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Abstract

Retargeting is a highly relevant topic in the field of computer graphics cur-
rently, as it enables the transfer of animation data across different models,
significantly accelerating the animation process and providing a reusable boil-
erplate for animation production. This project presents the implementation of
a pipeline that connects the output of a machine learning model developed
by PixelMux, which generates speech-driven videos from a portrait and an
audio file, with Autodesk Maya. This is achieved through the development of
a retargeting pipeline that integrates the generated data into Maya’s environ-
ment via a custom plugin.
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Chapter 1
Introduction

Facial motion retargeting is the process of transferring motion from a source to
a target face mesh. The source motion can originate from an already animated
3D face, a marker-based or markerless system, or from speech-driven models
and other generative sources. On the target side, facial models can range from
hyper-realistic humans to highly stylized fantasy characters.

One of the main reasons motion capture (MOCAP) techniques remain
widely used in retargeting pipelines is their high accuracy in capturing facial
motion. However, there is a growing trend toward the use of machine learning-
based systems, which have been steadily improving in accuracy thanks to
recent advancements in Artificial Intelligence (AI) and more robust landmarks
system detection.

1.1 Problem Statement

Facial animation in 3D environments is typically achieved through two pri-
mary methods: keyframe animation and performance-driven animation [1].
In traditional keyframe-based workflows, animators manually craft and refine
facial poses frame by frame. This process is highly time-consuming, often
requiring between 12 to 16 working days for a single animator to produce just
60 seconds of animation [2].

In contrast, performance-driven animation captures facial expressions and
body movements using camera-based systems, which are then mapped onto
digital characters. A prominent example of this approach is motion capture
(MOCAP) technology. Historically, high-quality MOCAP systems were prohib-
itively expensive and required extensive calibration and specialized technical
expertise. However, recent developments have introduced mobile-based MO-



CAP solutions, which offer a more accessible and cost-effective alternative
—albeit with certain limitations in precision and flexibility.

Implementing performance-driven animation typically requires a retarget-
ing pipeline, in which captured motion data is adapted to fit the digital
character’s rig. In both academic and industry contexts, these pipelines pre-
dominantly rely on motion capture (MOCAP) as the primary data source.
However, this research introduces an alternative approach: a speech-driven
retargeting pipeline. This decision is not a reflection of limitations in MOCAP
technology, which remains highly effective; rather, it is a strategic extension of
a personal project called PixelMux, a system designed to animate Al-generated
videos using speech input. The objective is to establish a direct connection
between the PixelMux machine learning model and the animation generation
process, enabling a novel and scalable method for producing facial animation
from audio.

1.2 Objectives and Contributions

This thesis focuses on enhancing the integration of the PixelMux machine
learning model into professional 3D animation workflows. The key contribu-
tions are:

* Maya Plugin Development: A custom plugin was created to import
and manipulate PixelMux-generated facial animation directly within
Autodesk Maya.

* Improved Facial Landmark Detection: PixelMux initially relied on a
sparse set of 68 facial landmarks for video generation. This work intro-
duces a denser detection system comprising 478 landmarks, enabling
more detailed and expressive facial mapping. For implementation, a
manually selected subset of 51 landmarks was adopted to ensure com-
patibility with the retargeting pipeline developed in this project.

* Speech-Driven Retargeting Pipeline: A new pipeline was developed to
transfer facial motion from PixelMux to 3D characters. By tracking the
movement of 51 facial landmarks over time, the system activates facial
action units, which drive muscle-based deformations and enable anima-
tion directly from speech input. The pipeline design is inspired by the
paper A Facial Motion Retargeting Pipeline for Appearance-Agnostic
3D Characters.
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Chapter 2
Related Work

Zhu and Joslin (2024) propose two approaches to formulate the 3D facial mo-
tion retargeting problem: cross-mapping, when the source and target models
differ anatomically, and parallel mapping, when the data is generated using
an identical reference model. Additionally, they present a comprehensive
taxonomy that divides the facial retargeting pipeline into two fundamental
components: Facial Motion Interpretation and 3D Face Parameterization. The
following chapter will examine in detail the various techniques used within
these two components, as well as provide a deeper exploration of the concepts
of cross-mapping and parallel mapping.

Different Formulations of 3D

Facial Motion Retargeting Grnss-mapping) Garallel ParameterizatiorD
Problem

I
Gacial Motion Retargeting for 3D Characte19

Essential Modules of 3D Facial
Motion Retargeting & Relevant [ l

Methods Reviewed

(Target) 3D Face Parameterization (Source) Facial Motion Interpretation
[ f 1 f ]

Morphing-based Statistics-based Anatomy-based Perceptual Level Anatomy Level

( 1 1
Blendshape 3D Morphable Physics-based Deformation-based MPEG-4 Facial Visemes Expressions Facial Action
Models Models Models Models Animation Parameters ' ! Coding System

(MPEG-4 FAP) ‘ ‘ (FACS)
4 ' '
I=SESSEE Included - - -

————————————— Included - - === - - -

Figure 2.1: Core Modules of Facial Retargeting Frameworks According to Zhu
& Joslin.
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2.1 3D Face Parametrization

During data transfer, it is essential to explicitly define both; the source and
target models; to ensure accurate mapping between the source space and the
3D model space. This parametrization not only clarifies how and where the
data should be aligned; but also guarantees that the process remains repro-
ducible and transferable across different models.

The parametrization of a 3D mesh typically involves specifying the number
of vertices, defining the mesh topology, and identifying key feature points or
regions, such as areas corresponding to facial muscle geometry, which are
essential for accurate deformation and animation.

2.1.1 Morphing-based Parametrization (Blendshape models)

The Blendshape model is one of the most intuitive 3D face parametrizations
and has been widely used in industrial practices [2]. They are built by
morphing a neutral 3D face into multiple predefined expressions or poses,
all of which share the same mesh topology. Each blendshape acts as a basis
vector representing a specific facial action, and the final expression is typically
obtained through linear interpolation.

Figure 2.2: Vertex-to-Vertex Correspondence between the Original Face shape
and A Blendshape.

Creating blendshapes typically involves extensive manual labour and must
be customised for each individual 3D model. This makes the process difficult
to replicate using conventional methods. However, several techniques have
been proposed to automate and optimise blendshape generation. For instance,
Zhang et al. [3] explored the use of video sequences to generate editable
and controllable face models for 3D facial animation. In 2013, Cao et al. [4]
employed an RGB-D camera to capture facial expressions from 150 subjects,
creating a comprehensive database from which subject-specific blendshapes
were generated by morphing a generic face model to match individual facial
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geometry and expression depth. More recently, in 2020, Li et al. [5] introduced
a self-supervised model capable of predicting personalised blendshapes from
a single neutral face scan, significantly reducing the need for manual inter-
vention.

2.1.2 Statistic-based parametrization - 3D Morphable Models

3D Morphable Models (3DMM) capture the statistical variation of human
facial geometry using existing 3D face datasets. Their versatility extends to
improving face recognition accuracy, reenacting facial expressions in images
and videos, and enabling realistic motion retargeting between 3D faces. Unlike
blendshape models—whose blend units often exhibit statistical dependencies
—the basis vectors in a 3DMM are orthogonal, ensuring that generated face
shapes and expressions remain within anatomically plausible ranges [1].

Despite their strengths, 3DMM have notable limitations. The extracted
variations are often not perceptually intuitive, and the resulting parameterized
faces can lack expressiveness. Additionally, 3DMMs rely heavily on well-
constrained and regularised training datasets, which are limited in number
and typically contain data only from human 3D face models, restricting their
generalisability to other character types or stylized designs.

2.1.3 Anatomy-Based Models

Anatomy-based face parameterization replicates some or all of the anatomical
components of the human face, such as bones, muscles, and soft tissue.
These components are then driven by physics simulations or geometric defor-
mations, allowing facial expressions to be generated automatically through
realistic biomechanical behavior. [1]

2.1.3.1 Physically-Simulated Face Anatomy

This approach replicate the actual muscle system of the human face, which
demands significant computational power and can be challenging to control.
In 2016, Cong et al.[6] introduced a system that generates muscle-specific
blendshapes, which drive the deformation of a tetrahedral flesh volume and,
subsequently, the face mesh. That same year, Ichim et al. [7] proposed a volu-
metric blendshape model that nonlinearly interpolates deformation gradients
across tetrahedralized face volumes. This model allows direct control over
mesh deformation—similar to traditional blendshape systems—while also
incorporating physics-based features such as collisions and inertia.
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More recently, in 2022, researchers at Weta Digital [8] proposed a tech-
nique using a nonlinear jaw rig and a set of muscle abstractions, including
muscle fiber curves, to drive facial animation. This method was employed in
the production of Avatar 2: The Way of Water, demonstrating that anatomy-
based face parameterization can deliver high-fidelity speech animation with
impressive realism.

2.1.3.2 Deformation Inspired By Face Anatomy

The approach involves replicating anatomical components of the face and
directly defining their influence on the mesh. In this method, the vertices of
the face mesh deform according to the movement of these anatomical repli-
cas. Most 3D software supports joint-based deformation, where joints exert
weighted influence over mesh vertices, allowing artists to manipulate these
joints to achieve expressive and controllable mesh deformation.

2.2 Facial Motion Interpretation

Facial motion interpretation translates raw facial motion data into parameters
that represent its semantic meaning and intensity, enabling the transfer of
expressive information across different systems [9]. This process is valuable
for both encoding real human facial movements and interpreting animations
generated by 3D face models. In the following section, the researcher review
various techniques used to interpret facial motion.

2.2.1 The Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) [10], proposed by Ekman and Friesen
in 1978, is a comprehensive framework grounded in facial anatomy:. It encodes
observable movements of individual or groups of facial muscles into discrete
units known as Action Units (AUs). When combined, these AUs represent a
wide range of facial expressions. FACS is widely used for interpreting facial
motion data, and many face rigging workflows adopt it as a reference for
generating blendshapes [1].

While FACS classifies facial motion at the anatomical level, other techniques
—such as expressions and visemes—interpret motion at the perceptual level,
focusing on emotion-related or speech-related cues. However, none of these
systems explicitly define how to quantify the intensity of facial motion, which
remains a challenge in both analysis and animation.



2.2.2 Perceptual Level Interpretation

2.2.2.1 Expressions & Visemes

Facial expressions provide a perceptual-level description of facial motion, typ-
ically involving the coordinated movement of multiple facial regions. Recent
research has leveraged expression recognition to enhance the expressiveness
of facial motion retargeting results [24]. However, because expressions repre-
sent the face as a whole, they lack the granularity to describe how specific
facial regions deform during a motion sequence.

Similar to expressions, visemes [11] describe perceptual-level movements,
but are specific to the mouth. The term viseme—short for visual phoneme—
refers to the observable visual patterns associated with one or more phonemes
[12]. While phonemes are the smallest units of sound in a language [13],
a single viseme can correspond to multiple phonemes, making it a useful
abstraction for speech-driven facial animation.

2.2.2.2 MPEG-4 Facial Animation Parameters (FAP)

The MPEG-4 standard defines 68 Facial Animation Parameters (FAPs), organ-
ised into 10 groups. The first group includes two perceptual-level descriptors:
visemes and expressions. The remaining groups specify movements of indi-
vidual facial features, such as raising the left eyebrow or stretching the left lip
corner [14].

A key distinction between MPEG-4 FAPs and FACS lies in their foundational
principles. FACS defines Action Units (AUs) based on muscle actions, whereas
MPEG-4 defines Facial Animation Parameter Units (FAPUs) using fractional
distances between key facial landmarks [15]. This structural difference influ-
ences how each system interprets and drives facial animation.
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Chapter 3
Design and Implementation

In their published paper, Zhu and Joslin propose a 3D facial motion retargeting
pipeline designed at the anatomical level to ensure cross-character compati-
bility. The pipeline consists of two main modules:

* The source motion interpretation module processes marker-based MO-
CAP data, converting it into FACS Action Unit (AU) labels and measuring
their intensities by analysing marker geometries on a per-frame basis.

* The target face parameterization module takes a 3D face mesh and
automatically generates a rig composed of simple polygon meshes that
represent facial muscle abstractions. Each muscle abstraction has its own
local deformation space, capturing both active contractions and passive
movements, and is directly driven by the interpreted source motion.

In this thesis, the researcher reuse their target face parameterization module,
but instead of using marker-based MOCARB the researcher adapt the system to
work with video-based motion generation.

3.1 Facial Parameterization

3.1.1 Base Mesh Template Selection

Selecting an appropriate base mesh is a foundational step in designing a facial
retargeting system. Beyond its geometry, the mesh must serve as a universal
reference structure, capable of adapting to a wide range of characters while
preserving both expressiveness and computational efficiency.

In this project, several 3D facial models were evaluated to identify one that
offered a clean, symmetrical, and uniform topology. These characteristics are
fundamental not only for controlled mesh deformation but also for enabling
automated assignment of muscle regions and precise motion transfer.
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The chosen mesh was manually optimised to reduce its vertex count to a
level that balances visual fidelity with performance. This simplification did
not compromise the mesh’s ability to represent complex facial expressions;
instead, it made it more suitable for integration into data-driven animation
pipelines.
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Figure 3.3: The final base mesh template.

3.1.2 Muscle Abstraction and Semantic Mapping

In the context of the present pipeline, muscles are not represented as physical
anatomical structures, but rather as functional regions within a 3D mesh. This
abstraction enables the retargeting system to interpret facial movement, from
landmarks displacement to action unit to muscles.
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To achieve this, 28 muscle regions were manually defined on the base mesh,
each associated with a set of vertices that represent its influence over the facial
surface. These regions were conceptualized based on anatomical references
but adapted to facilitate integration into a deformation system driven by AUs.

Each muscle region was labeled and numbered to maintain consistency in
rigging and data mapping. This nomenclature enables the system to activate
specific deformations in response to detected movement in facial landmarks.

Beyond its technical function, this muscle segmentation serves as a bridge
between the semantics of facial motion and its digital representation, allowing
the pipeline to remain compatible with stylized or non-human characters, as
long as they adhere to the deformation logic defined by these regions.
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Figure 3.4: Muscles Regions
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3.1.2.1 Muscle Identification

Each muscle region was manually selected based on visual references, and its
corresponding vertex indices were extracted to define localised deformation
zones. To automate this process, a custom Python script was developed using
the Maya API. This script converts selected polygonal faces into a sorted list
of vertex indices.

Figure 3.5: Example of Muscle Selection Regions

Listing 3.1: “Python script to extract vertex indices from selected faces in
Maya”

# To extract the vertices list of the faces selected
import maya.api.OpenMaya as om

# Convert the selected faces to vertex indices
def get face vertices from selection():
sel = om.MGlobal.getActiveSelectionList()
dag, comp = sel.getComponent(0)
mesh_fn = om.MFnMesh (dag)
face _ids = om.MFnSingleIndexedComponent(comp).getElements()

vertex set = set()

for face id in face ids:
vertex indices = mesh fn.getPolygonVertices(face id)
vertex set.update(vertex indices)

return sorted(list(vertex_ set))
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To validate the accuracy of the extracted regions, a second script was used
to highlight the vertices of each muscle patch within the Maya viewport. The
example below shows the selection of Muscle 1 (Frontalis R_Ftls).

Listing 3.2: “Python script for selecting vertices of Muscle 1 (Frontalis R _Ftls)
in Maya”

import maya.api.OpenMaya as omapi2

# Taxonomy: Muscle 1 — Frontalis R Ftls

Musclel = [53, 56, 57, 60, 61, 150, 151, 287, 288, 289, 290, 295,
298, 299, 300, 301, 302, 303, 304, 305, 306, 324, 422, 423, 497,
498, 630, 632, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692,
693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 1048,
1049, 1050, 1651, 1052, 1053, 1056, 1057, 1058, 1059, 1343, 1344,
1345, 1346, 1583, 1660, 1661, 1662, 1691, 1702, 1703, 1704, 1705,
2415, 3026, 3027, 3028, 3089, 3090, 3091, 3095, 3496, 3497, 3498,
3501, 3502, 3504, 3505, 3506, 3507, 3508, 3509, 3523, 3598, 3643,
3976, 3977, 3978, 3979, 3980, 3981, 3982, 3983, 4257, 4442, 4443,
4444, 4445, 4586, 4710, 4749, 4750, 4751, 4752, 4753, 4754, 4755,
4756, 4757, 4936, 4937, 5387, 5456, 5457, 5458, 5459, 5460, 5461,
5462, 5463]

sel = omapi2.MSelectionList()

sel.add("face") # Name of the mesh

dag, mObject = sel.getComponent(0)

mfn_components = omapi2.MFnSingleIndexedComponent(mObject)
mfn_object = mfn_components.create(omapi2.MFn.kMeshVertComponent)
mfn_components.addElements(Musclel) # Name the of the muscles list
selection list = omapi2.MSelectionlList()

selection list.add((dag, mfn_object))
omapi2.MGlobal.setActiveSelectionList(selection list)
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Figure 3.6: Validation of the muscles array in the Maya viewport

3.1.3 Retopology Strategy

A critical requirement for the success of the retargeting pipeline was ensuring
structural consistency across different 3D face meshes. Specifically, the system
relies on stable vertex indexing to accurately map muscle regions and apply
deformation data. However, conventional modeling tools like Maya often alter
vertex order during mesh operations, which compromises the transferability
of deformation logic.

To address this, the project employed a topology transfer strategy using
FaceForm Wrap, a tool that enables the projection of a base template mesh’s
topology onto new geometries. This approach ensures that all meshes used
in the pipeline share a consistent vertex structure, allowing for the reliable
application of precomputed muscle patches and blendshape deformations.
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Figure 3.7: FaceForm Wrap Retopology [Example 1]

Figure 3.8: FaceForm Wrap Retopology [Example 2]

3.1.3.1 Topology Validation

To confirm the integrity of the transferred topology, several meshes were
retopologized and tested against the base template. Validation was performed
by reapplying the muscle selection scripts and verifying that the spatial distri-
bution and vertex counts matched expected values. This step was essential to
guarantee that the pipeline could generalise across different characters while
maintaining anatomical fidelity.
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Figure 3.9: Topology Validation of the Muscle26 OrbicularisOris_OOrs
[Examplel]

Figure 3.10: Topology Validation of the Muscle26_OrbicularisOris_OOrs [Ex-
ample 2]
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Figure 3.11: Topology Validation of the Muscle26_OrbicularisOris_OOrs [Ex-
ample 3]

3.1.4 Blendshape for Expressive Deformation

(a) AU25 (b) AU3O0 - Left (c) AU17

The present project adopts a blendshape-based strategy. Each AU is repre-
sented by a localised deformation space. These spaces are defined by sets of
active and passive muscle regions, each associated with specific vertex indices
on the mesh. The deformation of these regions is governed by a delta transfer
vector, which encodes the directional displacement of each vertex when a
given AU is activated.
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The blendshapes serve as templates that encapsulate the expressive poten-
tial of each AU. To construct them, the researcher used the Eisko model, an
open-source facial rig with built-in controls. After analysing the visual mani-
festation of each AU, the researcher, manually replicated the corresponding
expressions for both the left and right sides of the face. Each mesh was
exported as an .obj file. TO ensure compability, each mesh was retopologized
using the FaceForm Wrap to ensure compatibility with the base mesh topology.

This process was repeated for 50 Action Units, resulting in a comprehensive
set of blendshapes. These were then processed to compute the delta transfer
vectors and stored in a structured format (deltaTransfer.json). The implemen-
tation of this system is encapsulated in the ActionUnit.cpp and ActionUnit.h
classes, which handle the deformation logic during runtime. All calculations
were precomputed to optimise performance and ensure real-time responsive-
ness.
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Figure 3.13: Example of Action Units, Landmarks and Muscles Relation
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3.2 Precomputed Data Assets

To ensure real-time performance and scalability, the system relies on a set
of precomputed data assets stored in structured JSON files. These assets
encapsulate the core semantic relationships between facial landmarks, muscle
patches, and AUs, allowing the plugin to operate efficiently without recalcu-
lating deformation logic at runtime.

Upon initialisation, the plugin loads these files into memory and maps
them to custom data structures tailored to the pipeline’s requirements. This
design choice reflects a deliberate trade-off between computational cost and
responsiveness, enabling expressive animation without compromising speed.

3.2.1 Delta Transfer

The deltaTransfer.json file encodes the deformation vectors for each vertex
within every muscle patch, across all AUs. These vectors define how each
region of the mesh should respond when a specific AU is activated. With
approximately 750 vertices per AU and 50 AUs in total, the dataset exceeds
400,000 entries—making real-time computation impractical.

To address this, the deformation data was precomputed using the
modelpaths.json file, which provides relative paths to all required assets,
including the plugin binary and the muscle patch definitions. The resulting
delta vectors are stored in a map structure optimized for fast lookup during
animation playback.

3.2.2 Landmarks-Action Unit Mapping

The landmarksActionUnits.json file defines the semantic relationship between
facial landmark pairs and the Action Units they influence. This mapping
ensures that landmark-driven deformations align with the expressive intent
of each AU, as defined by the blendshape templates.

During runtime, the system calculates Euclidean distances between land-
marks in the input portrait and the generated frames. The landmark with
the greatest displacement is used to infer the most likely active AU, enabling
dynamic and context-aware facial animation.

3.2.3 Landmark Indexing for Mesh and Pixel Space

To maintain consistency across spatial representations, the files
landmarksMeshIndex.json and landmarksPixellndex.json define the index
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positions of facial landmarks in both 3D mesh space and 2D pixel space. These
mappings were manually curated to ensure accurate tracking and alignment,
forming the foundation of the landmark-based deformation system.

3.3 Source Motion Analysis

The motion source in this system is speech-driven. The model takes a neutral
portrait image and an audio file as input, and predicts the displacement
of facial landmarks over time based on the semantic and acoustic features
of the audio. This approach enables expressive animation without requiring
traditional motion capture setups.

3.3.1 Landmark Detection Model

The system for facial tracking uses Dense Facial Landmarks; to capture facial
geometry, focusing on the density and distribution of key regions. Instead of
sparse landmark sets, it targets anatomical intersections where facial muscles
meet and affect expression.

From the full set of 478 detected landmarks, a curated subset of 51 key
points was selected for their relevance to muscle-based deformation and
compatibility with the retargeting pipeline. This subset strikes a balance
between expressive detail and computational efficiency, enabling the accurate
interpretation of facial motion while supporting real-time performance.
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Figure 3.14: A matplotlib representation of a Face Input with 51 Landmarks
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3.4 Conceptual Workflow of the Retargeting Pipeline

Once the input video is generated, the system proceeds through a series of
deformation stages. First, vertex and muscle region data are extracted from
the input mesh. Facial landmarks are then detected in both the neutral and
current frames, and their displacements are analysed to compute activation
levels for each AU. These activations drive localised skinning and muscle-
based deformations, which are transferred to the final mesh using proximity
mapping techniques.

3.4.1 Mesh Vertex Extraction

To initialise the deformation process, the input mesh is parsed using the
TinyObjLoader library, which efficiently reads .obj files and extracts geometric
data. The vertex positions are stored in a vector of type glm::vec3, represent-
ing the spatial coordinates of each point in the mesh.

3.4.2 Muscle Region Extraction

Once the input mesh has been loaded and its vertices stored, the system
proceeds to identify and extract the muscle regions. This is achieved by cross-
referencing the mesh vertex data with the predefined muscle patches, which
are stored as indexed regions corresponding to anatomical zones.

3.4.3 Landmark Extraction (Neutral & Current Frame)

With the input mesh loaded and the facial landmark system initialized, the
pipeline extracts landmark positions from both the neutral portrait image and
the current animation frame. These landmarks serve as reference points for
measuring facial motion over time.

3.4.4 Landmark Displacement and Distance Computation

Once the landmarks are extracted from both the neutral portrait and the
current animation frame, the system computes their spatial displacement to
quantify facial motion. This is achieved by calculating the Euclidean distance
between corresponding landmark pairs across frames.
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3.4.5 Action Unit Activation

The displacement value reflect the dynamic changes caused by speech input
and serve as the basis for Action Unit (AU) activation inference. By identifying
which landmarks exhibit the greatest movement, the system can determine
which muscle regions are most likely engaged, enabling anatomically accurate
deformation.

This analysis transforms raw landmark data into semantically meaningful
motion, bridging the gap between audio-driven input and expressive facial
animation via Action Unit.

3.4.6 Landmark-Based Skinning

To translate landmark motion into mesh deformation, the plugin generates
one MObject instance within the Maya viewport: the muscle mesh. This is
derived from the input .obj file and serve as the foundation for the deformation
system.

Using the 3D landmark data extracted from the mesh, the system automat-
ically positions joints at key anatomical locations. These joints were thinking
to be bound to the muscle mesh and deform another mesh which represetn
sking via proximity wrap.

This approach allows the system to simulate muscle-based motion in a
way that is both anatomically informed and computationally efficient. By
leveraging Maya’s native rigging tools, the pipeline integrates seamlessly into
professional animation workflows while maintaining control over expressive
detail.

3.4.7 Muscle Mesh Deformation

The muscle deformation method applies AUs displacements to a Maya mesh by
accumulating per-vertex deltas and then applying only the incremental change
(delta-of-delta) scaled by the AU’s intensity. Given an AU-to-deltas map and
an active AU in the frame.



3.5 Plugin Integration

PixelMux Retargeting Plug-in - o0 x

Upload Portrait Upload Audio Upload Modef

Generate Animation Data

Figure 3.15: Plugin Ul

The plugin was developed in Qt and presents a clean, three-step workflow:

* Portrait Input: Load a facial image (JPG or PNG).

* Audio Input: Load the corresponding audio file (WAV).

* Mesh Input: Select the base 3D model (OBJ).
Once all inputs are provided, the user clicks Generate to run the deformation
pipeline. Progress is reported via a status bar, and the resulting frames appear
directly in the Maya viewport.
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Chapter 4
System and Technical
Requirements

This project was developed as an extension of the original PixelMux repos-
itory, introducing a new feature focused on facial motion retargeting. While
the full PixelMux system remains private, this submission includes only the
implementation of the retargeting pipeline.

To maintain consistency with the original repository and promote modular-
ity, the system architecture follows a separation between two core directories:
cmd and pkg.

pkg directory contains all reusable components of the system. It includes
classes and utilities for facial landmark processing, AU activation, Mesh ex-
traction, and math utils. The code in this directory is designed to be platform-
agnostic and can be reused across different Digital Content Creation (DCC)
tools such as Blender, Unreal Engine, or Houdini.

cmd directory contains the environment-specific implementation that inte-
grates the reusable logic from pkg into Autodesk Maya. It includes plugin
classes, UI components, and mesh manipulation routines that rely on Maya’s
DCC interface. The code in emd is not reusable outside of Maya, but can be
adapted to other DCCs by replacing the interface layer.



24 Hernandez, D.: Speech Driven to 3D Facial Animation in Maya

4.1 System Design
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Figure 4.16:

4.2 Requirements and Dependencies

The development environment for this project was configured to support
cross-platform compilation and integration with Autodesk Maya. The build
system is based on CMake, and external dependencies are managed using
vepkg.

4.2.1 System Requirements

* CMake = 3.25

* vcpkg (for dependency management)
* Autodesk Maya 2023.3

* DevKit Maya 2023.3 version

* C++17

4.2.2 Global Dependencies

The project relies on the following external libraries:
* gtest — Unit testing framework for validating core logic.



* glm - OpenGL Mathematics library used for vector and matrix opera-
tions.
* tinyobjloader — Lightweight .obj file parser for mesh loading.
* nlohmann-json — Modern C++ JSON library used for configuration and
data serialization.
These dependencies are installed and managed via vcpkg, ensuring consistent
builds across platforms and simplifying future integration with other DCC
tools.
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Chapter 5
Results and Improvements

5.1 Neutral Face Input and Pose Face Input

(a) Neutral Face (b) Neutral Face Landmarks



Chapter 5: Results and Improvements 27

(a) AI Generated Face (b) AI Generated Face Landmarks

5.2 Output 3D Mesh and Expected Pose Analysis

Expected Pose

Figure 5.19: Expected Pose and Output 3D Mesh

Visually, the mesh and the expected frame look very similar. Since the gener-
ated pose is focused on the mouth, the detected action unit AU16 successfully
deformed the model’s muscle mesh around the mouth. However, it’s important
to remember that more accurate facial expression detection requires multiple
AUs to be present simultaneously on the face, so the system definitely needs
improvement in this area.



On the other hand, the mesh shown corresponds exclusively to the muscles.
According to the paper’s recommendation, there should be an intermediate
mesh that drives the deformation onto a second mesh called the “skin,” which
would serve as the final output of the plugin. This test has not yet implemented
that skin mesh, so it should be added in future iterations.

5.3 Improvements

1. Standardize all AU blendshapes on a single reference mesh. Although
most were created from the same base, a few were built on a different
yet topologically identical mesh. With additional time, these outliers can
be remapped to ensure full consistency.

2. Replace the custom map-based AU to delta transfer with a single con-
tiguous vector. Maps were originally chosen to simplify debugging and
mirror Zhu & Joslin’s organization, but their non continuous memory
layout can hinder real-time performance. Consolidating into one vector
will be harder to test but will yield faster, more predictable access.

3. Deepen Maya integration. The current plugin provides basic import and
deformation, but it needs further GUI controls, live playback, and error
handling to serve as a complete, real-time speech-driven animation tool.

4. Automate PixelMux API integration. Due to time constraints, data
loading was handled manually. This process must be refactored to
use PixelMux’s API directly, streamlining data ingestion and reducing
manual steps.
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Chapter 6
Conclusion

This thesis set out to implement and validate a facial deformation pipeline
driven by Action Units (AUs) within a Maya plugin. Despite time and experi-
ence constraints, the research successfully demonstrated that high-intensity
AU detection can drive mesh deformations following the principles of Zhu
and Joslin. This proof-of-concept confirms the viability of landmark-based
deformation in an interactive environment.

The work holds significance for both real-time facial animation and acade-
mic exploration of muscle-driven rigs. By integrating the pipeline into Maya,
we provided artists with immediate visual feedback and a foundation for more
complex controllers. However, the current prototype handles only the most
prominent AU per frame, limiting expressiveness and blending fidelity.

Looking ahead, extending the system to process multiple simultaneous
AUs will more faithfully reproduce full expressions. Incorporating temporal
smoothing and automating landmark selection could further streamline
production workflows. A comprehensive user study would also quantify per-
ceptual improvements and guide refinement.

In closing, this project bridges theoretical AU frameworks and practical
animation tools. It lays the groundwork for richer, more intuitive expression
rigs and opens new directions for research in speech-driven facial animation.
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