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Abstract 
This paper details the creation of a Houdini Digital Asset with the ability to create an animation of a 

building under construction. The HDA also generates geometry surrounding the construction 

animation to replicate the trappings of a time-lapse building construction, including scaffolding, 

cranes and internal girding and structure that initially construct surrounding the object before being 

removed to leave the provided mesh. Various parameters can also be altered regarding the 

animation, including the control of timing, noise, direction and the redefinition of primitives as 

groups of cladding to be constructed. In order to allow for the generated animation to gain the speed 

and frame-by-frame changes of a given timelapse, features were also developed to distribute a given 

number of construction worker assets and vehicle assets across the internal structure and 

surrounding area. Finally, the paper describes the results of blackbox testing and efficiency testing of 

the HDA for distribution.  
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Intro  
The intention of this project is to create a Houdini Digital Asset in which a piece of geometry could be 

provided and an animation of that geometry as if it were a building under construction would be 

generated procedurally. Similar projects have been attempted for the replication of other 

phenomena, such as the growth of plants and the workings of bacteria6 (Muzic et al., 2015), leading 

to known benefits of recreating a time lapsed process digitally, in comparison to a direct recording 

both for entertainment and scientific purposes. These include a lack of dropped frames and a cleaner 

result in comparison to true footage, leading to a product that trades realism for recognisability. This 

aligns with the intention behind this project.  

Influenced by research and previous work, the systems and functions of the project were defined 

(See Appendix A) and categorised into necessary functions, expected functions and additional 

functions. The necessary functions include the basic creation of an under-construction building, 

including parametrised internal structures and external cladding. The expected functions include the 

ability to redefine cladding size, noise variations on the placement of cladding and the generation of 

crane and scaffolding structures. Lastly, additional features were considered should time allow. These 

features included stylisation and animation of the placement of cladding onto the internal structures, 

the ability to swap internal structures with a solid internal structure made of bricks of equal sizes, 

and the ability to add assets of workers moving/building rapidly within the structure.  

From this list of functions, a basic plan for completion was created, (See Appendix B), with the 

additional functions planned to follow the deadline of the project in order to allow for prioritisation 

of base functionality over potential additions beyond the base concept and project idea. 

It should be noted following development of the asset that two weeks between B3 and C1 were 

spent blackbox testing the functionality of the existing features. 

Previous Work 
While this specific type of procedural animation lacks appropriate research, studies on the basics of 

procedural animation2 (ACM SIGGRAPH 2018 Courses, 2018) and the most efficient manners in 

which they may be implemented7 (NOVAES CANTÃO and RONALDO BEZERRA OLIVEIRA, n.d.) allowed 

for an implementation with several key points in alignment with modern procedural animation 

implementation.  

The most significant point of this was that of the input of external information to the procedural 

animation to create an animation that is repeatable, lightweight and reactive to the current 

environment. This includes the ability to track lifespans within the animation (in this case the current 

frame of the animation in comparison to various inputted frame values) and information regarding 

material outside the animation, such as various colliders (in this case represented by the bounding 

box of the given geometry significantly influencing the animation). 

In tandem with research on procedural animation significant time was spent dissecting timelapse 

constructions to ascertain their various features and quirks. From this, it was gleaned that significant 

control needed to be provided for the various steps of a construction, including delays in internal and 
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external structures3 (Cedar Woods Properties, 2020) both from specific examples and due to variety 

across each timelapse. These timed segments also need to be controlled in length and speed, with 

this speed difference applying throughout to emphasise the varying paces of construction in 

different areas1 (3XN Architects, 2022), especially with external structures that often vary wildly in 

passing between timelapses4 (Mena's Smart Home, 2021). 

Secondary to basic timing functions, other features and attributes were influenced by reference 

footage. This includes using differing materials across the construction12 (Work Zone Cam, 2014) and 

placing the assets of workers across the construction at both full opacity and various levels of 

transparency11 (Watch a 57-Story Building Go Up in 19 Days, 2015). The use of reference footage also 

influenced the design principle to create a simpler depiction of a timelapse viewable and 

recognisable from a distance, as opposed to a full simulation with detailed and accurate architectural 

and construction methods5 (MK timelapse, 2017).
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Technical background 
To ensure that the produced HDA is both of given technical pedigree and shares the design principles 

of the wider Houdini sphere, several HDA’s were downloaded and analysed in advance of the project. 

Several things were learned as a consequence, influencing the design of the construction generator. 

Often assets lacked hidden features, choosing to instead disable features when not in use. Many 

assets also lacked certain controls that one would expect from their function, likely to prevent a user 

disabling the asset entirely, this prompted the creation of “advanced settings” where controls that 

would likely disable the asset if used carelessly are placed and properly labelled.  

The assets within Houdini’s environment that are most downloaded9 (Orbolt.com, 2019) also contain 

well organized node diagrams, often splitting nodes into functionality groups or full subnetworks.  

 

Figure 1: Orbolt multi-subnet division. 

These assets will also make use of caching different sections of the final asset, contradicting the 

efficiency based requirement set for the project and possibly detailing a feature for future work. The 

intent to create a HDA of several subnets was also barred through the use of shared data within the 

implementation of the HDA, the ubiquity of which prevented the conversion of each separate 

function into a set of inputs and outputs.  

Research was also done into previous attempts at replicating the nature of timelapsed footage in a 

digital environment, with this leading to several key principles followed in the design of the HDA. This 

includes (as a companion influence alongside procedural animation) an emphasis on using the 
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tracking of time to directly influence the animation via tracking the frame number both as a method 

to track animation progress and to dictate the beginnings and ends of various phases of the 

animation. In the case of the studied paper10 (Przemyslaw Prusinkiewicz, Hammel and Mjolsness, 

1993), this took the form of a frame-based divergence in the animation, in much the same manner as 

the construction generator is intended to diverge between versions at different points and 

dependant on different geometry. Notably this requires the tracking of the creation of various 

primitives of the provided geometry, something difficult to achieve in Houdini but will have to be 

worked around.  
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Development and methodology 

A1.1 Mesh Construction 
The gradual construction of the mesh was initially solved relatively easily through the use of a single 

growing sphere that collected points within the provided geometry and added them to a group for 

display. This sphere would be controlled by a simple equation, eventually taking the following form 

after the implementation of several features: 

𝑆 = (
𝐹 − 𝐷 − 𝐸

𝐼 + 𝐿 +  𝑂
) (1 + |𝑑|) 

 

Where: 

F – The current animation frame. 

D – The start of the construction animation. 

E – A delay for the construction of external structures first. 

O – A variable for time between internal structures and their external cladding. 

L – A variable for the length of the cladding’s construction. 

I – A variable for the length of the construction of internal structures.  

d – A vector for the current direction the animation should depict the construction building in. 

 

This allows for parameters to delay the construction of parts of the animation through additions and 

subtractions to each end of the equation, and a construction speed to be set by the user. The ability 

to add positive and negative delays to the cladding construction also allows for a user created 

timeline of the construction’s different layers, with elements being able to be placed before or after 

one another through this. 

 

Figure 2: Cladding Construction. 
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A1.2 Removing disconnected primitives 
Due to the shape of the construction’s progress being that of a sphere, it was common to have 

unsupported geometry during the construction. In order to prevent this, a function was developed to 

group the largest piece of contiguous geometry, displaying that instead of the mesh’s whole progress 

as a means to remove floating mesh elements. As this creates several issues for input geometry 

without contiguous pieces, this feature remains togglable and was developed alongside several other 

features to prevent cladding floating away from the construction. 

A2.1 Internal Structure Construction 
The girding of an internal structure was created through defining a set of points of a given density 

from the inputted mesh, before copying to each a box of exact dimensions to bridge the gaps 

between each point, creating a 3D grid internally restricted to the given mesh. The defined grid 

would be placed a density-based distance from the mesh, as to prevent excessive bleeding of the 

internal structure outwards. This would then be converted to a wireframe geometric structure, the 

“pipes” of which being of a user defined radius.  

From there a floor of a height equal to each “pipe” and square dimensions matching the grid density 

is copied to the grid, allowing the wireframe structure to gain floors akin to the inner structure of a 

large construction. The same sphere technique is deployed on the grid of points prior to conversion 

into geometry to allow construction to avoid the placement of stray primitives without connection. 

A later addition to the internal structures allows for the gap between the internal structures and 

cladding, with rays being cast from the given grid of points of a distant capped at the distance 

between each point in the grid. This allows for gaps in the internal structure otherwise not 

accounted for by the equally spaced grid of points to be filled in, greatly reducing the depiction of 

floating cladding. 

 

Figure 3: Internal Structures. 
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A2.2 Building Direction 
During this time, the possibility of changing the construction direction was considered, due to both 

the “dull” image of uniform internal structure construction and the issue of a ceiling often spawning 

somewhat simultaneously should progress be made from the bottom up. As a consequence, a user 

defined “build direction” was created as a vector, allowing a given direction to be defined for the 

building to be constructed in the direction of.  

The speed of the construction was also partially altered to consider the magnitude of the vector, 

preventing issues should the user provide a vector that is not normalised, something that would 

otherwise increase the duration of the construction. 

B1. Segmentation 
In order to allow for more complex meshes to have alterable amounts of “cladding” as constructions, 

a function was developed to break down a given mesh into segments along cube grid of user defined 

density. First the mesh is converted to a cuboid bounding box to allow for even segments. From there 

the process mirrors creating the internal structure grid, starting with the placement of points at 

equal distances throughout the provided volume, converting them into cubes of equivalent 

measurements.  

Again, similar to the construction of the internal structures the points within the volume are placed 

in cuboids, using the same grouping technique to then gather the mesh points in each cuboid and 

display them. 

Later, to allow for re-defined cladding to be animated and stylised, it was necessary to divide the 

redefined cladding into groups, assigning each grouping cuboid a value to be transferred to its 

corresponding geometry. These values then allowed the stylisation to apply to these primitives in a 

group rather than as individuals primitives and radically improved this feature’s resilience to stranger 

geometry. 

 

Figure 4: Segmentation of mesh into groups. 
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B2. Noise 
Noise was determined to be a key concern early on within planning of the HDA to allow for natural 

variance in construction speed both between different instances of the asset and in the construction 

itself. Two types of noise placement were considered for this, noise at the edge of construction and 

“islands” of empty space scattered across the entire construction, eventually filling themselves out as 

the building finishes construction. 

This is achieved by creating a cross section of a given width and applying noise of a given density, 

removing more or less geometry to create a gradient of noise towards the fully constructed area. The 

“islands” are then created by removing a given percentage of points in advance from the geometry, 

decreasing said percentage of points over time until the otherwise constructed cladding is 

unblemished. The percentage of points is notably defined by the above algorithm for cladding 

progress, in order to allow for the number of islands to be reflective of all other variables within the 

animation. 

 

Figure 5: Noise variation. 
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B3. External Structures 
Two external pieces were considered for the structures outside of the building, including cranes 

placed at a random points at the base of the construction and pole structures similar to internal 

construction to represent basic scaffolding.  

Scaffolding structures were achieved by scaling up the width and depth of the provided geometry to 

create a ring of points surrounding the original mesh. From there similar functions to that of the 

internal structures are provided to convert the ring into a scaffold that can surround the 

construction. This method allows for a set of points at the base of the scaffolding to place cranes, 

however it creates wildly different amounts of scaffolding depending on the provided geometry. 

Therefore, the ability to scale the number of points subtracted to create the ring was provided.  

Eventually, the ability to define scaffolding structure orientations was considered, prompting the 

creating of separate code to detect the placement of scaffolding in relation to overhangs and 

complex geometry as well as to redefine the proportions of the cuboids. This required the use of 

bespoke code to create a number of points to fit within a volume and scatter them, the code 

accounting for different distances between points should the scaffolding contain non-cubic 

proportions.  

 

Figure 6: Scaffolding on overhanging geometry. 

Crane structures were achieved via taking a cuboid of defined width and depth, while matching 

height to the provided geometry. These then had points scatted within them separated by the same 

depth and height values, creating a column of equally separated points. These points were then 

converted to a polywire frame similar to the internal structures to create crane towers, copied to a 

randomly selected set of points across the ring.  

From there a basic tower crane top was modelled as several separate elements, each then placed in 

relative to the height of the given geometry. These crane head pieces were then placed at random 

rotations on the crane towers. Initially, this caused several collisions between cranes, and therefore 

an algorithm was developed to calculate the intersection point of the cranes and rotate them away 

from intersecting where the crane head extends to. The fomulae to do so can be found below 

(Appendix D). 
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Later, additional modelling was added to the crane’s top, allowing for the depiction of wiring and 

triangular support structures visible on some cranes. This is done through the detection of either end 

of the crane arm, as well as several points on an additional column at the crane’s centre, before 

generating three polywires between the selected points. 

 

Figure 8: Crane generation. 
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C1.1 Complex assembly 
Two types of complex, animated assembly were considered for the construction of given geometry. 

The first was a stylisation of construction that produced a flipping animation for each piece of 

cladding. The other was a simple depiction of each piece of cladding extruding outward smoothly 

instead of each cladding piece appearing individually.  

Due to algorithmic nature of the Houdini engine, defining an efficient method in which all defined 

cladding animates individually in a way related but independent to the construction of the wider 

geometry was quite a challenge. Eventually it was decided that rotations were required to be pre-

calculated through a similar methodology as the above scaling function, instead relating to distance 

from the furthest point in the inputted geometry rather than current frame. This allows the 

primitives to be ordered in “construction time” and rotated accordingly. From there, the code can be 

tuned in order to produce a rotation of 90 ̊at a given point in the animation, starting at a rotation and 

decreasing over time until reach that point. Then cladding above 90 ̊rotation can be removed and 

those under fixed to an unrotated state, producing a gradual appearance of defined cladding, each 

rotating 90 ̊into place before being fixed in place. The full breakdown of these equations can be 

found below (Appendix E). 

 

Figure 9: Flip stylisation. 

In comparison the extruding method of stylisation was much easier to implement, simply taking the 

initial model and using a Boolean function to remove the sphere of constructed primitives used 

throughout the HDA. This allowed the cladding to be created gradually, growing smoothly over the 

internal structures. The addition of cladding features, such as noise, was also considered through 

both stylisations, requiring in the smooth extruding of the cladding the addition of pre-calculated 

randomly defined primitives to be ahead of extruding construction at a user defined rate before 

being “booleaned” with the noise sphere as with normal noise creation.  

C1.2 Cladding Thickness 
To ensure cladding’s appropriate look during animation, it was decided a thickness variable should be 

implemented to ensure cladding appears realistic. This was done simply, through a minute extrusion 
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of the cladding backwards to generate the appropriate geometry, before scaling all generated 

primitives inwards to a user defined thickness.  

C2. Internal Construction 

While initially the internal construction feature was mostly copied from the initial generation of the 

internal structure’s grid but without the conversion into a wireframe grid, it was noted this left large 

gaps between the internal blocks and cladding. As a consequence, similar functionality was deployed 

as to the struts placed along the internal structure to depict it supporting the cladding. From there, 

primitives were created instead of struts so that no gaps were present or visible between internal 

structure and cladding. It was necessary to flip the primitives inside-out in order to have the 

additional primitives shade correctly.  

 

Figure 10: Filled in Block Structure. 

C3. Internal Animation 

Several systems were considered to allow a set of assets to be added to have those assets be 

distributed across the inside of a given structure. However, after several different attempts it was 

decided that a system similar to a connectivity SOP would be included. This allows the user to input a 

geometry node and supply the name of a class attribute. Using this class attribute, the generator 

then splits each set of primitives with a varying class attribute into individual assets and places them 

onto the internal structure of the animation.  

In collaboration with a detection system that allows for the distinction of suitable primitives for the 

assets to stand upon using angle detection, the assets are then randomly scattered across the 

construction, changing position every frame as to replicate a timelapses’ random capturing of mobile 

variables, the rotation of each copied asset would also be randomised every frame. 

A duplicate system was also created for the scattering of objects along the ground plane at a given 

distance around the constructing geometry. This allowed for the distinction between provided 



16 
 

construction assets for scattering within the internal structure of the building and assets that would 

remain outside the building (construction workers and construction vehicles respectively).  

 

Figure 11: Life placement inside construction. 
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Working of tool 
Without the ability to use modular testing, it was decided that the best way to ensure the HDA’s 

quality was to produce blackbox tests for all inputs within the HDA, including tests for interactions 

between different functions such as stylised animation working with cladding recalculation. 

Within the below table (see Appendix C) are the results of each test on each control over time, 

initially testing prior to the development of features categorised as “Additional”, before testing 

following the development of stylised construction and finally following internal asset animation. 

To test the stated system requirements of the asset, Houdini’s internal performance metrics were 

deployed in order to discern nodes of high demand (such as the wireframe node initially used to 

create internal structures). From there, a cache of the whole animation would be stored and 

compared so that it can be confirmed to meet requirements, and nodes replaced or made more 

efficient if this is not the case. 

Rendering tests 
While the rendering of the animated geometry created by the construction generator can be found 

within the stage layer of Houdini, only the colouring within the object and geometry layer displays. 

This is seemingly in line with the general design philosophies of the Houdini environment8  

(Orbolt.com, 2025), this approach replicated other HDAs of buildings with customisable features.  

Due to moving away from the initial concept of building a tool that covers the full pipeline of the 

assets production and instead pairing back the features to primarily focus on geometry, certain 

features observed during the research phase were also dropped. This includes the application of 

differing materials (instead represented by allowing different sections of the construction to be given 

materials independently of the HDA) and the varying transparencies of internally animating assets 

(something that would be required to be provided by the user).  

However, the outputting of the final geometry to allow for it to have material attachments has been 

adequately considered, with the node outputting all the geometry as a singular object while 

simultaneously outputting the different layers of the animation for potential texture application and 

reconstruction. Notably, any material work present on the object prior to animation remain on the 

cladding of the object following the animation’s generation.  

Conclusion 
As a summary of what has been achieved, the final project converts the provided geometry into an 

”under construction” building that can then be altered and edited depending on the preferences of 

the user. The generated structure can then progress from unfinished to duplicating the original 

geometry with its materials and texturing. The timing of each aspect of the construction can then be 

altered to match user preferences, as can the addition of noise and external structures for a more 

realistic construction. Other features have also been implemented to fully overhaul the aesthetics of 

the construction to stylise the resulting timelapse style animation, to allow for less realism-based 
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applications, and asset placement has been developed to allow the user to replicate workers within 

their timelapses for even greater realism.  

All these features have been tested as to both their functionality and their ability to work with each 

other in different circumstances and combinations. The entire HDA has also been efficiency tested, 

notably coming under a stated target of 30 seconds for generating the animation in most 

circumstances.  

Reflection  
While work within the project can on the whole, be considered valuable, and the project overall can 

be considered a success, several alterations to development methodology could be made to improve 

the project in hindsight or moving forward. As a significant portion of development had to be 

reallocated to the testing of previous functions as they relate to the user and to each other, more 

significant time for testing and more efficient testing methodologies would be an easy improvement 

to the current development cycle. Testing with animators and within industry would also benefit the 

usability of the HDA greatly. 

As well as this, several assumptions regarding the ease of various functionalities and the existence of 

certain standards within the Houdini ecosystem would be better revised and discarded as needed. 

Because of a distinct lack of standardisation across HDAs, it would likely improve the project to 

research into possible markers of quality to which this project could be judged, with these deriving 

themselves from interviews with users of the Houdini engine.  

Future work  
Several features could be added to benefit the project in the future. This included the addition of 

possible foundations to the building during its construction as well as other initial constructions to 

replicate the start of a building site prior to the creation of any geometry to represent the 

construction itself. On analysis of conventional Houdini HDA approaches, it may be also worthwhile 

to remove the requirement to avoid caching data within the HDA, developing methods to cache parts 

of the construction animation within the node to better improve generation speed through the reuse 

of unchanged data when the asset’s appearance is being customized. 

As mentioned above, more efficient methodologies for testing could well be created in order to ease 

the development of this project and other HDAs, however the development of proper module 

testing for Houdini is likely beyond the scope of this project and likely to be a significant project in its 

own right. As part of this, the HDA would benefit from a stress test using several versions of the asset 

on differing geometries, possibly to point to the eventual development of TOP multi-threading 

between the different sections of the HDA and (as used within previous work10 (Przemyslaw 

Prusinkiewicz, Hammel and Mjolsness, 1993), possibly altering divergence in the animation on 

occasions where a change between frames stresses the system beyond acceptable levels.  
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Appendixes  

Appendix A: Requirement breakdown 
 

Type Requirement Necesity Fufilled  

Function As a user, I must be able to input geometry, and have 
the output be that geometry growing over time 
gradually by connected primitives.  

Must (A) ✓ 

Function As a user, I must be able to see scaffolding be created 
at the centre of the geometry in the shape of the 
geometry’s eventual mesh, before the scaffolding is 
covered by the primitives.  

Must (A) ✓ 

Function As a user, I expect to be able to customise how the 
geometry is split into individual growing primitives.  

Expect (B) ✓ 

Function As a user, I expect the placement of panels to be 
irregular, with the level of irregularity at a user defined 
level.  

Expect (B) ✓ 

Function As a user, I expect the animation to include the external 
structures and scaffolds necessary for the object’s 
construction t 
o be visually recongisable, with their number being 
customisable.  

Expect (B) ✓ 

Function As a user, I could customise the method in which each 
primitive is placed onto the construction out of a set of 
defined presets.  

Additional 
(C)  

✓ 

Function As a user, I could choose between the outputted 
animation being that of a hollow structure, or that of a 
solid brick-based structure. 

Additional 
(C)  

✓ 

Function As a user, I could toggle the placement of blurred 
figures within the geometry, to replicate the capture of 
workers on the constructing object.   

Additional 
(C)  

✓ 

System The asset must remain fully documented with 
appropriate tool information and an appropriate help-
card following the implementation of a new 
requirement.  

Must (A) ✓ 

System The asset must be streamlined for a user, being 
installed without use of Houdini’s underlying systems.  

Must (A) ✓ 

System The asset must have a clear user interface, with each 
function of the asset clearly demonstrated by its user 
interface controls.  

Must (A) ✓ 

System The asset must be able to render the full output 
animation to the quality displayed in the viewport, with 
appropriate material assignments for each section of 
the animation.  

Must (A) ✓ 

System The asset should generate its animation without the 
need for intermediate file caching or wait times of over 
30 seconds for an iteration of the animation.  

Expect (B) ✓ 
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System The asset could have an appropriate store page or 
online download link with usage examples. 

Additional 
(C)  
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Appendix B: Feature Planning 
 

Requirement Planned Completion Completion Date 

A1 24/06 17/06 

A2 03/07 24/06 

B1 15/07 27/06 

B2 18/07 30/06 

B3 25/07 08/07 

C1 05/08 03/08 

C2 12/08 05/08 

C3 21/08 (overestimation) 16/08 
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Appendix C: Blackbox Testing 
Out of 196 tests, 2 failed and 4 were not implemented, with 2 tests causing more slowdown than 

acceptable should certain UI conditions be met. 

Feature Control Type Test Pre-C C1 C3 

General 

Delay Value Function    

Max    

Min    

Negative    

Mesh 

Animation 
Length 

Value Function    

Max    

Min    

Negative    

Cladding Delay Value Function    

Max    

Min    

Negative    

Internal 
structure 

construction 

Animation 
Length 

Value Function    

Max    

Min    

Negative    

Density Value Function    

Max    

Min    

Negative    

Build Direction Vector Function    

Max    

Min    

Negative    

Internal Colour Vector Function    

Max    

Min    

Negative    

Solid Internals Boolean True     

False    

Solid Internals 
Density* 

Value 
 

Function    

Max     

Min     

Negative    

Segmentation 

Redefine 
toggle 

Boolean True    

False    

Panel Split Value Function    

Max    

Min    

Negative    

Connected 
only toggle 

Boolean True    

False    

Noise Noise toggle Boolean True    
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False    

Noise size Value Function    

Max    

Min    

Negative    

Noise density Value Function    

Max    

Min    

Negative    

Island toggle Boolean True    

False    

Island size Value Function    

Max    

Min    

Negative    

External 
Construction 

Animation 
length 

Value Function    

Max    

Min    

Negative    

Delay length Value Function    

Max    

Min    

Negative    

Deconstruction 
start 

Value Function    

Max    

Min    

Negative    

Deconstruction 
length 

Value Function    

Max    

Min    

Negative    

Scaffold toggle Boolean True    

False    

Scaffold height Value Function    

Max 
Min 

   

   

Negative    

Scaffold 
density 

Value Function    

Max**    

Min    

Negative    

Scaffold 
Dimensions 

Vector Function    

Max    

Min    

Negative     

Scaffold Colour Vector Function    

Max    

Min    

Negative    

Scaffold Gap Value Function    
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 Max    

Min    

Negative    

Beam Type Dropdown Rows    

Columns    

Rows and 
Columns 

   

Triangles    

Quadrilaterals    

Alternating 
Triangles 

   

Reverse 
Triangles 

   

Scaffold Floor Boolean True    

False    

Crane toggle Boolean True    

False    

Number of 
cranes 

Value Function    

Max    

Min    

Negative    

Crane arm 
length 

Value Function    

Max    

Min    

Negative    

Crane Density Value Function    

Max    

Min     

Negative    

Crane Colour Vector Function    

Max    

Min    

Negative    

Crane Slope Value Function    

Max    

Min    

Negative    

Crane Wire 
Height 

Value Function    

Max    

Min    

Negative    

Add Crane 
Wire 

Boolean True    

False    

Crane 
Animation 

Boolean True     

False    

Crane 
Animation 
Rate 

Value Function    

Max    

Min    

Negative    

Stylisation Flip Stylise Boolean True    
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False    

Stylise Portion Value Function    

Max    

Min    

Negative    

Extrusion 
stylise 

Boolean True    

False    

Cladding 
Width 

Value Function    

Max    

Min    

Negative    

Advanced  

Internal 
structure scale 

Value Function    

Max    

Min    

Negative    

Internal 
structure 
width 

Value Function    

Max    

Min    

Negative    

External width Value Function    

Max    

Min    

Negative    

Flip Multiplier 
 

Value 
 

Function    

Max    

Min    

Negative    

Solid Internal 
Gap Fill 

Value Function    

Max    

Min    

Negative    

Add life asset Boolean True    

False    

Scale to grid Boolean True    

False    

Asset Class String Function    

Points for 
Distribution 

Value Function    

Max    

Min    

Negative    

Toggle Ground 
Life 

Boolean True    

False    

Ground Class String Function    

Ground Points Value Function    

Max    

Min    

Negative    

Life Seed Random 
Seed 

Function    

Negative    

Crane Seed Function     
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Random 
Seed 

Negative    

Noise Seed Random 
Seed 

Function    

Negative    

Island Seed Random 
Seed 

Function    

Negative    

Ground Life 
Seed 

Random 
Seed 

Function    

Negative    

 

Key: 

 Test failed. 

 Test Succeeded. 

 Control non-existence at time of testing. 

 

*It should be noted here “failure” is due to the corners of square geometry reacting poorly to this 

specific feature.  

**Aformentioned issue in which scaling scaffolding seemingly causes lag due to UI updates on 

version of Houdini that have been previously windowed.  
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Appendix D: B3 Fomulae 
The intercept point of a given crane’s current angle and another crane’s current rotation is 

considered a position vector in which Y position is not considered.  

The X value of the interception point is defined as: 

𝑖𝑥 =
(𝑂𝑧 − (tan(𝑣) ∗  𝑂𝑥)) − (𝑃𝑧 − (tan(𝑎) ∗  𝑃𝑥))

tan (𝑎) − tan(𝑣)
  

 

𝑖𝑧 = (tan(𝑎) ∗ 𝑖𝑥) +  (𝑃𝑧 − (tan(𝑎) ∗ 𝑃𝑥) 

 

Where: 

i – The point of eventual intecept. 

P – The position of a given crane. 

O – The position of the intercepting crane. 

a – The current rotation of a given crane. 

v – The current rotation of the intercepting crane.  

 

Crane rotation is altered should the distance of the intercept between crane arms be less than the 

distance of the actual modelled crane arm, the distance being defined as: 

𝑑 =  |𝑖 − 𝑣| ∗ 2 

Where: 

v – the position (Y position not considered) of another crane. 

d – calculated intercept distance.  
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Appendix E: C1 Equations 
𝑑 = |𝐷| ∗ (1 + 𝑓) 

Where: 

d - The distance a given piece of cladding is from the final point of construction. This allowing 

cladding to be iterated through in creation order.  

D – A ray cast in the direction of the animation’s construction at a size equal to the final radius of the 

animation’s bounding sphere. 

f – A decimal multiplier given to the distance to allow for customization of animation severity. 

𝑊 =
90

𝑝 ∗ (𝐹 ∗ 2)
 

Where: 

W – Rotation within the distinguished user defined section. 

P – User defined section of stylisation. 

F – Defined as the total frame in the whole animation. 

𝐹𝑟 =
𝑑

𝑅
∗ 2𝐹 

Where: 

R – Radius of the geometry’s bounding sphere. 

Fr – rotation in terms of Frames. 

 

𝐹𝑖𝑛 =  ((90 ∗
𝐹𝑟

𝑝 ∗ (𝐹 ∗ 2)
) + 𝑊) − (90 ∗

𝑐𝑓

𝑝 ∗ (𝐹 ∗ 2)
) 

Where: 

cf – Current frame. 

Fin – The final rotation of a primitive or cladding. 

 

 


