 Surveyof ExistingTools 6
23.1 Marvelous Designer 6

232 UnrealEngine 7

2.4 Identified Gaps in Existing Tools 9

3 Technical Background 11
3.1 Human-Computer Interaction (HCI) in Digital Pattern-Authoring Tools 11
3.2 Unreal Engine’s C++ Framework for Plugin Development 12
33 DataStructures o 13

4 Solution 15
41 Project Scope and Initial Goals. 15
42 PluginStructure 15
43 Userlnterface 16
44 CanvasWidget 17

45 2DPatternDrawing o 0L 18
4.6 Mesh Triangulation 19
47 Sewing e 20
4.8 Cloth Simulation and Chaos Cloth Integration 21
4.8.1 Pattern Merge (preparing sewn groups for simulation) 21

482 SimulationSettings o oo oL 23

49 Utilities e 23
491 Saveand Loadinthe2D Editor 23

492 Other Supporting Utilities 24

410 Overall User Workflow 24

5 Evaluation 27
5.1 Technical Challenges and Mitigation 27
51.1 Triangulation 27

512 Sewing and Seam Simulation 0L 27

5.1.3 Collision and Engine Accessibility 28

514 Scope and Prioritisation L. 28

52 Results 29
52.1 Performance and Quality 29

5.2.2 Comparison to Unreal Engine’s Cloth Setup 29

523 UlandHCI 29

6 Conclusion

6.1 Conclusion
6.1.1 Summary

6.1.2 Future Work and Extensibility

Bibliography

iii

31
31
31
31

33

iv

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29

3.1
3.2

4.1
4.2
43
44
4.5
4.6

4.7

51

52

6.1

Example DCC tool overview including the 2D editor and 3D simula-

HON VIEW. o o e e e e e e e e e e 1
Spring forces. L 3
Elastic cloth simulation with springs. 4
Particle representation. o o o L 4
Seam springs visualisation. 0 0L 5
Example image of finished design in Marvelous Designer. 6
Marvelous Designer full Ul overview. 7
Unreal Engineclothtool. 8
Unreal Engine cloth tool paint functionality. 8
Unreal Engine cloth workflow. 9
HCI example of CLO3D Ul design.. 11
Unreal Engine modules overview. 12
User interface overview. i 17
2D Ul with additional background image for tracing purposes. 18
Pattern drawing with resulting mesh triangulation. 20
Comparison of correct and incorrect seam placement. 21
Simulation of produced clothmesh. 22
Example of the different simulation presets applied to an imported

mesh (left to right: denim, leather, silk, jersey). 23
2D Ul overview withdrawnshape. 25
Simple triangulation without interior points resulting in elongated tri-

angles. 27
User warning when trying to sew without having first defined any

SCAMMNS. & v v v e 30

Full overview of drawn, triangulated, sewn and then simulated mesh

List of Abbreviations

CAD Computer Aided Design

CDT Constrained Delaunay Triangulation

CGAL Computational Geometry Algorithms Library
DCC Digital Content Creation

HCI Human Computer Interaction

MD Marvelous Designer

PBD Position Based Dynamics

UBT Unreal Build Tool

UE Unreal Engine

Ul User Interface

UMG Unreal Motion Graphics

VID Vertex ID

2D Two-Dimensional (used here for 2D pattern space)
3D Three-Dimensional (used here for 3D simulation/mesh space)

1 Introduction

Virtual garment creation plays an important role in 3D content production, used in
industries ranging from game development to cinematic visual effects and digital
fashion. In games, real-time cloth simulation is often prioritised for performance,
whereas in cinematic pipelines and digital doubles, higher visual fidelity and phys-
ical accuracy are demanded. As virtual humans become more prominent across
media, so does the need for flexible digital clothing workflows.

Industry tools such as Marvelous Designer and CLO 3D offer powerful work-
flows for designing and simulating garments using 2D patterns, producing results
well suited to high-end visual outputs (Figure 1.1). However, these tools are exter-
nal, commercial applications and require users to manage a multi-step pipeline in-
volving export, import, reconfiguration and simulation tuning. While Unreal Engine
does support cloth simulation through its Chaos Cloth system and most recently its
Cloth Asset workflow, it does not support garment creation and its tools are pri-
marily designed for efficiency in game development, prioritising performance over
creative flexibility. As UE continues to expand into cinematic and virtual production
workflows, this project aims to explore its potential for supporting more advanced,
design-focused garment workflows directly within the engine.

a[mpr &
=lEelly

®

FIGURE 1.1: Example DCC tool overview including the 2D editor and
3D simulation view.

The result of this investigation into a streamlined, integrated alternative directly
within Unreal Engine 5 is a custom plugin that introduces a new Editor Mode sup-
porting 2D pattern drafting, automatic 3D mesh generation, digital sewing and real-
time cloth simulation using the Chaos Cloth system. The goal is to automate and

simplify as much of the workflow as possible while keeping the tool extensible and
responsive to creative needs.

By bringing garment creation directly into the game engine environment, this
work aims to reduce reliance on external tools, shorten iteration cycles and open
up the possibility of more responsive garment design for real-time and cinematic
applications. The project also serves as a technical investigation into how far Un-
real Engine’s native systems, such as Chaos Cloth, can be pushed to support cloth
workflows typically handled by specialised software.

2 Literature Review

2.1 Cloth and Seam Simulation

Cloth simulation in interactive and offline pipelines typically builds on either force-
based spring dynamics or its successor, position-based dynamics. In the classical
mass-spring model, each vertex of a discretised fabric mesh is treated as a point
mass connected to its neighbours by springs that resist stretch, shear and bending
(Figure 2.1). Hooke’s law governs the elastic force in each spring and a damping
term stabilises high-frequency oscillations. Time integration, often semi-implicit Eu-
ler, updates vertex positions under the influence of gravity, wind and collision forces.
While straightforward to implement, this approach can become unstable under stiff
materials or large time steps, necessitating very small sub-steps or global solves to
maintain realism [18].

Position-based dynamics reframes these same constraints as positional correc-
tions. After predicting vertex displacements under external forces, PBD solvers it-
erate over each spring constraint, projecting pairs of vertices to restore their rest
distance. This Gauss-Seidel-style projection loop naturally enforces stretch limits
without solving large linear systems, yielding stability even at coarser time resolu-
tions. Collision and self-collision are integrated as inequality constraints within the
same projection framework, providing a robust, high-performance foundation for
real-time cloth in games and interactive tools [15].

Finite Element Methods (FEM) model cloth as a continuous shell by discretising
it into triangular or quadrilateral elements governed by a strain-energy functional
and anisotropic constitutive laws. Each element contributes to a global stiffness
matrix and implicit integration enforces equilibrium under external forces such as
gravity and collisions, allowing much larger time steps and high-fidelity wrinkle
and bending behaviour [2]. While FEM delivers unmatched physical accuracy, cap-
turing complex material anisotropy and fine detail, it produces substantial compu-
tational and implementation overhead, which is why real-time engines like UE’s

@0 @ 00 Q]]] (]] —@
’ g !—. !—. |—.
e—9 o o 0 ¢ @ /l l o //l] ’-0 I[O ! @ !!-0 ‘(0
e o ¢ ¢ o o @ o o o e To e %.
s
[@ L @ L L]] [}] []] ® :. @
o—90—90—0—0—0 (]]] <] e ° . ‘—“ e ‘—H
e o o o o ¢ ¢ ¢ ¢ ¢ ¢ e o o o leo
Structural Springs Shear Springs Bend Springs

FIGURE 2.1: Spring forces.

AXPIXIXIA

A A{ 4 "
NN NN N IS 1N
DAXIXIXIXIXIXX
XIXIXIXIXIXIX X

K‘v'v

KIXXIXIXIX

&

FIGURE 2.2: Elastic cloth simulation with springs.

Chaos Cloth often favour particle-based or PBD cores augmented with selective
FEM-inspired constraints.

Seam modelling introduces additional complexity. In its simplest form, a seam
is represented by extra distance constraints (“seam springs”) tying corresponding
edge vertices of adjacent panels (Figure 2.4). Although this preserves continuity, it
often yields overly stiff joins or puckering, since all springs share uniform stiffness
parameters. Pabst et al. (2008) demonstrate that seams substantially alter local bend-
ing stiffness, and propose augmenting the spring network with dedicated bending
elements whose stiffness decays with distance from the stitch line, calibrated against
physical measurements. They further show that adaptive remeshing, subdividing
triangles near seams according to a stiffness-based heuristic, can produce smooth,
realistic drapes without prohibitive computational cost [17].

Together, these methods, augmented with seam-aware constraints, form the tech-
nical backbone of modern cloth systems, balancing computational efficiency with
the fidelity required for both real-time and cinematic applications.

weft

A_/\/\;

g N e
a| NN
o NP2 NP2

N N N

g NI N

a) plain weave b) particle representation

FIGURE 2.3: Particle representation.

FIGURE 2.4: Seam springs visualisation.

2.2 Recent Advances in Physics Modelling

Cloth simulation is a dynamic and rapidly evolving field, progressing from early
mass-spring models and position-based dynamics to sophisticated collision han-
dling and, more recently, integration within cloth design applications. These ad-
vancements have broadened the scope of cloth simulation across animation, mod-
elling, gaming, visual effects and digital fashion design.

In recent years, several key developments have emerged, including GPU-accelerated

PBD, hybrid and implicit finite element methods and differentiable, data-driven sur-
rogate models. This section begins by reviewing these foundational concepts and
recent innovations to provide a comprehensive overview of the current state of cloth
simulation. Recent advances in cloth simulation have seen significant progress in
GPU-accelerated PBD frameworks aimed at real-time applications. Kim et al. (2025)
demonstrate a fully GPU-offloaded PBD solver capable of running at 60 frames per
second on standalone XR hardware by leveraging massively parallel constraint pro-
jection methods that effectively eliminate CPU bottlenecks [9]. In parallel, a We-
bGPU prototype achieves interactive rates simulating mass-spring cloth systems
with up to 640,000 particles, illustrating a broader industry shift toward browser-
based, GPU-first simulation engines that scale efficiently for large, complex scenes [20].

Baraff and Witkin (1998) introduced a fundamental framework for stable cloth
simulation using implicit integration and global Newton methods. Their key con-
tribution was enabling large time-step stability by solving the non-linear system of
cloth constraints globally rather than relying on explicit time integration prone to
instability and jitter [1]. This work essentially laid the foundation for many modern
implicit and hybrid FEM solvers. Recent FEM Advances build upon this founda-
tional idea by improving mesh adaptivity, stiffness handling and accuracy under
extreme deformation without costly remeshing. They extend and refine the original
implicit solver paradigm by incorporating modern numerical methods and hard-
ware acceleration [34].

Separately, data-driven surrogate models incorporating differentiable physics
have emerged as a powerful approach to capture intricate cloth behaviours while
maintaining computational efficiency. Zhao et al. (2024) introduce physics-embedded
deep learning architectures that encode energy-based cloth constraints, enabling
real-time inference of fine wrinkles and collision phenomena without sacrificing
physical plausibility [35]. Furthermore, a July 2025 study trains a learned Mass-
Spring net directly from real-world fabric motion captured on video, optimising
per-spring stiffness and damping parameters via force-and-impulse loss functions.

These machine learning-driven methods complement traditional solvers by provid-
ing enhanced detail and responsiveness in cloth simulation [4].

2.3 Survey of Existing Tools

2.3.1 Marvelous Designer

Several tools are available for digital pattern drafting and cloth simulation, with
Marvelous Designer and CLO 3D being the most prominent. Both developed by the
same company, these applications share core features but target different markets:
CLO 3D is primarily designed for the digital fashion and toiling market, whereas
Marvelous Designer targets the animation, modelling, gaming and visual effects
industries, and is notably used by studios such as Weta Digital [6]. While alter-
native options exist, such as Cloth Weaver, a simplified Blender plugin, and the
open-source 2D pattern drafting software Seamly2D, Marvelous Designer currently
remains the industry standard and leading tool (Figure 2.5) [5].

FIGURE 2.5: Example image of finished design in Marvelous De-
signer.

Marvelous Designer (and CLO 3D) employ a pattern-based authoring approach
directly inspired by traditional fashion industry practices. Users draft flat 2D sewing
patterns in a specialised CAD interface, incorporating essential pattern elements
such as curves, fold lines, seam allowances and notches (Figure 2.6). Seam corre-
lations are then digitally defined to “sew” edges together. Each pattern piece is

FIGURE 2.6: Marvelous Designer full Ul overview.

instantly converted into a 3D mesh, which the cloth solver simulates using physics-
based models, thereby draping the mesh over a customisable avatar. The 3D simu-
lation window provides real-time feedback on silhouette, fit, wrinkles and drape as
users adjust curve points or material properties [8].

In more detail it was observed that the workflow begins with avatar setup, where
users import or create a base avatar with custom measurements. Pattern drafting oc-
curs simultaneously in the 2D editor, where drawn shapes are immediately reflected
as 3D meshes in the simulation view. Edge selections in the 2D editor establish
spring constraints that act as seams during simulation, enabling realistic cloth drap-
ing and collision with the avatar. Marvelous Designer (and CLO 3D) implements
cloth simulation with a discrete particle-based PBD solver rather than a continu-
ous finite element system. Collision handling (with both the avatar and cloth self-
collision) is naturally integrated into this projection loop, using per-vertex backstop
offsets to maintain separation. Users can modify material properties, add details
such as top-stitching, zippers and buttons, and manipulate the garment by direct
interaction, all updated live by the solver. Fabric behaviour is further refined by
anisotropic material parameters exposed in the UL Weft, Warp and Shear intensities
adjust resistance along the corresponding yarn directions, while a thickness param-
eter defines collision depth and internal pressure for layered garments. To accelerate
this pipeline, Marvelous Designer offers an optional CUDA-based GPU solver (in-
troduced in MD 9 and substantially improved in 2024), offloading both constraint
projection and collision detection to parallel GPU kernels for speedups without sac-
rificing stability [12]. Completed patterns and meshes are exportable for use in digi-
tal content creation tools, game engines or physical pattern printing [13].

2.3.2 Unreal Engine

Chaos Cloth is Unreal Engine’s dedicated cloth simulation module within the broader
Chaos Physics suite, alongside Chaos Ragdoll, which handles realistic character
physics and joint constraints, and Chaos Destruction, which drives procedural frac-
turing and collapse of rigid bodies, and many more. UE’s native cloth-authoring
ecosystem centers around two complementary paradigms: the in-Editor Cloth Paint

Tool for section-based cloth and the more recent Chaos Cloth Asset/Dataflow Edi-
tor for panel-based, node-driven setups. Both use an extended PBD solver and have
optional GPU acceleration [21, 27].

For simple and more cinematic workflows, artists import assets from a DCC ap-
plication as a UE Skeletal Mesh and then select material IDs on it, “paint” cloth be-
haviour regions in the Cloth Paint panel (Figure 2.8), adjust collision thickness and
other simulation parameters, then click Simulate to see real-time drape on their asset
(Figure 2.7). This lightweight pipeline requires no external tools, but limits the user
to painting whole contiguous sections while still offering free control over those sec-
tions and producing results closer to a true physics simulation. Because this mode
drives cloth purely through collision geometry, it maintains natural fabric contact,
sliding and drape, eschewing the “pinned” look of bone-anchored regions that can
make other approaches appear more game-like.

FIGURE 2.8: Unreal Engine cloth tool paint functionality.

The panel-based, Cloth Asset workflow, introduced in UE 5.4 and further de-
veloped in UE 5.5, lets the user import a full garment mesh (usually exported from
Marvelous Designer via USD), extract it as a separate ChaosClothComponent and
then drive its construction through an elaborate Dataflow graph of nodes. How-
ever, this pipeline depends heavily on a well rigged and skinned character. Tying

cloth behaviour to the skin weights of the underlying character leads to a number
of issues, most notably a loss of free-flowing physicality and an overly “painted-on”
deformation style, highlighting the need for a more robust, collision-driven anchor-
ing strategy rather than reusing skin-weight logic [14, 26].

UE’s built-in cloth tools offer a uniquely integrated, real-time solution for both
quick turnarounds and more elaborate, game-ready garment setups. The Cloth Paint
workflow provides an intuitive, collision-driven approach for artists who need fast,
believable drapes on complex characters, while the Chaos Cloth Asset/Dataflow
system brings a modular, node-based paradigm that can ingest detailed garments
from external design tools and layer on procedural adjustments. As UE continues to
evolve its solver performance and dataflow capabilities, these native systems lay a
strong foundation for increasingly sophisticated in-engine simulation and possible
garment authoring.

2.4 Identified Gaps in Existing Tools

While both Marvelous Designer and UE’s Chaos Cloth fill critical roles in digital gar-
ment workflows, each exhibits notable feature gaps, especially when pushed toward
high-end animation, VFX and game pipelines.

Chaos Cloth delivers real-time performance via their solver, but sacrifices the nu-
anced physical accuracy required for subtle wrinkle definition and dynamic drape
under complex motions. UE’s experimental Machine Learning Cloth plugin explic-
itly targets quasi-static garments, meaning it cannot faithfully reproduce swinging
capes or flowing dresses in high-energy scenes [11]. When artists bake simulations
through the Movie Render Queue, cache corruption or premature termination is
commonplace unless subsampling is disabled, yet turning off subsampling reintro-
duces temporal aliasing and motion-blur artifacts that undermine cinematic polish
[19]. Moreover, non-deterministic solver seeds lead to frame-for-frame inconsisten-
cies, complicating plate matching and compositing in VEX workflows.

Author
Mesh
Geo

DCC
Tool

Requires Parameter
changes?

Cioaks Author with Visualise
UE5 — Import Mesh Clothing new(glo?tsm"g and check

FIGURE 2.9: Unreal Engine cloth workflow.

Marvelous Designer’s LiveSync and USD export streamline the transfer of gar-
ments into UE, but material assignments, normal maps and UV setups frequently
mismatch on import, resulting in flipped normals, missing tangents or transpar-
ent cloth that must be manually reconfigured [23]. Critically, there is no two-way

10

pipeline: changes made in-engine cannot be pushed back to MD, breaking the iter-
ative design loop that artists rely on for rapid garment refinement. Additionally, as
mentioned before the cloth asset data flow causes issues due to the skinning of the
assigned character [13].

UE cloth tools work well at collision-driven draping, but offer no built-in mecha-
nism for pattern drafting. Unlike MD or CLO 3D, UE provides no 2D CAD interface
for drawing pattern pieces, defining seam correlations or automatically generating
meshes from flat patterns. Artists must pre-model garments in external applications,
then import static meshes into UE, defeating the goal of a unified, in-engine pipeline
(Figure 2.9). This gap forces studios and individuals to maintain parallel toolsets for
pattern authoring and simulation, adding overhead and potential data-sync errors
when moving between DCCs and the engine.

Taken together, these limitations underscore the absence of a fully integrated, art-
directable pattern authoring workflow within Unreal Engine, an essential feature for
cloth simulation that would unify design, simulation and rendering under a single,
engine-native umbrella.

11

3 Technical Background

3.1 Human-Computer Interaction (HCI) in Digital Pattern-
Authoring Tools

Users of digital pattern-authoring tools benefit immensely from a tightly coupled
feedback loop between their actions and the visual outcome. As soon as a user drags,
sketches or edits a 2D curve, the corresponding 3D drape or marker layout updates
in real time, creating a “what-you-see-is-what-you-get” experience that narrows the
gap between intention and result, reduces cognitive load, and accelerates learning
curves [33]. This effect is enhanced by synchronised views: modifications made in
the 2D pattern window immediately reflect in the 3D preview (and vice versa), help-
ing users form accurate mental models of how flat geometry translates into draped
cloth (Figure 3.1) [3].

308

FIGURE 3.1: HCI example of CLO 3D Ul design.

To further guide artists and prevent invalid edits, pattern tools show domain-
specific constraints, such as seam joins, grainlines and darts, as interactive visual
handles or “springs.” These affordances highlight where edges can snap together
and how panels may deform, ensuring users understand both the possibilities and
limitations of their manipulations [10].

Beginners are supported through progressive disclosure: a streamlined core palette
presents only the essential tools at first, while advanced features like grading, block

12

libraries and other tools remain hidden until needed. Professionals can then cus-
tomise their workspaces to expose the controls they rely on most [7]. Finally, ro-
bust history management, including comprehensive undo/redo stacks and semi-
automating repetitive tasks (for example, mirror-sewing a sleeve) provide the con-
fidence and efficiency necessary for exploratory design [16]. Together, these HCI
elements create an intuitive yet powerful environment in digital pattern creation for
both novice and expert pattern makers.

3.2 Unreal Engine’s C++ Framework for Plugin Development

Unreal Engine’s extensible C++ architecture is built around a clear separation of
functionality into three module categories, Runtime, Editor and Developer, which
together define a plugin’s scope and dependencies (Figure 3.2). Runtime modules
encapsulate features available in both the editor and a packaged build, exposing
core systems such as input, rendering interfaces and basic physics. Editor mod-
ules, by contrast, are only loaded within the Unreal Editor and cannot be packaged
for standalone runtime [28]. The most restricted tier, Developer modules, contains
advanced engine internals, such as advanced skeletal-mesh processing utilities and
certain Chaos Cloth solver modules and functions like accessing the simulated ver-
tex ID of a mesh. These modules are intended for Epic’s own subsystems rather than
general plugin authors. Accessing these Developer modules often introduce build
issues and maintenance challenges [24]. This extra indirection contrasts sharply with
systems like Houdini, where point and primitive data are directly queryable and is
a common source of friction when integrating custom plugins and cloth solvers.

Modules

Editor (Editor-only)

Custom Asset Editors

i Details P: L.
Developer (Restricted) etails Panels

Certain Chaos Cloth Skeletal Mesh Utilities

modules with Vertex Access Editor Modes

Slate UI Framework

Runtime

Geometry Input Handling Runtime Rendering Basic Physics Procedural Mesh Component Geometry Algorithms

FIGURE 3.2: Unreal Engine modules overview.

UE provides a rich set of native modules for geometry processing and UI that
often obviate the need for external libraries. At the core of mesh generation and edit-
ing is the Geometry Framework, which defines the FDynamicMesh3 data structures

13

used throughout the Modeling tools and Geometry Scripting plugin [25]. Building
on this, the Procedural Mesh Component supplies a simple, actor-component-based
system for constructing triangle meshes at runtime, exposing vertex positions and
curve tangents directly in C++. Meanwhile, the Geometry Algorithms module offers
a suite of functions like triangulation, many of which underpin both the Modeling
Mode tools and user-facing Blueprint nodes, and tasks like constrained Delaunay tri-
angulation or transform actions can be performed with native function calls rather
than importing and adapting third-party geometry libraries.

On the UI side, UE avoids third-party frameworks such as Qt in favor of its
own Slate system, a fully custom, platform-agnostic declarative C++ framework
that serves as the foundation for both editor tools and in-game interfaces. Unlike
UMG, which is a designer-oriented layer built atop Slate, plugins that use Slate di-
rectly gain precise control over widget composition and styling, and can integrate
seamlessly into the editor’s existing details panels, toolbars and viewport overlays.
Slate’s deep integration with UE’s system and architecture makes it largely main-
tainable for tool development[32].

In practice, leveraging these native modules streamlines development: the Proce-
dural Mesh Component and Geometry Framework supply all necessary primitives
for generating and modifying mesh topology, Geometry Algorithms provide robust
implementations of operations like mesh triangulation and Slate allows for high-
fidelity, interactive editor Uls without external dependencies. The primary chal-
lenge lies not in acquiring functionality but in discovering the appropriate module
and API, and in navigating subtle versioning changes as Epic advances the engine.
Nonetheless, by capitalising on UE’s built-in geometry and Ul subsystems, a plugin
can remain lightweight, performant and fully in-step with ongoing engine improve-
ments.

3.3 Data Structures

In Unreal Engine, nearly all in-game and editor data is built upon the UObject sys-
tem, which serves as the base class for all serialisable engine types [29]. Classes de-
rived from UODbject are declared with the UCLASS macro, which generates metadata
used by the engine’s reflection, serialisation and garbage-collection systems. Mem-
bers of these classes are exposed to the editor and Blueprint via the UPROPERTY
macro, which not only marks a variable for serialisation but also specifies its visibil-
ity, editability and replication behaviour [30]. For lightweight, value-type data, such
as simple structs that group parameters or small coordinate sets, UE employs the
USTRUCT macro to define data containers that integrate seamlessly with the same
reflection and property systems, allowing them to appear in UE’s details panels and
participate in undo/redo operations.

Actors (AActor subclasses) represent objects placed in a level and combine one
or more UActorComponent instances to handle functionality such as transforma-
tions, rendering or physics. Components themselves are UObjects and can likewise
declare UPROPERTIES that expose subobjects or asset references, such as material
or mesh assets stored in .uasset files, to artists via the editor [31]. By leveraging these
core type, it is possible for a plugin to maintain tight integration with UE’s seriali-
sation, reflection and rendering pipelines without introducing external data formats
or bespoke file loaders. This consistent use of built-in types ensures that custom
pattern-drafting assets, settings and procedural mesh constructs remain fully com-
patible with the engine’s native toolchains and content pipelines.

14

Unreal Engine adheres to a disciplined, prefix-based naming convention that dis-
tinguishes types and variables at a glance. Structs and non-UObject classes carry
an F prefix (e.g. FVector) [22]. Classes derived from UObject begin with U (e.g
UStaticMeshComponent and UDataAsset), while those inheriting from AActor use
A (such as ACharacter) to signal their place in the actor hierarchy. Template classes
are prefixed with T (e.g. TArray, TMap), abstract interfaces with I (e.g. IInterface),
and enums with E (e.g. EBlendMode). Slate widgets use S (e.g. SCompoundWidget),
and concept-oriented helper structs sometimes carry C (e.g. CStaticClassProvider).
Boolean variables are prefixed with b (e.g. blsVisible), reinforcing their role as binary
flags. By enforcing these conventions through the UnrealHeaderTool and build-time
checks, UE ensures that code remains self-documenting, maintainable and under-
standable across its C++ system.

15

4 Solution

4.1 Project Scope and Initial Goals

This project explores the feasibility of building a simplified version of a virtual gar-
ment creation pipeline, similar in concept to Marvelous Designer, directly inside
Unreal Engine 5.5. The core idea is to allow users to create 2D fabric patterns, de-
fine how those patterns are sewn together and view the resulting garment in 3D
using UE’s built-in Chaos Cloth simulation system. The implementation takes the
form of a custom UE plugin, offering both a 2D pattern authoring interface and a 3D
viewport for simulation and visualisation, with as much of the simulation workflow
automated as possible.

The primary objective of this project was not to recreate every feature of exist-
ing garment tools, but to explore whether a full garment creation and simulation
pipeline could be established entirely within Unreal Engine. While earlier tests in
Houdini showed that such a pipeline could be implemented relatively easily, due
to Houdini’s procedural nature and built-in cloth tools, UE presents a much more
challenging environment due to its fundamentally different architecture, real-time
constraints and programming model. However, UE is also where many real-world
production teams already work, particularly in virtual production and real-time ren-
dering. As such, building this pipeline in UE has the potential to be significantly
more useful.

In order to focus on core functionality, 2D pattern creation, mesh generation,
sewing and cloth simulation, some auxiliary features such as pattern scaling and
rotation in the UI were deliberately left out, which could be added in future itera-
tions once the foundational system is proven to work. To focus on validating the
core concept the project deprioritised aspects like UI polish. The goal was to es-
tablish a technically working pipeline rather than a production-ready design tool.
Human-Computer Interaction was considered in the design of the user interface and
concepts were implemented where feasible, but was not the main focus in this im-
plementation. While the basic interaction model is functional, polish and usability
refinements remain for future iterations.

4.2 Plugin Structure

The project began with configuring the UE development environment in the Jet-
Brains Rider IDE and evaluating available plugin templates offered by UE. Two tem-
plates, the Editor Standalone Window and the Editor Mode, were identified as the
most relevant and were combined: the Editor Mode serves as the core of the plu-
gin, which is called “ClothDesign”, while selected components from the Standalone
Window template were incorporated for the separate 2D editor. The template code is

16

preserved in the delivered tool so readers can compare the original scaffolding with
the project’s extensions and see where custom logic for this plugin was introduced.

At startup, FClothDesignModule initialises FClothDesignStyle, which loads Slate
icons, while FClothDesignModule registers FClothDesignCommands, which declares
the Open2DWindow action, maps that command to Spawn2DWindow(), and regis-
ters a nomad tab spawner, managing the 2D tab lifecycle and CanvasWidget refer-
ence. When the editor mode is enabled, the engine constructs UClothDesignEdi-
torMode, which creates FClothDesignToolkit. The toolkit builds the in-mode Slate
UlI, such as object picker, cloth settings and the “Open 2D Editor” button. Press-
ing it triggers FClothDesignModule::Spawn2DWindow(), which requests the global
tab manager to spawn the tab. OnSpawn2DWindowTab() then creates an SDockTab
and assigns an SClothDesignCanvas into CanvasWidget. SClothDesignCanvas, the
main canvas class of this plugin, then handles 2D drawing, input and editing while
the toolkit and module continue to provide in-editor controls.

The ClothDesign.uplugin file acts as the distribution and runtime descriptor for
the plugin. It names the ClothDesign module, marks it as an editor-only target and
specifies startup and loading behaviour and lists other engine plugins that must be
present. The module’s ClothDesign.Build.cs complements that by being the build
description. It tells Unreal Build Tool which engine and plugin modules to link and
include.

4.3 User Interface

FClothDesignToolkit constructs the 3D-side Ul as a Slate SVerticalBox during Init(),
composing controls from smaller functions, such as creating the button to open the
2D Ul and creating object and preset pickers (Figure 4.1). Each control is data-bound
with lightweight lambdas and delegates: SObjectPropertyEntryBox instances expose
ObjectPath and OnObjectChanged bindings, with an optional scene-usage filter im-
plemented by iterating world actors. SComboBox is used for preset selection with
OnGenerateWidget and OnSelectionChanged lambdas, and buttons call OnClicked
handlers that invoke module and toolkit methods. State is kept in member vari-
ables such as SelectedClothMesh and SelectedTextileMaterial, and Ul-to-world ef-
fects are effected via explicit editor-side operations: ForEachComponentUsingSe-
lectedMesh iterates the editor world and applies changes to USkeletalMeshCompo-
nent instances. Visual state in the toolkit (for example, the current preset label) is
derived on-demand from these members so the UI always reflects the internal state.
In short, the toolkit is a thin, Slate-based input layer that exposes asset pickers, pa-
rameter controls and actions, binds them with delegates, and translates user intent
into immediate editor-side operations on scene components and into calls to the
module (such as opening the 2D canvas).

The 2D editor’s Ul is built as a two-column Slate layout in FClothDesignMod-
ule. A fixed-width left control panel composed of nested containers, including ex-
pandable areas, object pickers, numeric entry boxes and grouped buttons, and a
right-hand canvas (SClothDesignCanvas) that fills the remaining space, created with
SAssignNew and stored in the module’s CanvasWidget pointer. Controls forward
intent rather than reimplementing canvas logic, object pickers call canvas acces-
sor/mutator lambdas, the numeric entry box updates the canvas background scale,
and action buttons invoke canvas methods, such as Generate Mesh, Sewing, Save,
Clear All and more). Mode switching is implemented via small mode buttons in a
top-right overlay and keyboard shortcuts. Those buttons call the canvas’ mode and

17

ClothDesign 2D Editor

W Background Image

Generate Mesh

Sewing
File Edit Window Tools Build

(A0) _ Merge Meshes
L Untitled

A, Cloth Design Mode ~

Clear All
Open 2D Editor

Clear Sewing

Cloth Object: pone v

W Cloth Settings

Cloth Material: one

(a)3D UL (B) 2D UI

FIGURE 4.1: User interface overview.

derive their highlight colour from the canvas’ current mode so the toolbar reflects
live state. Focus and lifecycle are managed explicitly: the module sets keyboard
focus to the canvas on tab activation and schedules a ticker to ensure focus after
construction, and all interactivity uses lightweight lambdas and direct method calls
to keep the control panel as an input front while the canvas retains authoritative
state and rendering responsibilities.

4.4 Canvas Widget

The SClothDesignCanvas Slate widget implements the 2D editing surface and is the
bridge between the plugin’s Ul elements and its cloth-production logic. It renders
the canvas (background, grid, in-progress and completed shapes, seam previews) in-
side the nomad tab and receives Slate input, translating mouse and keyboard events
into editor actions. Input handling supports distinct modes using EClothEditor-
Mode (Draw, Select, Sew), panning and zooming, shape point and Bézier tangent

18

dragging, and keyboard-driven commands (mode switching, undo/redo, delete, fo-
cus). Coordinate transforms between screen and canvas space are applied consis-
tently so Ul interactions remain correct across zoom and pan.

State management, undo/redo and asset input and output are owned by the
canvas: the current curvepoints, completed shapes, Bézier flags and pan/zoom are
stored as a compact FCanvasState, and helper utilities encapsulate saving/loading
shapes and restoring state. The canvas delegates low-level drawing to canvas helper
classes and calls into the sewing and mesh utilities to generate FDynamicMesh3 re-
sults, APatternMesh actors when the user requests mesh creation and to build seam
data. Interaction with the sewing layer is coordinated through a SewingManager ab-
straction that keeps seam definitions, preview points and runtime constraints. The
canvas updates sewn-point caches and requests redraws when sewing state changes.

Therefore, SClothDesignCanvas is the single place where user gestures become
editing operations and where those operations are materialised into pattern geome-
try and sewing data. It encapsulates rendering, input interpretation, state snapshots,
asset persistence and the calls into the mesh-generation, sewing and merging sub-
systems, while remaining a Slate widget that the plugin’s toolkit and module classes
can control.

4.5 2D Pattern Drawing

FCanvasPaint implements the canvas rendering layer used by the 2D editor, which
turns the canvas’ geometric state into Slate draw calls while rendering is driven from
the widget’s OnPaint caller. The painter first handles background composition and
grid drawing. If a background texture is present in the 2D UI’s texture picker, it is
painted via an FSlateBrush with configurable scale, and major/minor grid lines are
produced by sweeping world-space grid coordinates, transforming them to screen
space and emitting Slate line primitives. All drawing is clipped to the widget geom-
etry and arranged using an explicit layer ordering so background, grid, shapes and
points appear in the correct order (Figure 4.2).

FIGURE 4.2: 2D Ul with additional background image for tracing pur-
poses.

19

Curve and shape rendering is performed in two similar flows: completed shapes
and the current, in-progress curve. Both flows evaluate interpolated points, includ-
ing Bézier tangents where applicable, and sample each segment into a fixed number
of line samples to produce curved and straight lines that are rendered with line prim-
itives. Tangent handles are drawn as connecting lines with small endpoint boxes and
shape points are drawn as small filled boxes. To ensure robust downstream process-
ing (triangulation and seam logic), shapes are finalised explicitly by the user (by
pressing Enter) and are by default closed with a straight segment between the final
and first point. If the user deliberately places the final point close to the start point
the closing segment becomes visually negligible, effectively approximating the com-
mon DCC pattern of placing the end point on/near the start point to close a loop.
Colours and thicknesses are specified centrally as constants so different elements
(grid, shape lines, tangent handles, points, sewing lines) are visually distinct.

Seam-related rendering is integrated with the sewing manager: per-shape sets of
sewn indices and previews are queried to determine which segments require high-
lighting. A BuildShortestArcSegments helper computes the minimal arc of segment
indices between two endpoints on a looped shape and is used to accumulate seg-
ment indices that belong to seams. Finalised seams are drawn as paired start-start
and end-end correspondence lines between pattern pieces to show the user the di-
rection of the seams. Seams are drawn thicker and with an alternate colour when
selected. The painter keeps each logical drawing step isolated and returns an up-
dated layer index after each stage, ensuring predictable compositing when the Slate
renderer blends the results into the Ul

Draw input is handled in FCanvasInputHandler, which converts the mouse click
from widget screen coordinates to pattern space and immediately records the cur-
rent canvas state on the undo stack. A new interpolation point is then appended
to the active curve and the per-point Bézier flag is stored. Tangents are updated
depending on the current Bézier mode: non-Bézier/linear points trigger a recalcu-
lation of N-tangents (for non-Bézier tangents), while Bézier mode calls an automatic
tangent setter. Finally, the routine initialises the first and last tangents: first point
receives a zero arrive tangent and a leave tangent of half the next segment, while the
last point receives a symmetric arrive tangent and a zero leave tangent, so endpoints
behave predictably for sampling and later triangulation.

4.6 Mesh Triangulation

APatternMesh and the FMeshTriangulation utility form the mesh-construction core
of the pipeline: APatternMesh is a lightweight actor wrapper that holds a run-
time mesh instance and the bookkeeping required for sewing and alignment, while
FMeshTriangulation performs the geometric processing that transforms 2D pattern
curves into triangulated, spawnable 3D mesh actors.

APatternMesh is an AActor containing a UProceduralMeshComponent and sev-
eral arrays used by downstream systems: a copy of the generated dynamic mesh, a
list of seam vertex IDs recorded at build time, sampled boundary points in 2D, the
corresponding dynamic-mesh vertex indices and cached world-space positions for
those sample vertices. The actor is spawned into the editor world when a mesh is
created. The stored dynamic-mesh copy and the PolyIndexToVID mapping allow
other subsystems (notably the sewing/ alignment code) to query vertex positions
and map 2D boundary samples back into the 3D mesh for alignment and constraint
construction.

20

The mesh construction subsystem in FMeshTriangulation uses a compact, dependency-

free triangulation strategy that leverages UE’s native constrained Delaunay triangu-
lator combined with a lightweight Steiner-point generator. Curve sampling pro-
duces a dense boundary polyline, a uniform grid of candidate interior points is laid
over the polygon bounding box, and an even-odd (ray-cast) point-in-polygon test
filters seeds to produce reliable interior points. Boundary edges are supplied as con-
strained edges to UE’s CDT, producing robust triangulations that capture concave
and convex features (Figure 4.3). The number of Steiner points is hardcoded, but
could be made adaptive to pattern size in future iterations.

FIGURE 4.3: Pattern drawing with resulting mesh triangulation.

FMeshTriangulation implements the conversion pipeline from 2D interpolated
curves to triangulated 3D geometry: it samples Bézier or linear curve segments,
optionally records seam vertex indices, augments the boundary with grid interior
seeds, and runs the constrained Delaunay triangulator. The triangulation is con-
verted into a FDynamicMesh3, vertex and index buffers are extracted for a proce-
dural mesh, and the geometry’s pivot is recentered. CreateProceduralMesh spawns
an APatternMesh actor and populates it with the final mesh data. Throughout the
pipeline, mappings between polygon sample indices and dynamic-mesh vertex IDs
are recorded and propagated into the spawned actor so that seam-building and run-
time alignment can reference exact vertex IDs.

4.7 Sewing

The sewing system is implemented as a cohesive unit around FPatternSewing, a set
of data structs and the main sewing class. Authoring-level types are FClickTarget
(a Shapelndex/PointIndex pair), FEdgelndices and FSeamDefinition (which record
the two edge intervals selected on pattern pieces), while FPatternSewingConstraint
encapsulates the data needed for 3D alignment, such as the two UProceduralMesh-
Component pointers, the mapped vertex indices and the sampled 2D screen points
along each seam. User clicks drive a four-stage state (ESeamClickState) that fills
AStartTarget, AEndTarget, BStartTarget and BEndTarget (Figure 4.4). When the se-
quence completes the code calls FinaliseSeamDefinitionByTargets, which samples a
fixed number of 2D points along each selected interval, emits a Ul-facing FSeamDefi-
nition and constructs a matching FPatternSewingConstraint. During that process the
implementation looks up the spawned pattern actors, consults each actor’s PolyIn-
dexToVID mapping to translate sampled polygon indices into dynamic-mesh vertex
IDs, and appends the new constraint to the AllDefinedSeams list.
Seam alignment from authored 2D seams into 3D is handled by Build And AlignSeam

and batched by BuildAndAlignAllSeams. BuildAndAlignSeam maps the stored
screen samples to the nearest boundary samples on each spawned actor, converts

21

(A) Seams placed correctly. (B) Seams places incorrectly.

FIGURE 4.4: Comparison of correct and incorrect seam placement.

those to vertex IDs, filters invalid indices and produces paired vertex lists. It then
computes world-space positions for the paired IDs and automatically detects order-
ing (reversing the B sequence when the reversed ordering produces a smaller aver-
age point-to-point distance). The paired vertex lists are cached on the correspond-
ing APatternMesh as LastSeamVertexIDs and actors handed to AlignSeamMeshes,
which computes an alignment that brings straight seam intervals into correspon-
dence. AlignSeamMeshes derives seam direction vectors from endpoint vertices,
constructs a rotation quaternion to rotate B’s seam direction onto A’s, rotates actor
B about its seam midpoint, then computes an average translation between paired
vertices and applies the offset to actor B so seam points meet in 3D. By design, only
B is moved, which avoids unintended misalignment cascades when sewing three or
more meshes into a single piece as long as the user maintains the sewing order. In
future work, the tool should track connected sewn sets and apply transforms cumu-
latively so that all previously sewn pieces follow automatically.

Input handling implements a four-click workflow: clicks are hit-tested against
the in-progress curve and completed shapes. If the user clicks a point on the in-
progress curve the handler prompts to finalise that curve before allowing seam au-
thoring, ensuring seams are only created on completed shapes. Each valid hit ad-
vances the seam state, stores the clicked shape-point-pair into the corresponding
FClickTarget, and updates preview sets so the painter highlights selected points
while the user is authoring. The handler enforces shape-consistency validations and
when the fourth click completes the sequence it invokes FinaliseSeamDefinitionBy-
Targets, triggers seam preparation and updates the canvas’ sewn-point caches for
rendering.

Higher-level coordination is provided by MergeSewnPatternPieces, which hands
sewn constraints to FPatternMerge to combine connected groups of actors into merged
meshes suitable for export and later simulation.

4.8 Cloth Simulation and Chaos Cloth Integration

4.8.1 Pattern Merge (preparing sewn groups for simulation)

The pattern merge system (FPatternMerge) collects the spawned pattern actors and
the recorded sewing constraints, then combines sewn groups of pattern pieces into
single meshes that can be converted into assets ready for cloth simulation. The
merge process is driven by FPatternSewingConstraint, a USTRUCT that stores the
two procedural mesh components pointers, the corresponding vertex indices and

22

sampled screen-space seam points. Using these constraints, an adjacency graph is
constructed that captures which spawned actors are sewn to which others. Con-
nected components of that graph identify independent sewn groups to be merged,
so that (as in physical sewing too) only the pieces that are sewn together will act as
one piece and not all generated pieces. Each connected component is merged only
if it is self-contained, and components that have external seam edges connecting to
actors outside the group are skipped. Vertices and triangles from the member AP-
atternMesh instances are copied into a single FDynamicMesh3 while transforming
each vertex into world space. The merge uses UE’s FMergeCoincidentMeshEdges
routine with hardcoded search and vertex weld thresholds to join the seam vertex
sets generated during triangulation.

FIGURE 4.5: Simulation of produced cloth mesh.

The merged FDynamicMesh3 is turned into an in-editor actor by translating the
mesh so its centroid becomes the actor origin, spawning a new APatternMesh, popu-
lating its procedural mesh section and storing the merged FDynamicMesh3 for later
reference. Actor lists and internal seam metadata are updated so that any internal,
now redundant, seam constraints are removed and the original per-piece actors are
destroyed. This replacement keeps the spawn list coherent for subsequent opera-
tions, such as further merges, scene cleanup and simulation preparation. Since cloth
simulation using Chaos Cloth requires skeletal assets, the merged mesh is converted
to an interim UDynamicMesh and passed to UE Geometry Script helpers to gener-
ate bone-weighting and a skeletal mesh asset. A simple rigid bone weighting, with
all vertices bound to a single bone, and a supplied skeleton asset, which is copied
into the content folder during plugin installation, are used as the basis. The result-
ing skeletal mesh can then be spawned into the level as a SkeletalMeshActor. These
steps produce a skeletal mesh saved in the plugin’s content folder and a scene actor
which can then be used with UE’s cloth tooling and regular Chaos Cloth workflow
(Figure 4.5).

23

4.8.2 Simulation Settings

To simplify the Chaos Cloth workflow, simulation settings are implemented in FCloth-
SimSettings, which exposes a small preset system (EClothPreset, FPresetltem) and
a mapped configuration type FClothPhysicalConfig that holds the numeric param-
eters used by the cloth solver (density, stiffness, tether stiffness and scale, drag, lift,
friction, damping and gravity scale). Preset data are instantiated at construction and
exposed to the 3D Ul as selectable options. Selecting a preset (Figure 4.6) drives Ap-
plyPresetToCloth, which iterates the clothing data assets attached to a target skeletal
mesh selected in the cloth object picker and writes the preset values into the asset-
level UChaosClothConfig fields. Unfortunately, UChaosClothSharedConfig appears
to be inaccessible from the C++ side so the user still has to manually set more general
cloth simulation settings such as iteration and substep count. After updating asset
data, the code invalidates cached clothing data, marks packages dirty and triggers
refresh calls so the changes take effect immediately in-editor. SetClothCollisionFlags
sets the common skeletal-mesh component flags needed for cloth collisions on the
mesh asset selected by the user in the cloth object picker on the UL

FIGURE 4.6: Example of the different simulation presets applied to an
imported mesh (left to right: denim, leather, silk, jersey).

4.9 Utilities

4.9.1 Save and Load in the 2D Editor

The editor-side shape storage is implemented with a small UDataAsset type, UClothSha-
peAsset, and a helper layer, FPatternAssets and FPatternAssetManager. UClothSha-
peAsset stores the drawing primitives as native UPROPERTY arrays: per-point data
(input key, 2D position, Bézier tangents and a per-point Bézier flag) for the current
in-progress curve, and an array of completed shapes with the same point records
on each shape. The save routine converts the runtime curve representation into the
asset USTRUCTS, either creating or reusing a dedicated plugin folder in the project’s
content drawer and saving to disk. The saved asset is a standard UE asset (uasset),
ensuring compatibility with normal editor workflows and content browser usage.
Loading reconstructs the canvas’ runtime geometry from the stored asset by re-
versing the conversion: each saved point entry is turned back into FInterpCurve-
Point<FVector2D> entries and Bézier-flag arrays, which are then assembled into an
FCanvasState struct used by the canvas widget. The loader resets interactive state

24

(selection indices, pan/zoom) to sensible defaults after restoring geometry. FPatter-
nAssetManager holds the currently selected UClothShapeAsset as a pointer, exposes
a path accessor for Ul linking and exposes OnShapeAssetSelected which invokes the
loader to produce an FCanvasState from the selected asset for immediate use in the
2D editor. The current asset format captures only shape geometry and per-point
tangent/flag data, while seam and sewing data are not recorded in the UClothSha-
peAsset and therefore must be redefined after meshes are regenerated. This is due
to the sewing selection and export operations being dependent on corresponding
generated mesh in the scene. This behaviour is reflected in the UI and documented
as a limitation.

4.9.2 Other Supporting Utilities

In addition to the core classes, a set of utility functions was developed under FCan-
vasUtils to provide common editing operations and geometric helpers. These func-
tions play an essential role in ensuring smooth interaction, maintaining geometric
correctness and extending the overall usability of the system.

For state management, the utilities include methods to save the current canvas
configuration and to perform both undo and redo operations. This mechanism al-
lows edits to be applied non-destructively and gives the user the ability to step back-
ward or forward through changes.

Editing interactions are also supported at a finer level through the input han-
dler. The HandleSelect method determines whether a user click corresponds to a
curve point, a tangent handle or a seam definition. By comparing the click position
to stored points and tangents and applying distance thresholds that are adjusted for
zoom level, the system can resolve the intended target. When a valid selection is
made, the utility immediately records the current canvas state for undo, updates
the selected indices and enables dragging for either the point or the tangent handle.
Since seam editing is done through selection of the line connecting the sewn points
on each shape, similar logic is applied to seam definitions, where the system calcu-
lates distances from the click location to each seam segment using helper functions
such as DistPointToSegmentSq, ensuring that seam selection behaves predictably
across zoom levels and transformations.

For handling curves, FCanvasUtils also provides functionality to recalculate tan-
gent vectors for linear points, which is used in both FCanvasInputHandler and
SClothDesignCanvas. This ensures that shapes remain drawn correctly when Bézier
interpolation is disabled, which is important for precise shape construction while
editing shapes. The utilities also include geometric operations that are useful in the
context of sewing and simulation. A centroid computation for meshes is provided,
which produces a centred pivot location that is assigned to meshes during triangu-
lation and merging operations.

Together, these supporting utilities form foundational functionality of the sys-
tem’s editing workflows. They enable robust geometric processing, ensure that
curve and mesh operations behave predictably, and provide a safety net for user
interaction through undo and redo functionality.

410 Overall User Workflow

Following the detailed explanation of classes, templates and custom extensions, it
is useful to consider the end result from the user’s perspective. After the plugin

25

loads, the user enters the custom editor mode to access the 3D-side controls: asset
pickers for cloth, collision and material, as well as preset selection and a button that
launches the separate 2D editor.

The 2D window is the authoring surface for pattern pattern pieces and seams
(Figure 4.7). There are three modes: draw, edit and sew and further UI controls in
a panel on the left. Drawing mode places points (with a toggle between Bézier (B
key) and non-Bézier/linear (N key) point types), edit mode exposes point and Bézier
point handle manipulation with the ability to separate the two Bézier handles of a
point (S key), while deletion (backspace or delete key) and an undo (Ctrl + Z) and
redo (Ctrl + Y) is implemented via the widely used keyboard shortcuts. Sewing
mode lets the user define seam correspondences by clicking start and end points on
two pattern pieces. The Ul offers seam removal by clicking on the lines connecting
the seam points while in edit mode and deleting them. It also offers clearing of all
sewing or all shapes through buttons in the left column and optionally saving and
loading of drawn shape data. Optionally, before starting to draw, background tex-
tures, previously imported into the content browser, can be loaded to trace existing
2D patterns.

ow Teols Help

ClothDesign 2D Editor %

FIGURE 4.7: 2D Ul overview with drawn shape.

Once drawn shapes are finalised, the canvas can triangulate and build 3D meshes
(using the “Generate Meshes” button) which the user then positions in the 3D view-
port to match collision geometry. Then the user can select which edges on the drawn
shapes to sew and finalise the sewing by clicking “Sewing”, before exporting the pat-
tern pieces into a merged mesh ready for simulation (“Merge Meshes” button). The
sewing and merging is currently still separated for more user control of the place-
ment of sewn pieces in the 3D scene before merging into a single, simulatable mesh.

While several workflow steps are automated by the tool, once a skeletal mesh
has been produced, a few manual steps remain before the mesh can be simulated:
on the generated, merged skeletal mesh saved in the content browser, clothing data
must be created and applied, cloth-painting mode used to paint the whole object
and painting mode disabled again. Optional simulation improvements, for example
raising per-cloth iteration or subdivision counts to prevent collision penetration, can
also be applied via the clothing settings. These manual steps are standard for UE
cloth workflows and require only a short amount of time.

26

Once this has been set up the skeletal mesh, earlier placed in the scene during the
merging of pattern pieces, can then be selected in the cloth object picker on the 3D
UI for further processing and automated set up of simulation settings, and the mesh
is ready to be simulated. Additionally, the user can select a material for the mesh se-
lected in the cloth object picker and apply a preset of cloth simulation settings which
are intended to reflect different materials (denim, leather, silk, jersey or custom).
The cloth and material asset pickers and preset system on the 3D UI also work with
externally imported cloth meshes (e.g. from Marvelous Designer), allowing rapid
assignment of materials, simulation settings and cloth presets to streamline setup
for any cloth asset in UE.

27

5 Evaluation

5.1 Technical Challenges and Mitigation

5.1.1 Triangulation

Initial triangulation issues were traced to a lack of interior (Steiner) points rather
than a failure of the triangulation engine itself. Investigation showed that UE’s
constrained Delaunay implementation does not automatically seed interior points,
which led to excessively elongated or “pointy” triangles when only boundary ver-
tices were supplied (Figure 5.1). External libraries (for example CGAL or Trian-
gle) were considered, but integrating such dependencies would have introduced
significant bridging code and maintenance overhead. The chosen remedy was a
lightweight, deterministic approach: a bounding-box grid of candidate interior seeds
combined with an even-odd point-in-polygon filter, then passed as input to UE’s
native CDT. This produced predictable mesh density and quality while preserving a
dependency-free implementation.

FIGURE 5.1: Simple triangulation without interior points resulting in
elongated triangles.

5.1.2 Sewing and Seam Simulation

Implementing seam behaviour to match the level of integrated physical sewing found
in specialised DCC tools proved infeasible within the project scope because the low-
level internals, that are required for direct Chaos Cloth manipulation, are not readily
exposed. Rather than attempting an invasive integration with hidden engine sys-
tems, a pragmatic approximation was developed that supports accurate authoring

28

and deterministic alignment without relying on internal simulation hooks. The im-
plemented workflow records seam endpoint pairs, supports undo/redo and dele-
tion, and aligns corresponding straight-edge intervals in 3D. This approach yields
a compact four-click user flow (start/end on piece A, start/end on piece B) that is
robust and easy to use, even though it does not simulate seam physics interactively.

A current limitation of the system is that the handling of sewing connections and
sewing alignments in the 3D scene is not fully separated from mesh generation. At
present, sewing operations can only be performed after the 3D meshes have been
created, which requires the user to explicitly generate the mesh before initiating any
sewing. This dependency is enforced by warnings in the interface. Furthermore,
because sewing depends on the existence of fully generated shapes, sewing infor-
mation is not yet stored in the save and load functionality of 2D patterns, which
introduces a workflow inefficiency. A future iteration of the system will decouple
sewing from mesh generation, allowing for more flexible editing and persistence of
sewing data alongside the 2D pattern.

5.1.3 Collision and Engine Accessibility

Early experimentation with cloth collision against animated skeletal geometry re-
vealed unreliable behaviour. Robust collision with animated skeletons could not be
achieved within the available time frame. Static geometry produced more consis-
tent results, while native, simple primitives (boxes, spheres) proved to be the most
reliable collision targets in practice.

In addition, several editor operations that are trivial from the UI (for example
exporting static/skeletal meshes or manipulating clothing-data properties in the
Skeletal Mesh editor) presented limited or undocumented access via C++. Locating
programmatic equivalents required substantial investigation and some operations
remained infeasible to automate. This engine module inaccessibility also leads to a
significant usability limitation, as the current workflow requires the user to regen-
erate the 3D meshes and reapply sewing after editing a 2D shape. This prevents
a continuous editing experience in line with HCI principles where pattern pieces
and sewing connections update dynamically as the shape is modified. Achieving
such a workflow would require establishing a direct link to the runtime simulation
mesh data, such as the vertex positions generated by the Chaos Cloth system, al-
lowing sewing to adapt physically in real time, which represents an area for future
improvement.

5.1.4 Scope and Prioritisation

Faced with the above integration constraints and a fixed project timeline, emphasis
was placed on delivering a complete, usable pipeline, from pattern drawing through
triangulation, seam authoring and export, rather than attempting to fully repro-
duce the advanced simulation features of dedicated garment tools. The resulting
implementation therefore favours a dependable, end-to-end authoring experience
and clear, undoable user operations over deeper but riskier integrations with hid-
den engine internals. This prioritisation enabled delivery of the core functionality
while leaving higher-fidelity seam simulation and advanced collision workflows as
logical targets for future work.

29

5.2 Results

5.2.1 Performance and Quality

The plugin demonstrates responsive runtime behaviour: Ul actions, such as opening
the 2D editor, drawing shapes, generating meshes and invoking sewing operations,
execute quickly on typical development hardware. Installation is straightforward,
copying the plugin folders into an existing project yields immediate availability, and
was tested on other Linux machines with UE 5.5 installed.

The plugin underwent testing by peers, whose feedback emphasised the clarity
of the UI, particularly features such as 2D seam definition highlighting. The test-
ing confirmed previously identified limitations and provided suggestions for future
enhancements to improve usability.

Functionally, the implemented features are stable and perform as intended for
the majority of workflows tested. Remaining issues are primarily feature gaps rather
than reliability problems, except for some smaller issues. The implementation de-
liberately prioritised the correctness of output and user-facing functionality over
deeper code-level architecture early in development. Later code refactoring im-
proved readability and structure, but opportunities remain to streamline data flow
and tighten separation of responsibilities, such as a clearer API boundary between
UI and processing layers, and further refactoring to reduce coupling between can-
vas state and sewing/mesh subsystems, as well as more modular performance for
different sized pattern sets.

5.2.2 Comparison to Unreal Engine’s Cloth Setup

The plugin extends Unreal Engine’s native capabilities by providing an integrated
pattern-authoring and sewing pipeline that does not exist in the engine by default.
Whereas UE typically relies on externally authored garments, commonly produced
in DCC tools like Marvelous Designer, and requires manual steps in the Skeletal
Mesh editor to prepare cloth for simulation, this implementation enables drawing
multiple 2D pattern pieces, saving/loading pattern data, defining seam correspon-
dences and exporting merged skeletal meshes directly within the editor. These fea-
tures reduce the need to perform early-stage pattern work in an external DCC tool
and streamline several preparatory steps for cloth simulation.

At the same time, the plugin is intentionally a simplified, scoped solution rather
than a replacement for a full-featured DCC system. Seam alignment is performed as
a geometric operation and preview fidelity during layout is therefore limited. Like-
wise, the plugin does not fully obviate the standard UE steps that remain necessary
for production-quality simulation, as creating and assigning clothing data are still
required after export. The project demonstrates that a compact, end-to-end draw-to-
sew-to-simulate pipeline can be realised inside UE to accelerate pattern authoring
and initial setup, while recognising that it is not a substitute for specialised garment
tools.

5.2.3 UI and HCI

A few minor issues remain in the current Ul implementation. Occasionally, the tan-
gents of in-progress Bézier points reset when a shape is edited and then extended,
which interrupts the expected continuity of the curve. Furthermore, because there
is no persistent flag marking Bézier tangents as separated, the user must manually

30

press the separation shortcut again when returning to edit the point later. Addition-
ally, if a shape begins with Bézier points, contains intermediate non-Bézier points,
and then closes on a Bézier point, all intermediate non-Bézier points are displayed as
if they were Béziers but without active tangent handles. If closing on a linear point,
this issue does not appear. Practical feature extensions also include mesh transfor-
mation tools (move, copy, scale of 2D pattern pieces) and improved export options
for downstream workflows.

X

are defined! Use o define them g them to the

FIGURE 5.2: User warning when trying to sew without having first
defined any seams.

To reduce authoring errors, the editor incorporates redundant feedback and error-
prevention mechanisms around sewing. Sewing points cannot be placed in the
2D editor before meshes are generated, preventing invalid states by design. When
switching into edit mode, a transient reminder appears in the corner of the interface
to prompt the user to regenerate meshes if the shape has been modified. Entering
sewing mode triggers a similar reminder, both serving as lightweight, non-intrusive
nudges that fade after five seconds. These are complemented by a more explicit
warning dialog if the user still attempts to sew without valid meshes, ensuring that
errors are caught before they propagate (Figure 5.2). As a potential future improve-
ment, this guarding could be extended by saving a canvas state at mesh generation
time and restricting sewing to unmodified meshes, thereby enforcing stricter consis-
tency while further reducing opportunities for user error.

The UI design follows a workflow-driven approach. Controls are grouped and
ordered to reflect the most common sequence of user tasks: initial asset selection and
configuration, pattern authoring, mesh generation, sewing operations, then save/load.
Non-essential controls are stored in collapsible sections to reduce visual clutter, while
frequently used mode controls (Draw, Edit, Sew) are emphasised and placed in a
prominent overlay to ensure discoverability and efficient switching.

The interface was designed to be familiar to artists working in DCC tools: com-
mon interactions and shortcuts were implemented to match typical workflows, like
mode hotkeys, keyboard focus on drawn shapes and middle-mouse dragging to
pan the 2D canvas. The 3D toolkit acts as a compact control panel and the 2D canvas
provides an authoring surface with drawing, edit and sewing modes. Controls are
data-bound so the panel forwards intent while the canvas remains authoritative for
geometry and state.

31

6 Conclusion

6.1 Conclusion

6.1.1 Summary

The project delivered a working, end-to-end prototype for cloth pattern authoring
inside Unreal Engine 5, implementing a pipeline from drawing over mesh triangula-
tion and sewing to export using a UE editor mode and a dedicated 2D canvas (Figure
6.1). The toolkit exposes asset pickers, presets and scene controls, while the canvas
supports Bézier and linear drawing, editing, seam authoring, undo/redo and mesh
generation. A grid-seeded constrained-Delaunay approach was used for triangula-
tion to produce reliable mesh quality and seams are recorded, meshes aligned and
merged to produce skeletal meshes ready for UE’s cloth workflow. The implementa-
tion emphasises a dependable authoring experience and clear user operations lever-
aging UE’s native geometry tools and modules, producing a simple, usable toolchain
that introduces many preparatory steps for cloth simulation into Unreal Engine and
enabling user iteration, while remaining compatible with UE’s established simula-
tion pipeline.

FIGURE 6.1: Full overview of drawn, triangulated, sewn and then
simulated mesh in UE.

6.1.2 Future Work and Extensibility

Several clear extensions remain to raise fidelity, robustness and automation. Imme-
diate priorities include codebase refactoring to improve modularity and data flow,
serialisation of sewing state, and additional mesh-manipulation tools. Mid-term ob-
jectives are to introduce seam-level physical behaviour (interactive seam simulation

32

or tighter integration with a cloth solver), more robust collision handling for com-
plex static geometry and animated skeletal meshes, and further automation of cloth-
ing data setup to reduce manual editor tasks. Longer-term possibilities include sup-
port for non-uniform seam matching (unequal-edge stitching and ruffling), richer
textile behaviour and multi-layered garments as well as additional garment features
(top-stitching, trim, fastenings). Additionally, the UI should be extended to man-
age multiple garments concurrently, allowing multiple pattern sets to be authored,
arranged and simulated together. Architecturally, the implementation is positioned
as a foundation: the current codebase can be extended according to future project
priorities, enabling a path from a pragmatic in-editor authoring prototype toward a
more feature-complete production tool.

Overall, the project demonstrates that a compact, maintainable pattern-authoring
and sewing pipeline can be realised inside Unreal Engine and provides a practi-
cal base for further development toward higher-fidelity simulation and production
workflows.

33

Bibliography

[1] Baraff, D. and Witkin, A. “Large Steps in Cloth Simulation”. In: COMPUTER
GRAPHICS Proceedings, Annual Conference Series (1998). URL: https : //www .
cs.cmu.edu/"baraff/papers/sig98.pdf.

[2] Bender, J. and Deul, C. “Efficient cloth simulation using an adaptive finite el-
ement method”. In: Workshop on Virtual Reality Interaction and Physical Simu-
lation, VRIPHYS (2012). URL: https://diglib.eg.org/server/api/core/
bitstreams/a2a49c8b-e219-4daa-856a-ealbad48ef12/content.

[3] Chan, M. “Mental Models”. In: NN Group (2024). URL: https://www.nngroup.

com/articles/mental-models.

[4] Chen, G. et al. “Learning Simulatable Models of Cloth with Spatially-varying
Constitutive Properties”. In: arXiv (2025). URL: https: //arxiv. org/html/
2507 .21288v2.

[5] Choi, K.-H. “3D dynamic fashion design development using digital technol-
ogy and its potential in online platforms”. In: International Journal of Interdisci-
plinary Research: Fashion and Textiles (2022). URL: https://fashionandtextiles.
springeropen.com/articles/10.1186/s40691-021-00286-1.

[6] Conferences, S. “The Magic Behind Marvelous Designer: An Interview With
Jaden Oh”. In: ACMSIGGRAPH Blog (2024). URL: https://blog. siggraph.
org/2024/03/the -magic - behind - marvelous - designer - an- interview-
with-jaden-oh.html.

[7] Dearden, A. and Finlay,]. “Pattern Languages in HCI: A Critical Review”. In:
HUMAN-COMPUTER INTERACTION, 2006, Volume 21, (2006). URL: https :
//research.cs.vt.edu/ns/csb724papers/dearden-patterns-hci09.pdf.

[8] Habib, M. A. and Alam, M. S. “A Comparative Study of 3D Virtual Pattern
and Traditional Pattern Making”. In: Journal of Textile Science and Technology
(2024). URL: https://www .researchgate .net/publication/377047849 _A_
Comparative_Study_of _3D_Virtual _Pattern_and_Traditional _Pattern_
Making.

[9] Kim, T, Ma, J., and Hong, M. “Real-Time Cloth Simulation in Extended Real-
ity: Comparative Study Between Unity Cloth Model and Position-Based Dy-
namics Model with GPU”. In: MDPI, Journal of Applied Sciences (2025). URL:
https://www.mdpi.com/2076-3417/15/12/6611.

[10] Liu, K. et al. “3D interactive garment pattern-making technology”. In: Com-
puter Aided Design, Volume 104 (2018). URL: https : //www . sciencedirect .
com/science/article/pii/S0010448518304093.

[11] UE Documentation Machine Learning. Accessed August 2025. 2025. URL: https:
//dev . epicgames . com/documentation/en-us/unreal - engine/machine -
learning-cloth-simulation-overview.

[12] Marvelous Designer Documentation. Marvelous Designer 2024.2. 2024. URL:
https://www.marvelousdesigner.com/learn/newfeature?v=2024.2.

https://www.cs.cmu.edu/~baraff/papers/sig98.pdf
https://www.cs.cmu.edu/~baraff/papers/sig98.pdf
https://diglib.eg.org/server/api/core/bitstreams/a2a49c8b-e219-4daa-856a-ea0bad48ef12/content
https://diglib.eg.org/server/api/core/bitstreams/a2a49c8b-e219-4daa-856a-ea0bad48ef12/content
https://www.nngroup.com/articles/mental-models
https://www.nngroup.com/articles/mental-models
https://arxiv.org/html/2507.21288v2
https://arxiv.org/html/2507.21288v2
https://fashionandtextiles.springeropen.com/articles/10.1186/s40691-021-00286-1
https://fashionandtextiles.springeropen.com/articles/10.1186/s40691-021-00286-1
https://blog.siggraph.org/2024/03/the-magic-behind-marvelous-designer-an-interview-with-jaden-oh.html
https://blog.siggraph.org/2024/03/the-magic-behind-marvelous-designer-an-interview-with-jaden-oh.html
https://blog.siggraph.org/2024/03/the-magic-behind-marvelous-designer-an-interview-with-jaden-oh.html
https://research.cs.vt.edu/ns/cs5724papers/dearden-patterns-hci09.pdf
https://research.cs.vt.edu/ns/cs5724papers/dearden-patterns-hci09.pdf
https://www.researchgate.net/publication/377047849_A_Comparative_Study_of_3D_Virtual_Pattern_and_Traditional_Pattern_Making
https://www.researchgate.net/publication/377047849_A_Comparative_Study_of_3D_Virtual_Pattern_and_Traditional_Pattern_Making
https://www.researchgate.net/publication/377047849_A_Comparative_Study_of_3D_Virtual_Pattern_and_Traditional_Pattern_Making
https://www.mdpi.com/2076-3417/15/12/6611
https://www.sciencedirect.com/science/article/pii/S0010448518304093
https://www.sciencedirect.com/science/article/pii/S0010448518304093
https://dev.epicgames.com/documentation/en-us/unreal-engine/machine-learning-cloth-simulation-overview
https://dev.epicgames.com/documentation/en-us/unreal-engine/machine-learning-cloth-simulation-overview
https://dev.epicgames.com/documentation/en-us/unreal-engine/machine-learning-cloth-simulation-overview
https://www.marvelousdesigner.com/learn/newfeature?v=2024.2

Bibliography 34

[13] Marvelous Designer Sofware. Accessed June 2025. 2025. URL: https: //www .
marvelousdesigner.com/.

[14] Marvelous Designer Sofware Advice. Accessed July 2025. 2025. URL: https://
support .marvelousdesigner.com/hc/en-us/articles/47358145573401 - -
Tips-Tricks-Discover-Better-Workflow-with-Marvelous-Designer-and-
Unreal-Engine.

[15] Miiller, M. et al. “Position Based Dynamics”. In: 3rd Workshop in Virtual Reality
Interactions and Physical Simulation, VRIPHY'S (2006). URL: matthias-research.
github.io.

[16] Murano, P. and Sethi, T. “Anthropomorphic User Interface Feedback in a Sewing
Context and Affordances”. In: International Journal of Advanced Computer Sci-
ence and Applications (2011). URL: https://arxiv.org/abs/1208.3323.

[17] Pabst, S. et al. “Seams and Bending in Cloth Simulation”. In: Workshop in Vir-
tual Reality Interactions and Physical Simulation, VRIPHYS (2008). URL: https :
//diglib.eg.org/server/api/core/bitstreams/c247cf86 - 304e-4d75-
8805-72d40765e761/content.

[18] Provot, X. “Deformation Constraints in a Mass-Spring Model to Describe Rigid
Cloth”. In: Institut National de Recherche en Informatique et Automatique (INRIA)
(2001). URL: cs.rpi.edu.

[19] Rutherford, A. “Here’s How To Fix Cloth Physics For Cinematics With Unreal
Engine 5”. In: 80 Level (2024). URL: https://80.1v/articles/here-s-how-
to-fix-cloth-physics-for-cinematics-with-unreal-engine-5.

[20] Sung, N.-J. et al. “Real-Time Cloth Simulation Using WebGPU: Evaluating
Limits of High-Resolution”. In: arXiv (2025). URL: https://arxiv.org/abs/
2507.11794.

[21] Unreal Engine Software. Accessed June 2025.2025. URL: https://www.unrealengine.
com/en-US/unreal-engine-5.

[22] UE Documentation Coding Standard. Coding Standard. 2025. URL: https://
dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-
coding-standard-for-unreal-engine.

[23] Unreal Engine Community Forum. Accessed July 2025. 2020. URL: https://
forums . unrealengine . com/t /marvelous - designer - material - appears -
differently-in-unreal-engine-usd-import-chaos-cloth-asset/2223232.

[24] Unreal Engine Community Forum. Accessed July 2025. 2020. URL: https://
forums . unrealengine . com/t /editor - and - runtime - versions - of - the -
same-plugin-library/140849/10.

[25] UE Documentation Geometry Scripting. Geometry Scripting User Guide. 2025.
URL: https://dev.epicgames.com/documentation/en-us/unreal-engine/
geometry-scripting-users-guide-in-unreal-engine.

[26] UE Documentation Chaos Cloth Overview. Chaos Cloth Tool Ouverview. 2025.
URL: https://dev.epicgames.com/documentation/en-us/unreal-engine/
clothing-tool-in-unreal-engine.

[27] UE Documentation Physics Manual. Physics in Unreal Engine. Accessed June
2025. 2025. URL: https : //dev . epicgames . com/ documentation/en - us/
unreal-engine/physics-in-unreal-engine.

https://www.marvelousdesigner.com/
https://www.marvelousdesigner.com/
https://support.marvelousdesigner.com/hc/en-us/articles/47358145573401--Tips-Tricks-Discover-Better-Workflow-with-Marvelous-Designer-and-Unreal-Engine
https://support.marvelousdesigner.com/hc/en-us/articles/47358145573401--Tips-Tricks-Discover-Better-Workflow-with-Marvelous-Designer-and-Unreal-Engine
https://support.marvelousdesigner.com/hc/en-us/articles/47358145573401--Tips-Tricks-Discover-Better-Workflow-with-Marvelous-Designer-and-Unreal-Engine
https://support.marvelousdesigner.com/hc/en-us/articles/47358145573401--Tips-Tricks-Discover-Better-Workflow-with-Marvelous-Designer-and-Unreal-Engine
matthias-research.github.io
matthias-research.github.io
https://arxiv.org/abs/1208.3323
https://diglib.eg.org/server/api/core/bitstreams/c247cf86-304e-4d75-8805-72d40765e761/content
https://diglib.eg.org/server/api/core/bitstreams/c247cf86-304e-4d75-8805-72d40765e761/content
https://diglib.eg.org/server/api/core/bitstreams/c247cf86-304e-4d75-8805-72d40765e761/content
cs.rpi.edu
https://80.lv/articles/here-s-how-to-fix-cloth-physics-for-cinematics-with-unreal-engine-5
https://80.lv/articles/here-s-how-to-fix-cloth-physics-for-cinematics-with-unreal-engine-5
https://arxiv.org/abs/2507.11794
https://arxiv.org/abs/2507.11794
https://www.unrealengine.com/en-US/unreal-engine-5
https://www.unrealengine.com/en-US/unreal-engine-5
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/epic-cplusplus-coding-standard-for-unreal-engine
https://forums.unrealengine.com/t/marvelous-designer-material-appears-differently-in-unreal-engine-usd-import-chaos-cloth-asset/2223232
https://forums.unrealengine.com/t/marvelous-designer-material-appears-differently-in-unreal-engine-usd-import-chaos-cloth-asset/2223232
https://forums.unrealengine.com/t/marvelous-designer-material-appears-differently-in-unreal-engine-usd-import-chaos-cloth-asset/2223232
https://forums.unrealengine.com/t/editor-and-runtime-versions-of-the-same-plugin-library/140849/10
https://forums.unrealengine.com/t/editor-and-runtime-versions-of-the-same-plugin-library/140849/10
https://forums.unrealengine.com/t/editor-and-runtime-versions-of-the-same-plugin-library/140849/10
https://dev.epicgames.com/documentation/en-us/unreal-engine/geometry-scripting-users-guide-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/geometry-scripting-users-guide-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/clothing-tool-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/clothing-tool-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/physics-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/physics-in-unreal-engine

Bibliography 35

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

UE Documentation Modules. Unreal Engine Modules Overview. 2025. URL: https:
//dev . epicgames . com/documentation/en-us/unreal - engine /unreal -
engine-modules.

UE Documentation Objects. Objects. 2025. URL: https://dev.epicgames.com/
documentation/en-us/unreal-engine/objects-in-unreal-engine.

UE Documentation Properties. Properties. 2025. URL: https://dev.epicgames.
com/documentation/en-us/unreal-engine/unreal-engine-uproperties

UE Documentation Referencing Assets. Referencing Assets. 2025. URL: https :
//dev.epicgames.com/documentation/en-us/unreal-engine/referencing-
assets-in-unreal-engine

UE Documentation Slate. Slate Overview. 2025. URL: https://dev.epicgames.
com/documentation/en-us/unreal -engine/slate-overview-for-unreal-
engine.

Wong, E. “User Interface Design Guidelines: 10 Rules of Thumb”. In: Interac-

tion Design Foundation (2025). URL: https://www.interaction-design.org/
literature/article/user-interface-design-guidelines-10-rules-of-

thumb?srs1tid=AfmB0007555Z20YqJ92KX1T6zAUWqab0Q9rLc32enAHO8VaPO0fTidofvX&.

Zhang, D. et al. “Physics-inspired Estimation of Optimal Cloth Mesh Resolu-
tion”. In: Siggraph Conference Papers 25 (2025). URL: https://dl.acm.org/doi/
10.1145/3721238.3730619.

Zhao, Z. “ A Physics-embedded Deep Learning Framework for Cloth Simula-
tion”. In: arXiv (2024). URL: https://arxiv.org/pdf/2403.12820

https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-modules
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-modules
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-modules
https://dev.epicgames.com/documentation/en-us/unreal-engine/objects-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/objects-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-uproperties
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-uproperties
https://dev.epicgames.com/documentation/en-us/unreal-engine/referencing-assets-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/referencing-assets-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/referencing-assets-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/slate-overview-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/slate-overview-for-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/slate-overview-for-unreal-engine
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb?srsltid=AfmBOoo7555Z0YqJ92KXlT6zAUWqabOQ9rLc32enAHO8VaPOfTidofvX&
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb?srsltid=AfmBOoo7555Z0YqJ92KXlT6zAUWqabOQ9rLc32enAHO8VaPOfTidofvX&
https://www.interaction-design.org/literature/article/user-interface-design-guidelines-10-rules-of-thumb?srsltid=AfmBOoo7555Z0YqJ92KXlT6zAUWqabOQ9rLc32enAHO8VaPOfTidofvX&
https://dl.acm.org/doi/10.1145/3721238.3730619
https://dl.acm.org/doi/10.1145/3721238.3730619
https://arxiv.org/pdf/2403.12820

	Abstract
	Introduction
	Literature Review
	Cloth and Seam Simulation
	Recent Advances in Physics Modelling
	Survey of Existing Tools
	Marvelous Designer
	Unreal Engine

	Identified Gaps in Existing Tools

	Technical Background
	Human-Computer Interaction (HCI) in Digital Pattern‐Authoring Tools
	Unreal Engine’s C++ Framework for Plugin Development
	Data Structures

	Solution
	Project Scope and Initial Goals
	Plugin Structure
	User Interface
	Canvas Widget
	2D Pattern Drawing
	Mesh Triangulation
	Sewing
	Cloth Simulation and Chaos Cloth Integration
	Pattern Merge (preparing sewn groups for simulation)
	Simulation Settings

	Utilities
	Save and Load in the 2D Editor
	Other Supporting Utilities

	Overall User Workflow

	Evaluation
	Technical Challenges and Mitigation
	Triangulation
	Sewing and Seam Simulation
	Collision and Engine Accessibility
	Scope and Prioritisation

	Results
	Performance and Quality
	Comparison to Unreal Engine's Cloth Setup
	UI and HCI

	Conclusion
	Conclusion
	Summary
	Future Work and Extensibility

	Bibliography

