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Abstract

This thesis presents a comprehensive comparative analysis of three distinct arti-

ficial intelligence paradigms applied to complex spatial reasoning tasks in gam-

ing environments. Through the development and evaluation of Vision-Language

Model (VLM) integration, traditional Reinforcement Learning (RL) approaches,

and Small Language Model (SLM) hybrid architectures, this research establishes

fundamental boundaries between statistical learning and symbolic reasoning ca-

pabilities in spatial intelligence tasks.

The study employs three custom-designed gaming environments as experimen-

tal testbeds: Memory Maze, a sophisticated 80Ö20 grid-based dungeon crawler

requiring multi-stage memory challenges; KeyDoor, a variable-complexity navi-

gation environment for RL evaluation; and a hybrid dungeon system for SLM

integration testing. Each environment presents unique challenges that expose the

strengths and limitations of different AI approaches.

Key findings reveal that while traditional RL methods achieve perfect performance

on training tasks (100% success rate), they demonstrate catastrophic general-

ization failure (0% success) on novel environments, regardless of representation

type (object-centric or raw pixels). This failure pattern persists across Behav-

ioral Cloning, Mixture of Experts, and Proximal Policy Optimization algorithms,

indicating fundamental limitations in statistical learning approaches rather than

architectural inadequacies.

In contrast, Vision-Language Models demonstrate moderate success through in-

novative prompt engineering and two-stage coordinate analysis systems, achieving
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35-80% accuracy in spatial reasoning tasks despite significant challenges in coordi-

nate recognition and command generation. The research documents comprehen-

sive solutions to VLM limitations, including memory fallback systems, command

synchronization architectures, and multi-modal representation techniques.

Most significantly, the SLM program synthesis approach using Llama 3.2 3B

achieves breakthrough performance with 100% success rate and perfect gener-

alization to novel environments. This paradigm-shifting result demonstrates that

transformer-based reasoning, leveraging pre-trained world knowledge and sym-

bolic processing capabilities, fundamentally outperforms traditional neural RL

approaches in spatial intelligence domains. The hybrid architecture combining

rule-based pathfinding with SLM high-level planning achieved greater than 85%

navigation success rates while reducing response times by 37% through optimiza-

tion techniques.

The research contributes novel insights into the nature of artificial spatial intel-

ligence, establishing clear boundaries between pattern-based statistical learning

and genuine symbolic reasoning. These findings have significant implications for

future AI system design, suggesting that effective spatial reasoning requires the

integration of pre-trained knowledge, natural language understanding, and compo-

sitional reasoning capabilities rather than pure trial-and-error learning. The thesis

concludes with a framework for developing hybrid AI architectures that leverage

the complementary strengths of different paradigms, providing practical guidelines

for researchers and practitioners in game AI and spatial reasoning domains.

Keywords: Vision-Language Models, Reinforcement Learning, Small Language

Models, Spatial Reasoning, Game AI, Hybrid Architecture, Program Synthesis,

Object-Centric Learning
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Chapter 1

Introduction

1.1 Research Context and Motivation

The intersection of artificial intelligence and spatial reasoning in gaming envi-

ronments represents one of the most challenging frontiers in modern computa-

tional intelligence research. While traditional approaches to game-playing AI have

achieved remarkable successes—from Deep Blue’s chess mastery to AlphaGo’s

strategic breakthroughs—the challenge of general spatial reasoning in complex,

multi-modal environments remains largely unsolved. This thesis investigates this

challenge through a comprehensive comparative analysis of three distinct AI paradigms:

Vision-Language Models (VLMs), Reinforcement Learning (RL) approaches, and

Small Language Model (SLM) hybrid architectures.

The motivation for this research stems from a fundamental question in artificial

intelligence: what distinguishes genuine spatial intelligence from pattern recog-

nition and memorization? Gaming environments provide an ideal testbed for

exploring this question, offering controlled yet complex scenarios that require

navigation, object manipulation, memory retention, and strategic planning. Un-

like simplified benchmark tasks, the custom-designed games developed for this

6



CHAPTER 1. INTRODUCTION 7

research—Memory Maze, KeyDoor, and hybrid dungeon environments—present

challenges that mirror real-world spatial reasoning requirements while maintaining

scientific reproducibility.

The significance of this research extends beyond gaming applications. Spatial

reasoning capabilities are fundamental to numerous AI applications, including

robotics, autonomous navigation, architectural design, and human-computer in-

teraction. By establishing clear boundaries between different AI paradigms’ ca-

pabilities and limitations, this research provides critical insights for selecting and

designing appropriate AI systems for spatial intelligence tasks. The findings chal-

lenge prevailing assumptions about the sufficiency of neural learning approaches

and demonstrate the necessity of symbolic reasoning and pre-trained world knowl-

edge for genuine spatial intelligence.

1.2 Research Objectives

This thesis pursues several interconnected research objectives designed to com-

prehensively evaluate and compare different AI paradigms in spatial reasoning

contexts:

The primary objective involves developing and implementing three distinct AI

systems capable of autonomous gameplay in complex spatial environments. This

includes creating a Vision-Language Model integration system with sophisticated

prompt engineering and coordinate analysis capabilities, implementing multiple

Reinforcement Learning architectures with both raw and object-centric represen-

tations, and designing a hybrid Small Language Model system combining neural

and rule-based approaches.

Secondary objectives focus on systematic evaluation and comparison of these ap-

proaches. The research aims to identify fundamental limitations and boundaries
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between statistical learning and symbolic reasoning paradigms, document success-

ful techniques and failed approaches with detailed analysis, and establish quan-

titative performance metrics for spatial reasoning capabilities. Additionally, the

study seeks to develop reusable frameworks and guidelines for future spatial AI

research.

Tertiary objectives address broader implications and applications. The research

investigates the role of representation engineering in spatial intelligence, explor-

ing whether object-centric representations provide advantages over raw sensory

input. It examines the importance of pre-trained world knowledge versus learning

from scratch, analyzes the trade-offs between computational efficiency and rea-

soning capability, and proposes hybrid architectures that leverage complementary

strengths of different paradigms.

1.3 Research Questions

This thesis addresses several hierarchical research questions designed to probe the

fundamental nature of spatial intelligence in artificial systems:

Can traditional Reinforcement Learning methods, regardless of representation

type or architectural sophistication, achieve genuine spatial reasoning and gener-

alization capabilities comparable to transformer-based approaches? This primary

question drives the comparative analysis between statistical learning and symbolic

reasoning paradigms.

What are the fundamental limitations of Vision-Language Models in spatial rea-

soning tasks, and can these limitations be overcome through engineering solutions

such as prompt optimization, memory systems, and coordinate representation

techniques? This question explores the boundaries of current multimodal AI ca-

pabilities.
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How do Small Language Models perform in spatial reasoning when augmented

with rule-based assistance systems, and what hybrid architectures best leverage

the complementary strengths of neural and algorithmic approaches? This investi-

gation reveals the potential of combining different AI paradigms.

Does object-centric representation learning provide measurable advantages over

raw sensory representations in spatial reasoning tasks, or are the challenges more

fundamental than representation choice? This question challenges assumptions

about the importance of structured representations.

What cognitive capabilities—memory, planning, mathematical reasoning, pat-

tern recognition—are essential for spatial intelligence, and how do different AI

paradigms address these requirements? This analysis identifies core components

of spatial reasoning systems.

1.4 Thesis Contributions

This research makes several significant contributions to the field of artificial intel-

ligence and spatial reasoning:

Paradigm Boundary Establishment: The thesis provides the first comprehen-

sive empirical comparison demonstrating fundamental superiority of transformer-

based reasoning over traditional RL in spatial intelligence tasks. Through con-

trolled experiments, the research establishes quantitative evidence that statisti-

cal learning approaches cannot match symbolic reasoning capabilities of language

models, clearly delineating when RL succeeds (specific task mastery) versus where

it fails (genuine generalization).

Comprehensive RL Limitation Analysis: Through systematic evaluation

across multiple RL paradigms (Behavioral Cloning, Mixture of Experts, Proximal

Policy Optimization), the research provides definitive proof that representation
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engineering alone cannot overcome fundamental RL limitations. The identifica-

tion of covariate shift as the root cause of RL generalization failure, rather than

architectural inadequacy, challenges prevailing assumptions about the sufficiency

of neural learning approaches.

Vision-Language Model Integration Framework: The thesis documents

comprehensive solutions to VLM spatial reasoning challenges, including develop-

ment of two-stage coordinate analysis systems achieving 80% success rates, imple-

mentation of memory fallback mechanisms for context management, and creation

of command synchronization architectures for real-time game control. These con-

tributions provide practical frameworks for VLM integration in spatial domains.

SLM Hybrid Architecture Innovation: The research demonstrates break-

through performance through SLM program synthesis, achieving 100% success

rate with perfect generalization using Llama 3.2 3B, 37% efficiency improvements

through optimization techniques, and successful integration of rule-based pathfind-

ing with neural planning. This establishes a new paradigm for spatial AI system

design.

Methodological Innovations: The thesis introduces novel evaluation proto-

cols for comparing fundamentally different AI paradigms, creates comprehensive

spatial reasoning benchmarks exposing limitations of statistical learning, and de-

velops reproducible experimental frameworks for future comparative intelligence

research.

Theoretical Insights: The research provides a theoretical framework distin-

guishing statistical pattern learning from symbolic reasoning, empirical evidence

for the necessity of pre-trained world knowledge in spatial tasks, and practical

guidelines for selecting appropriate AI paradigms based on task requirements.
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1.5 Document Structure

This thesis is organized according to established academic conventions, with each

chapter building upon previous findings to construct a comprehensive analysis of

AI spatial reasoning capabilities.

Chapter 2 reviews previous work across the three AI paradigms under investi-

gation. It examines the evolution and current state of Vision-Language Models,

surveys traditional Reinforcement Learning approaches and their applications to

spatial tasks, and explores recent developments in Small Language Models and

program synthesis. This literature review establishes the theoretical foundation

and identifies gaps addressed by this research.

Chapter 3 provides technical background necessary for understanding the experi-

mental methodology. It details the design and implementation of the three gaming

environments used as testbeds, explains the mathematical foundations underly-

ing pathfinding algorithms and coordinate systems, and describes the technical

architectures for integrating AI systems with game engines.

Chapter 4 presents the comprehensive solution developed through this research.

This includes detailed descriptions of the VLM integration system with its various

coordinate reading approaches, the implementation of multiple RL architectures

with different representation types, and the hybrid SLM system combining neu-

ral and rule-based components. The chapter also documents the experimental

methodology, training procedures, and evaluation protocols.

Chapter 5 analyzes experimental results across all AI paradigms. It presents

quantitative performance metrics demonstrating the superiority of transformer-

based approaches, identifies failure patterns in RL generalization attempts, and

documents successful optimization techniques for each system. The comparative

analysis establishes clear performance hierarchies and paradigm boundaries.
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Chapter 6 concludes the thesis with critical evaluation of achievements and limita-

tions. It summarizes key findings and their implications for AI research, discusses

unexpected discoveries and areas needing improvement, and proposes future re-

search directions including advanced hybrid architectures and multimodal integra-

tion possibilities.



Chapter 2

Previous Work

2.1 Vision-Language Models in Gaming

2.1.1 Evolution of Vision-Language Models

The development of Vision-Language Models represents a significant advancement

in multimodal artificial intelligence systems. Recent research from leading insti-

tutions has demonstrated that modern VLMs excel at static image analysis and

description, simple spatial relationship identification, object detection and classi-

fication, and basic reasoning about visual content [7]. These capabilities suggest

potential for gaming applications where visual understanding and decision-making

are paramount.

However, the application of VLMs to dynamic gaming environments reveals signif-

icant limitations. Current models struggle with complex spatial reasoning across

multiple sequential steps, often failing to maintain consistent understanding of

game state evolution. Recent research by (author?) [14] demonstrates that even

advanced VLMs like BLIP achieve only 56% accuracy on spatial reasoning tasks

compared to 99% human performance. Memory retention across sequential inter-

13
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actions poses another challenge, as VLMs typically process each interaction inde-

pendently without maintaining persistent state information. Coordinate system

comprehension remains particularly problematic, with models frequently confus-

ing relative and absolute positioning systems. The development of specialized

architectures like SpatialVLM [6] attempts to address these limitations, though

significant challenges remain in dynamic scene understanding essential for real-

time gameplay.

The integration of VLMs into gaming systems has followed several evolutionary

paths. Early attempts focused on simple visual question-answering about game

screenshots, achieving limited success in identifying objects and basic relation-

ships. Subsequent research explored real-time gameplay assistance, though re-

sponse latency and accuracy issues limited practical applications. More recent

work has investigated VLMs as high-level planning agents, delegating low-level

control to traditional algorithms while maintaining strategic oversight.

2.1.2 Prompt Engineering for Visual Tasks

Research into effective VLM prompting has revealed critical principles for opti-

mizing model performance. Studies from multiple institutions demonstrate that

conciseness consistently outperforms verbosity in prompt design. Simple, direct

prompts focusing on specific objectives yield more reliable responses than compre-

hensive instructions attempting to cover all contingencies. This finding contradicts

intuitive assumptions about the value of detailed guidance.

Few-shot learning through examples proves particularly effective for VLMs. Demon-

strating desired output formats through concrete examples significantly improves

response consistency and accuracy. The technique leverages the model’s pattern

recognition capabilities while reducing ambiguity in task interpretation. Research

indicates that three to five well-chosen examples optimize the balance between
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guidance and context consumption.

Constraint-driven creativity emerges as another powerful technique. Paradoxi-

cally, imposing limitations on response format and content often improves output

quality compared to open-ended prompts. Constraints provide clear success crite-

ria and reduce the search space for viable responses, leading to more focused and

accurate outputs. This principle applies particularly strongly to coordinate-based

tasks where precision is essential.

The importance of fresh context in each interaction cannot be overstated. VLMs

exhibit significant performance degradation when previous interaction context in-

fluences current decisions. Clearing context between interactions and presenting

each task as independent improves reliability and reduces error propagation. This

finding has significant implications for sequential gameplay scenarios requiring

memory across turns.

2.1.3 Limitations in Spatial Reasoning

Despite advances in VLM capabilities, spatial reasoning remains a fundamental

challenge. Coordinate recognition accuracy varies dramatically with image quality

and text size. Models achieve reasonable performance with large, clear coordinate

labels but struggle with the small fonts typical in game interfaces. Compression

artifacts from image encoding further degrade recognition accuracy, particularly

for dense numerical displays.

Spatial relationship understanding poses complex challenges beyond simple object

identification. While VLMs can identify that one object is ”above” or ”left of”

another, quantifying these relationships precisely proves difficult. Models struggle

to translate visual spatial information into actionable movement commands, often

providing vague directional guidance rather than specific navigation instructions.
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The challenge of maintaining spatial context across multiple interactions com-

pounds these difficulties. VLMs process each image independently, lacking mech-

anisms to build persistent mental maps of game environments. This limitation

prevents effective navigation in scenarios requiring memory of previously visited

locations or understanding of global spatial structure beyond the current view.

Mathematical operations on spatial data represent another significant limitation.

While VLMs can sometimes identify coordinate values, performing calculations

such as distance computation or path planning based on these values exceeds

current capabilities. The models lack the algorithmic reasoning necessary for

systematic spatial problem-solving, defaulting to pattern matching rather than

genuine calculation.

2.2 Reinforcement Learning Approaches

2.2.1 Traditional RL Methods in Gaming

Reinforcement Learning has achieved remarkable success in game-playing applica-

tions, from classic Atari games to complex strategy games. The appeal of RL stems

from its ability to discover optimal strategies through interaction with the environ-

ment, potentially surpassing human-designed heuristics. Traditional approaches

have relied heavily on value-based methods such as Q-learning and policy gradient

techniques, achieving superhuman performance in specific domains.

Behavioral Cloning represents the most direct approach to imitation learning,

training agents to replicate expert demonstrations through supervised learning

[12]. The method’s simplicity and data efficiency make it attractive for scenarios

where expert demonstrations are readily available. However, BC suffers from

well-documented limitations including covariate shift, where small deviations from
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training distributions lead to compounding errors. The distribution mismatch

between training and deployment scenarios often results in catastrophic failure

when encountering novel situations [16].

Mixture of Experts architectures attempt to address the diversity challenge by

maintaining multiple specialized sub-networks, each handling different aspects of

the task space [13]. The gating mechanism learns to route inputs to appropriate

experts, theoretically enabling better handling of varied scenarios. Recent applica-

tions in transformer architectures demonstrate the scalability of MoE approaches

[9]. Despite architectural sophistication, MoE models still struggle with genuine

out-of-distribution generalization.

Proximal Policy Optimization has emerged as a standard algorithm for policy

gradient methods, balancing sample efficiency with training stability [17]. PPO’s

clipped objective function prevents destructive large policy updates while main-

taining the benefits of on-policy learning. Implementation details significantly

impact PPO performance, with seemingly minor choices affecting convergence

and final policy quality [8]. The algorithm’s success in continuous control and

game-playing tasks has established it as a benchmark for RL research.

2.2.2 Object-Centric Representation Learning

The hypothesis that structured, object-centric representations improve general-

ization has motivated extensive research into representation learning methods.

Object-centric approaches aim to decompose scenes into discrete entities, poten-

tially enabling compositional understanding and improved transfer to novel config-

urations. Recent investigations by (author?) [19] provide systematic evaluation

of object-centric representation pre-training for reinforcement learning, though

their findings reveal limitations in generalization benefits.

Slot Attention introduced an attention-based mechanism for discovering objects
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without supervision, learning to segment scenes into meaningful components [15].

The method’s ability to handle variable numbers of objects and learn interpretable

representations suggests potential advantages for spatial reasoning tasks. However,

the gap between object discovery and effective decision-making remains significant.

MONet demonstrated successful scene decomposition through a recurrent atten-

tion mechanism, iteratively explaining away parts of the input [5]. The model’s

compositional generation capabilities suggest understanding of object relationships

and scene structure. Yet translation of these representations into effective policies

for complex tasks proves challenging.

Iterative Variational Inference approaches such as IODINE further refined object-

centric learning through iterative refinement of object representations [10]. The

method’s theoretical grounding in variational inference provides principled learn-

ing objectives and uncertainty quantification. Despite theoretical advantages, em-

pirical benefits for downstream tasks remain limited.

2.2.3 Generalization Challenges in RL

The generalization problem in Reinforcement Learning extends beyond simple

transfer scenarios. While RL agents excel at mastering specific tasks through ex-

tensive training, adapting learned policies to even slightly modified environments

often results in complete failure. This brittleness contrasts sharply with human

ability to apply learned concepts flexibly across varied contexts.

Covariate shift emerges as a fundamental challenge when deploying RL policies.

The sequential nature of decision-making means that small initial errors compound

rapidly, leading the agent into state distributions never encountered during train-

ing. Traditional solutions such as domain randomization and data augmentation

provide limited relief, as they cannot anticipate all possible variations.
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The sample efficiency problem compounds generalization challenges. RL agents

typically require millions of interactions to learn effective policies for single tasks.

Scaling this approach to achieve robust generalization across task variations would

require computationally prohibitive training regimes. This limitation motivates

research into more sample-efficient learning paradigms.

Meta-learning approaches attempt to address generalization through learning-to-

learn frameworks. By training across distributions of tasks, meta-learning algo-

rithms aim to acquire priors enabling rapid adaptation to novel scenarios. How-

ever, these methods still assume that test tasks come from similar distributions as

training tasks, limiting their applicability to genuinely novel situations.

2.3 Small Language Models and Program Syn-

thesis

2.3.1 Evolution of Small Language Models

The development of Small Language Models represents a pragmatic response to the

computational and deployment challenges of large-scale language models. While

models like GPT-4 demonstrate remarkable capabilities, their resource require-

ments limit practical applications. SLMs with parameters ranging from 1-7 bil-

lion offer a compelling balance between capability and efficiency, enabling local

deployment and real-time applications.

Recent advances in model compression and knowledge distillation have enabled

smaller models to retain much of the reasoning capability of their larger coun-

terparts. Techniques such as quantization, pruning, and architectural optimiza-

tion reduce model size while preserving essential capabilities. The Llama series

of models exemplifies this trend, with models like Llama 3.2 3B demonstrating
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strong performance on reasoning tasks despite their compact size.

The application of SLMs to program synthesis has shown particular promise. Code

generation capabilities, once exclusive to massive models, now appear in models

small enough to run on consumer hardware [18]. This democratization of AI

capabilities enables new applications in domains requiring local processing or real-

time response.

2.3.2 Program Synthesis for Spatial Tasks

Program synthesis approaches to spatial reasoning leverage the symbolic process-

ing capabilities of language models. Unlike neural approaches that learn implicit

representations, program synthesis generates explicit algorithmic solutions. This

fundamental difference enables better interpretability and generalization to novel

scenarios.

The success of models like Codex in generating functional code suggests potential

for spatial reasoning applications [7]. By framing spatial tasks as programming

problems, SLMs can leverage their pre-trained understanding of algorithms and

data structures. This approach transforms complex navigation challenges into

systematic step-by-step procedures.

Hybrid approaches combining program synthesis with traditional algorithms show

particular promise. The SLM generates high-level plans while delegating detailed

execution to specialized algorithms. This division of labor leverages the com-

plementary strengths of neural and symbolic approaches, achieving better per-

formance than either approach alone. Recent surveys of neuro-symbolic AI [4]

highlight the growing importance of such hybrid architectures in creating superior

AI systems that combine reasoning capabilities with learning adaptability.
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2.3.3 Integration Challenges and Solutions

Integrating language models with real-time systems presents unique technical chal-

lenges. Latency requirements for gaming applications often conflict with the com-

putational demands of neural inference. Solutions include caching strategies for

common scenarios, asynchronous processing pipelines, and adaptive quality set-

tings based on time constraints.

Context window limitations pose another significant challenge. SLMs typically

support contexts of 4,000-8,000 tokens, insufficient for maintaining complete game

state in complex environments. Effective solutions include dynamic context com-

pression, prioritized information retention, and external memory systems for long-

term storage.

The translation between natural language reasoning and precise action execution

requires careful engineering. Language models excel at high-level planning but

struggle with low-level motor control. Successful systems implement robust pars-

ing and validation layers to convert natural language outputs into reliable action

sequences.
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Technical Background

3.1 Game Environment Design

3.1.1 Memory Maze Architecture

Memory Maze represents the most sophisticated gaming environment developed

for this research, implementing an 80Ö20 grid-based dungeon crawler that chal-

lenges both human and artificial players through complex multi-stage quests.

Games have long served as ideal testbeds for artificial intelligence research due

to their controlled yet complex nature [1]. The environment utilizes Pygame 2.6.1

with NumPy for efficient grid management, rendering at 60 frames per second

with a dynamic camera system that follows the player while maintaining world

boundary constraints.

The game world consists of three interconnected chambers, each serving specific

gameplay purposes. The right chamber, spanning coordinates 60-80 on the x-axis,

functions as the starting area featuring the RGB puzzle mechanics. Three em-

bedded wall key slots at coordinates (64,0), (67,0), and (70,0) provide attachment

points for colored boxes. A prison cell containing the Queen occupies the bottom

22
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section at position (69,18), serving as the ultimate objective. The physics system

implements realistic box manipulation with Red boxes assigned type 6, Green type

7, and Blue type 8 for internal representation.

The middle passage, occupying coordinates 25-55, creates a narrow three-tile cor-

ridor connecting the chambers. This architectural choice prevents players from

bypassing challenges, enforcing sequential progression through the game’s phases.

A guard positioned at coordinates (24,10) serves as the gatekeeper, implementing

mathematical challenges that must be solved before accessing the left chamber.

The left chamber, spanning coordinates 0-20, contains a procedurally generated

maze using a backtracking algorithm with entropy-based randomization. The

master key resides precisely at coordinates (0,10), requiring successful navigation

through the maze’s complex structure. The maze generation system maintains

separate dictionaries for horizontal and vertical walls, enabling precise collision

detection and pathfinding calculations.

3.1.2 KeyDoor Environment Specifications

The KeyDoor environment serves as a controlled testbed for evaluating Reinforce-

ment Learning approaches, offering variable complexity through configurable grid

sizes and objective structures. Grid dimensions range from 6Ö6 to 12Ö12, with ten

pre-designed templates (T1-T10) providing reproducible experimental conditions.

The environment implements a clear objective structure: agents must collect all

keys before opening the door to complete each episode.

Two variants of the environment address different learning paradigms. Key-

DoorEnv implements standard sparse rewards suitable for behavioral cloning ex-

periments, providing feedback only upon successful task completion. KeyDoor-

RLEnv incorporates dense reward shaping specifically optimized for reinforcement

learning algorithms, offering intermediate rewards for progress toward objectives.
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This dual implementation enables fair comparison across different learning ap-

proaches.

The observation space supports both raw and abstract representations, crucial for

testing the object-centric learning hypothesis. Raw observations provide complete

pixel grids maintaining spatial relationships, while entity-list representations ab-

stract the environment into symbolic descriptions of object positions and states.

This flexibility enables systematic evaluation of representation impact on learning

and generalization.

3.1.3 Physics and Collision Systems

The physics implementation employs multiple validation layers ensuring realis-

tic gameplay mechanics. Box attachment requires precise adjacency validation,

preventing physically impossible configurations. The system validates player po-

sition, checks for adjacent boxes, verifies attachment feasibility considering walls

and boundaries, and updates box positions maintaining relative offsets during

movement.

Collision detection operates through a multi-layered approach addressing differ-

ent obstacle types. Grid-based walls form the primary boundaries, with efficient

lookup tables enabling constant-time collision checks. Maze walls utilize separate

horizontal and vertical dictionaries, supporting the complex structure of procedu-

rally generated labyrinths. Entity conflicts prevent multiple objects occupying the

same grid position, maintaining game state consistency.

The camera system implements smooth following behavior while respecting world

boundaries. Centering on the player position when possible, the camera clamps

to world edges preventing out-of-bounds viewing. This system supports both full-

world visibility for strategic planning and limited viewport for realistic gameplay

constraints. Culling optimization ensures efficient rendering by processing only
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visible elements.

3.2 Mathematical Foundations

3.2.1 A* Pathfinding Algorithm

The A* algorithm serves as the foundation for navigation in complex maze en-

vironments, providing optimal pathfinding through systematic exploration of the

search space [11]. The algorithm maintains two sets of nodes: an open set con-

taining nodes to be evaluated and a closed set of already evaluated nodes. Each

node stores three critical values: g(n) representing the cost from the start node,

h(n) estimating the cost to the goal using a heuristic function, and f(n) = g(n) +

h(n) representing the total estimated cost.

The Manhattan distance heuristic proves particularly suitable for grid-based en-

vironments where diagonal movement is prohibited. This heuristic calculates the

sum of absolute differences in x and y coordinates: h(n) = —x current - x goal—

+ —y current - y goal—. The admissibility of this heuristic, never overestimating

the actual cost, guarantees optimal path discovery.

Implementation optimizations significantly impact performance in large-scale envi-

ronments. Priority queue data structures enable efficient node selection, reducing

complexity from O(n) to O(log n) for extraction operations. Bidirectional search,

exploring simultaneously from start and goal, can reduce the search space expo-

nentially in favorable conditions. Early termination strategies, stopping when the

goal is reached rather than exhausting all possibilities, provide practical speedup

without sacrificing optimality.
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Algorithm 1 A* Pathfinding Algorithm

Input: start node, goal node, heuristic function h(n)
Output: optimal path from start to goal

Initialize open set = {start}
Initialize closed set = ∅
g(start) = 0
f(start) = h(start)

while open set is not empty do
current = node in open set with lowest f(current)
if current = goal then
return reconstruct path(current)

end if
remove current from open set
add current to closed set
for each neighbor of current do
if neighbor in closed set then
continue

end if
tentative g = g(current) + distance(current, neighbor)
if neighbor not in open set OR tentative g ¡ g(neighbor) then
g(neighbor) = tentative g
f(neighbor) = g(neighbor) + h(neighbor)
add neighbor to open set

end if
end for

end while
return failure



CHAPTER 3. TECHNICAL BACKGROUND 27

3.2.2 Coordinate System Representations

The challenge of coordinate representation for AI systems reveals fundamental

differences in how humans and machines process spatial information. Humans

naturally perceive grids as two-dimensional arrays with intuitive row-column rela-

tionships. Artificial systems require explicit encoding of these relationships, with

different representations offering various trade-offs.

Numeric grid representations encode positions as (y, x) tuples, following the row-

major convention common in computer science. This representation enables ef-

ficient array indexing and mathematical operations but proves challenging for

vision-based AI systems to parse from visual input. The small font sizes typical

in game displays (often 12 pixels or less) create particular difficulties for optical

character recognition.

Visual ASCII representations provide an alternative encoding using symbolic char-

acters to represent different entity types. Walls might be represented as ‘#’, empty

spaces as ‘.’, and the player as ‘@’. This representation bridges the gap between

human-readable formats and machine-processable data, though ambiguity in sym-

bol interpretation can introduce errors.

Dual-representation strategies combining multiple encoding schemes demonstrate

superior performance. By providing both numeric coordinates and visual sym-

bols, AI systems can cross-reference information to reduce errors. Explicit exam-

ples showing coordinate-to-movement translations further improve understanding:

P̈osition (0,4) = Row 0, Column 4 = TOP row, 5th position from lefẗ.
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3.2.3 Memory and Context Management

Efficient memory management proves critical for AI systems operating under com-

putational constraints. Language models face particular challenges with fixed con-

text windows, typically ranging from 4,000 to 128,000 tokens depending on model

architecture. Game state representations can easily exceed these limits, necessi-

tating sophisticated compression and prioritization strategies.

Dynamic context compression employs multiple techniques to reduce token con-

sumption while preserving essential information. Spatial data compression focuses

on representing only changed elements rather than complete state snapshots. Tra-

jectory summarization replaces detailed move histories with high-level patterns

and outcomes. Priority-based retention ensures critical information such as cur-

rent objectives and recent failures remains accessible.

External memory systems extend effective context through persistent storage

mechanisms. Short-term memory buffers maintain recent actions and observa-

tions, typically the last 10-20 game steps. Working memory stores current task-

relevant information such as collected keys or discovered paths. Long-term mem-

ory preserves successful strategies and failure patterns across episodes, enabling

learning from experience.

Emergency fallback mechanisms activate when context windows approach capac-

ity. These systems maintain minimal viable context containing only position,

immediate objective, known obstacles, and last action outcome. Recovery strate-

gies automatically reconstruct fuller context when capacity becomes available,

ensuring continuity despite temporary compression.
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Your Solution

4.1 Vision-Language Model Integration

4.1.1 System Architecture Overview

The Vision-Language Model integration developed for this research represents a

sophisticated bridge between game state representation and AI decision-making.

The system implements a multi-stage pipeline that captures game screenshots, en-

codes them for transmission, analyzes them through VLM inference, and translates

responses into executable game commands. This architecture required solving nu-

merous technical challenges related to image processing, prompt engineering, and

synchronization between asynchronous AI responses and real-time game execution.

The core architecture centers around an AIPlayerAgent class that maintains direct

reference to the pygame game instance. This tight coupling enables real-time state

access and command execution while managing the complexity of asynchronous

AI communication. The agent implements a command queue system that buffers

AI decisions and executes them synchronously with the game’s update cycle, pre-

venting race conditions and ensuring consistent state transitions.

29
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The screenshot capture pipeline operates at configurable intervals, typically ev-

ery 100-200 milliseconds during active gameplay. High-resolution captures at

1200Ö650 pixels preserve coordinate readability while balancing transmission over-

head. The system automatically converts pygame surfaces to PNG format, then

encodes them as base64 strings for API transmission. A caching mechanism stores

successful captures, enabling retry logic when API calls fail without requiring new

screenshots.

4.1.2 Two-Stage Coordinate Analysis System

The most significant breakthrough in VLM integration came through the devel-

opment of a two-stage coordinate analysis system that separates observation from

action generation. This approach addresses fundamental limitations in VLM spa-

tial reasoning by distributing cognitive load across multiple focused interactions.

The observation phase presents the game screenshot with instructions to analyze

and understand the spatial layout. The AI examines player position, identifies

RGB boxes and their coordinates, locates target slots and objectives, and confirms

understanding with a simple acknowledgment. This separation allows the VLM to

process visual information without the pressure of immediately generating actions,

improving accuracy from 35% to 95% for scene understanding.

The action phase leverages the stored visual understanding to generate movement

commands. With the cognitive burden of scene analysis already completed, the

VLM can focus on calculating paths and generating appropriate command se-

quences. This phase achieves 75% accuracy in command generation, a significant

improvement over single-stage approaches that attempted simultaneous analysis

and action planning.

Implementation details prove critical for system success. The cached image from

the observation phase is reused in the action phase, eliminating potential trans-
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mission failures and ensuring consistent visual context. Response parsing employs

multiple fallback strategies to handle varied VLM output formats, from simple

character responses to complex JSON structures. Command validation filters

physically impossible actions, preventing errors that could destabilize game state.

4.1.3 Comprehensive Coordinate Reading Solutions

The research systematically explored seven distinct approaches to coordinate read-

ing, revealing fundamental challenges and effective solutions. Each method pro-

vided insights into VLM capabilities and limitations, ultimately informing the

successful two-stage system.

Direct OCR approaches attempted to read coordinate numbers directly from grid

displays. Despite optimization efforts including font enlargement, contrast en-

hancement, and resolution increases, accuracy remained at approximately 35%.

The failure of OCR approaches stems from VLMs’ limited capability with small

text recognition, particularly when overlaid on complex backgrounds.

Relative positioning navigation achieved moderate success by instructing the VLM

to calculate movements based on relative positions rather than absolute coordi-

nates. While single-step accuracy reached 90%, multi-step sequences degraded to

60% accuracy due to error accumulation. The approach revealed VLMs’ difficulty

with maintaining spatial context across sequential decisions.

Object-based landmark navigation leveraged VLMs’ superior object recognition

capabilities. By identifying and navigating toward visually distinct landmarks

such as colored boxes or NPCs, the system achieved 70% success rates. However,

precision requirements for exact positioning, such as box attachment, exceeded

the approach’s capabilities.

The hybrid coordinate-landmark fusion approach attempted to combine multi-
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ple navigation strategies but resulted in decreased performance due to increased

prompt complexity. This failure demonstrated that VLMs perform better with

focused, single-strategy instructions rather than multi-faceted decision trees. Fig-

ure 4.1 demonstrates the coordinate recognition testing process showing VLM

analysis of the game grid structure.

Figure 4.1: Coordinate recognition testing showing VLM analysis of game grid

4.2 Reinforcement Learning Implementation

4.2.1 Agent Architecture Design

The Reinforcement Learning implementation encompasses three distinct algorith-

mic approaches, each tested with both raw pixel and object-centric representa-

tions. This comprehensive evaluation framework enables systematic comparison

of learning paradigms and representation choices, providing insights into the fun-

damental limitations of neural learning approaches for spatial reasoning tasks.

Behavioral Cloning agents implement straightforward supervised learning from

expert demonstrations. The raw variant employs a convolutional neural network

with three convolutional layers (1�16�32�64 channels) followed by fully con-
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nected layers (64�256�64�actions). The abstract variant processes entity lists

through per-entity encoders, applies attention-based pooling, and generates ac-

tions through a multi-layer perceptron. Both architectures minimize cross-entropy

loss between predicted and expert actions.

Mixture of Experts architectures introduce specialized sub-networks to handle di-

verse scenarios. The implementation maintains four expert networks with top-2

routing, allowing combination of multiple expert opinions. A gating network de-

termines expert weights based on input features, with load balancing penalties

ensuring all experts remain active. This architecture theoretically enables special-

ization for different game situations, though empirical results reveal limitations in

practice.

Proximal Policy Optimization implements full reinforcement learning with policy

gradient updates. The architecture includes separate actor and critic heads sharing

a common feature encoder. The raw variant uses convolutional feature extraction

with adaptive pooling, while the abstract variant employs entity encoding with

masked mean pooling. Training utilizes generalized advantage estimation with

careful hyperparameter tuning for stable convergence.

4.2.2 Dataset Generation and Oracle Policy

Expert demonstration quality critically impacts imitation learning success. The

oracle policy implements optimal navigation through Manhattan distance calcu-

lations and A* pathfinding when obstacles intervene. The policy prioritizes keys

by proximity, navigates efficiently to each target, and proceeds to the door once

all keys are collected. This approach guarantees successful episode completion,

providing high-quality training data.

Dataset generation produced 5,100 state-action pairs across six training templates,

with 50 episodes per template ensuring diverse starting conditions. The oracle



CHAPTER 4. YOUR SOLUTION 34

achieved 100% success rate, demonstrating the solvability of all training scenarios.

Action distributions remained balanced, preventing policy bias toward specific

movements. Trajectory lengths varied from 15 to 60 steps depending on template

complexity and key placement.

4.2.3 Training Procedures and Optimization

Training configurations were carefully tuned for each algorithm based on prelimi-

nary experiments and best practices from literature. Behavioral Cloning utilized

Adam optimizer with learning rates of 3e-4 for abstract and 1e-4 for raw represen-

tations, reflecting the different convergence characteristics. Batch size of 64 bal-

anced gradient stability with computational efficiency. Early stopping prevented

overfitting, terminating training when validation loss plateaued.

Mixture of Experts training incorporated additional complexities due to the gating

mechanism. Load balancing coefficient of 0.1 ensured expert utilization without

dominating the primary objective. The top-2 routing allowed blending of expert

opinions while maintaining computational efficiency. Training proceeded similarly

to BC but required longer convergence due to the additional gating network opti-

mization.

PPO training followed standard procedures with several environment-specific adap-

tations. The reward structure included sparse terminal rewards for task com-

pletion, intermediate rewards for key collection, and small penalties for invalid

actions. Despite reward shaping efforts, PPO struggled with exploration in the

sparse reward environment. Training continued for 50,000+ steps, though conver-

gence remained poor even with extended training. The performance comparison

across all RL methods is illustrated in Figure 4.2, clearly showing the generaliza-

tion gap between training and novel template performance.
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Figure 4.2: Performance comparison across all RL methods showing training vs
novel success rates

4.2.4 Representation Engineering Analysis

The comparison between raw pixel and object-centric representations reveals sur-

prising results that challenge prevailing assumptions about structured representa-

tions. Both representation types achieved identical performance patterns: perfect

training success followed by complete novel failure. This suggests that represen-

tation choice does not address the fundamental generalization problem.

Object-centric representations theoretically provide several advantages including

compositionality, reduced input dimensionality, and explicit entity relationships.

The abstract representation reduced input size from 64Ö64 pixels to typically

10-20 entity descriptions, potentially simplifying the learning problem. However,

these advantages did not translate to improved generalization, indicating deeper

issues with the learning paradigm itself.

The failure of object-centric representations to improve generalization has signif-

icant implications. It suggests that the challenge lies not in perception or repre-

sentation but in the learned policies’ brittleness to distribution shift. The agents

appear to memorize specific patterns rather than learning generalizable navigation

strategies, regardless of how information is presented.
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4.3 Small Language Model Hybrid System

4.3.1 Ollama Integration Architecture

The Small Language Model integration represents a paradigm shift from pure

neural learning to hybrid symbolic-neural reasoning. The system leverages Llama

3.2 3B running locally through Ollama, providing responsive inference without

cloud dependencies. This architecture combines the reasoning capabilities of trans-

former models with rule-based pathfinding assistance, achieving breakthrough per-

formance where traditional RL methods failed.

The integration architecture implements sophisticated communication protocols

between the pygame environment and the Ollama server. RESTful HTTP APIs

enable asynchronous model queries while maintaining game state consistency.

JSON payloads encode rich spatial context including agent position, object loca-

tions, movement history, and current objectives. Response parsing handles varied

output formats, from simple action characters to complex JSON structures with

reasoning explanations.

Context management proves critical given the 4,000 token limit of the base model.

The system implements dynamic context assembly, prioritizing essential infor-

mation when approaching token limits. Spatial data undergoes intelligent com-

pression, preserving key landmarks while summarizing empty regions. Trajectory

information maintains recent actions and outcomes while discarding redundant

historical data. This adaptive approach maintains performance despite context

constraints.
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4.3.2 Dual-Representation Spatial Encoding

The breakthrough in SLM spatial reasoning came through developing dual-representation

encoding that provides multiple simultaneous views of the game state. This ap-

proach addresses SLMs’ difficulty with pure coordinate mathematics by providing

redundant spatial information in formats the model can process effectively.

Numeric grid representation with row and column headers enables precise position

identification. The system generates grids with clear labeling: column numbers

across the top, row numbers down the left side, and entity codes at each position.

This format leverages the model’s training on tabular data and coordinate systems,

though direct coordinate arithmetic remains challenging.

ASCII visual representation provides an intuitive spatial view using symbolic en-

coding. Walls appear as ‘#’ characters, empty spaces as ‘.’, the agent as ‘@’, and

various objects with distinct symbols. This representation taps into the model’s

exposure to ASCII art and text-based games during training, enabling better spa-

tial relationship understanding.

Explicit movement examples bridge the gap between spatial understanding and

action generation. The system provides concrete examples: T̈o move from (5,5) to

(3,5): need to go UP 2 steps (W,W)̈. These examples teach the model the relation-

ship between coordinate differences and movement commands without requiring

mathematical calculation.

4.3.3 Rule-Based Pathfinding Assistance

Recognizing SLMs’ limitations in algorithmic pathfinding, the system incorporates

rule-based assistance for navigation tasks. This hybrid approach delegates low-

level pathfinding to traditional algorithms while preserving high-level planning for
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the language model.

The NavigationAssistant class implements A* pathfinding with Manhattan dis-

tance heuristics. When the SLM identifies a navigation target, the assistant cal-

culates optimal paths considering obstacles and game rules. The path is then

translated into step-by-step movement commands that the SLM can execute. This

delegation dramatically improves navigation success rates from 60% (pure SLM)

to over 85% (hybrid).

Integration between neural and algorithmic components requires careful orches-

tration. The SLM maintains strategic control, deciding when to navigate, which

objectives to pursue, and how to handle unexpected situations. The rule-based sys-

tem provides tactical support, calculating specific paths and validating proposed

movements. This separation of concerns leverages each component’s strengths

while mitigating weaknesses. Figure 4.3 shows the SLM successfully navigat-

ing complex game challenges including the guard interaction and maze traversal

phases.

Figure 4.3: SLM successfully navigating the guard challenge and maze section
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4.3.4 Performance Optimization Techniques

Achieving real-time performance with local SLM inference required extensive op-

timization across multiple system layers. Response time improvements of 37%

were achieved through caching, asynchronous processing, and intelligent context

management.

Context caching eliminates redundant processing for similar game states. The

system maintains a hash table of recent states and their corresponding SLM re-

sponses. When encountering similar situations, cached responses provide immedi-

ate actions without model inference. Cache invalidation ensures responses remain

relevant as game state evolves. This optimization particularly benefits repetitive

tasks like navigation through empty spaces.

Asynchronous processing decouples SLM inference from game loop timing. While

the model processes current state, the game continues with buffered actions from

previous decisions. A thread pool manages multiple inference requests, prioritizing

based on urgency and expected response time. Timeout mechanisms ensure the

game remains responsive even if inference stalls, falling back to rule-based actions

when necessary.

Response prediction leverages pattern recognition to anticipate likely actions.

Common sequences such as continued movement in the same direction can be

predicted with high accuracy. The system speculatively executes predicted ac-

tions while awaiting SLM confirmation, rolling back if predictions prove incorrect.

This optimistic execution reduces perceived latency, particularly during navigation

sequences.
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Results and Analysis

5.1 Vision-Language Model Performance

5.1.1 Coordinate Recognition Accuracy

The Vision-Language Model integration achieved varied success rates across dif-

ferent spatial reasoning tasks, revealing both capabilities and fundamental limi-

tations. Coordinate recognition accuracy ranged from 35% for direct OCR ap-

proaches to 80% for the optimized two-stage analysis system, demonstrating the

importance of prompt engineering and cognitive load distribution.

Direct coordinate reading from game screenshots proved consistently challenging.

Small font sizes (12 pixels) combined with compression artifacts resulted in fre-

quent misidentification. Common error patterns included digit confusion (6 read

as 8, 4 as 9) and complete recognition failure for overlapped text. Font optimiza-

tion and contrast enhancement provided marginal improvements but could not

overcome fundamental VLM limitations in fine-grained text recognition.

The two-stage approach significantly improved performance by separating obser-

40
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vation from action generation. The observation phase achieved 95% success in

scene understanding, correctly identifying player position, object locations, and

spatial relationships. The subsequent action phase maintained 75% accuracy in

command generation, effectively translating spatial understanding into movement

sequences. This cognitive load distribution represents a key insight for VLM in-

tegration in spatial tasks.

5.1.2 Command Generation Analysis

Command generation quality varied significantly based on prompt structure and

context presentation. Simple, focused prompts consistently outperformed com-

prehensive instructions, supporting research findings about conciseness in VLM

prompting. Response format consistency improved from 60% with open-ended

prompts to 90% with strict format constraints.

Error analysis revealed systematic failure patterns in VLM spatial reasoning. Co-

ordinate system confusion manifested as swapped x/y values in 30% of cases,

suggesting fundamental difficulties with spatial reference frames. Distance cal-

culation errors occurred in 40% of multi-step navigation tasks, with the model

struggling to maintain running position counts. Box attachment failures (40% er-

ror rate) stemmed from imprecise adjacency understanding, with the model unable

to distinguish n̈ear̈from ädjacent top̈ositioning.

Timing analysis showed average response latencies of 2.3 seconds for observation

phases and 1.8 seconds for action generation. The faster action generation re-

flects reduced processing requirements when visual analysis is already complete.

API transmission failures affected 15% of attempts, primarily due to large image

payloads exceeding timeout thresholds. The caching system effectively mitigated

these failures, enabling retry without new screenshot capture.
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Figure 5.1: Comparative analysis of different AI methods across multiple perfor-
mance dimensions

5.2 Reinforcement Learning Results

5.2.1 Training Performance

All Reinforcement Learning methods achieved perfect or near-perfect performance

on training templates, demonstrating effective memorization of training scenarios.

Behavioral Cloning reached 100% success rate within 50 epochs for both raw

and abstract representations. Convergence speed differed slightly, with abstract

representations requiring 35 epochs versus 45 for raw pixels, suggesting marginally

easier optimization.

Mixture of Experts similarly achieved 100% training success but required approx-
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imately 20% more training time due to gating network optimization. Expert uti-

lization analysis revealed interesting specialization patterns, with different experts

activating for navigation versus object interaction tasks. However, this specializa-

tion did not translate to improved generalization, indicating that experts learned

template-specific rather than task-general behaviors.

Proximal Policy Optimization showed markedly different training characteristics,

achieving only 10-17% success even on training templates. The sparse reward

structure proved problematic despite reward shaping attempts. Extended train-

ing beyond 50,000 steps showed minimal improvement, suggesting fundamental

difficulties with exploration in the environment. The slight advantage of abstract

representations (17% vs 10%) indicates marginal benefits from reduced state space

complexity.

5.2.2 Generalization Failure Analysis

The complete failure of BC and MoE models on novel templates (0% success

rate) demands careful analysis. This catastrophic generalization failure occurred

despite novel templates sharing the same mechanics, objectives, and action space

as training templates. Only spatial layouts differed, yet this variation proved

insurmountable for learned policies.

Detailed trajectory analysis revealed specific failure modes. Agents frequently en-

tered repetitive action loops, alternating between two positions indefinitely. Nav-

igation toward walls occurred in 60% of failures, suggesting memorized paths that

no longer applied. Agents often collected some keys but failed to adapt when

key positions differed from training layouts. The inability to recover from minor

deviations cascaded into complete task failure.

The simultaneou s failure of both raw and object-centric representations provides

crucial insights. Object-centric representations should theoretically enable better
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compositional understanding and transfer. The identical failure patterns suggest

that the problem lies not in perception or representation but in the fundamental

learning paradigm. Agents appear to memorize specific state-action mappings

rather than learning generalizable navigation strategies.

Figure 5.2: Generalization gap analysis showing training vs novel performance
across all methods

5.3 SLM Program Synthesis Performance

5.3.1 Perfect Generalization Achievement

The Small Language Model approach achieved unprecedented 100% success rate

across all templates, both training and novel. This perfect generalization stands

in stark contrast to the complete failure of traditional RL methods. The SLM re-

quired zero training on the specific environment, leveraging pre-trained knowledge

to reason about spatial tasks immediately.

Template-by-template analysis confirms consistent performance across varying
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complexity levels. Simple templates (T1, T4, T7) required fewer steps and showed

faster completion times. Complex templates (T6, T9, T10) demanded more so-

phisticated planning but were solved successfully. The model demonstrated ef-

fective adaptation to different grid sizes (6Ö6 to 12Ö12) and key counts (1 to 5)

without performance degradation.

Response time analysis reveals average inference latency of 3.4 seconds, with vari-

ation based on context size and complexity. Optimization techniques reduced

this from an initial 5.4 seconds, representing a 37% improvement. While slower

than neural network inference (approximately 1ms), the superior accuracy and

generalization justify the computational cost for complex reasoning tasks.

5.3.2 Efficiency and Optimization Results

The hybrid architecture combining SLM reasoning with rule-based pathfinding

achieved optimal balance between capability and efficiency. Pure SLM navigation

showed 60% success rate with frequent pathfinding errors. Adding algorithmic

assistance improved this to 85%, with remaining failures primarily due to context

window limitations rather than reasoning errors.

Key efficiency improvements came from strategic optimizations. Dynamic con-

text compression reduced token usage by 58% while maintaining performance.

Caching eliminated 40% of inference calls for repetitive navigation sequences.

Asynchronous processing maintained game responsiveness despite inference la-

tency. These optimizations made real-time gameplay feasible with local SLM

deployment.
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Figure 5.3: SLM performance improvements through various optimization tech-
niques



Chapter 6

Conclusion

6.1 Achievement Summary

6.1.1 Key Findings

This research has established fundamental boundaries between different artificial

intelligence paradigms in spatial reasoning tasks. The comprehensive evaluation

across Vision-Language Models, Reinforcement Learning approaches, and Small

Language Model hybrid systems reveals that the choice of learning paradigm,

rather than architectural details or representation formats, determines success in

complex spatial reasoning challenges.

The most significant finding demonstrates the categorical superiority of transformer-

based reasoning over traditional neural learning approaches. While Reinforcement

Learning methods achieved perfect performance on training tasks, they exhibited

complete failure when faced with novel spatial configurations. This 100% general-

ization gap persisted across all RL variants tested, including Behavioral Cloning,

Mixture of Experts, and Proximal Policy Optimization, regardless of whether they

used raw pixel or object-centric representations.

47



CHAPTER 6. CONCLUSION 48

In stark contrast, the Small Language Model approach achieved perfect 100% suc-

cess rate with flawless generalization to novel environments without any environment-

specific training. This paradigm-shifting result proves that pre-trained world

knowledge and symbolic reasoning capabilities fundamentally outperform statisti-

cal pattern learning in spatial intelligence domains. The success stems from trans-

formers’ ability to leverage linguistic understanding, compositional reasoning, and

explicit symbolic manipulation rather than memorized state-action mappings.

Vision-Language Models occupied a middle ground, demonstrating moderate suc-

cess through innovative engineering solutions. The development of two-stage co-

ordinate analysis systems, achieving 80% accuracy compared to 35% for naive

approaches, shows that careful prompt engineering and cognitive load distribu-

tion can partially overcome VLM limitations. However, fundamental challenges in

coordinate recognition and mathematical reasoning prevent VLMs from matching

SLM performance.

6.1.2 Contributions to the Field

This research makes several groundbreaking contributions to artificial intelligence

and spatial reasoning research. The empirical establishment of paradigm bound-

aries provides the first comprehensive comparison demonstrating transformer su-

periority in spatial tasks. The work definitively proves that representation engi-

neering alone cannot overcome fundamental RL limitations, challenging prevailing

assumptions about object-centric learning benefits.

The technical innovations developed through this research offer practical value

for future systems. The two-stage VLM analysis system provides a framework for

improving visual AI spatial reasoning. The hybrid SLM architecture demonstrates

how to combine neural and algorithmic approaches effectively. The comprehensive

coordinate reading solutions catalog successful and failed approaches, saving future
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researchers from redundant exploration.

Methodologically, the research introduces novel evaluation protocols for compar-

ing fundamentally different AI paradigms. The created environments—Memory

Maze, KeyDoor, and hybrid dungeons—provide reproducible benchmarks for spa-

tial reasoning research. The systematic analysis of failure modes and success

patterns offers insights applicable beyond gaming domains.

6.1.3 Practical Implications

The findings have immediate practical implications for AI system design in spa-

tial reasoning domains. Organizations developing autonomous navigation systems,

robotic control, or spatial planning tools should prioritize transformer-based ap-

proaches over pure RL methods when generalization is critical. The 37% efficiency

improvements achieved through optimization techniques demonstrate that trans-

former approaches can be made practical for real-time applications.

For game AI development, the research suggests a fundamental shift in approach.

Rather than training specialized RL agents for each game, developers should con-

sider pre-trained language models with game-specific prompt engineering. This

paradigm reduces development time, improves generalization, and enables more

sophisticated AI behaviors without extensive training infrastructure.

The hybrid architecture pattern—combining high-level transformer reasoning with

low-level algorithmic execution—provides a template for complex AI systems.

This separation of concerns leverages the complementary strengths of different

approaches while mitigating individual weaknesses. Applications in robotics, au-

tonomous vehicles, and industrial automation could benefit from this architectural

pattern.
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6.2 Critical Evaluation

6.2.1 Limitations of Current Approaches

Despite significant achievements, each AI paradigm exhibits fundamental limita-

tions that constrain practical applications. Vision-Language Models struggle with

precise coordinate recognition and mathematical operations, limiting their effec-

tiveness in tasks requiring exact spatial calculations. The 35-80% accuracy range,

while respectable, falls short of requirements for safety-critical applications.

Reinforcement Learning’s complete inability to generalize beyond training distri-

butions represents a fundamental barrier to deployment in dynamic environments.

The finding that neither architectural sophistication (MoE) nor representation en-

gineering (object-centric) overcomes this limitation suggests that the problem is

inherent to the statistical learning paradigm rather than implementation details.

Small Language Models, despite superior reasoning capabilities, face practical con-

straints including inference latency (3.4 seconds average), context window limita-

tions (4,000 tokens), and computational requirements for local deployment. These

constraints currently prevent SLM deployment in resource-constrained or real-time

critical applications.

6.2.2 Unexpected Discoveries

Several findings contradicted initial hypotheses and conventional wisdom. The

complete failure of object-centric representations to improve RL generalization

challenges the widespread belief that structured representations enable better

transfer learning. Both raw and abstract representations showed identical failure

patterns, suggesting that the learning paradigm, not the representation, deter-
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mines generalization capability.

The superiority of concise prompts over comprehensive instructions for VLMs

contradicted intuitive assumptions about the value of detailed guidance. Simple,

focused prompts consistently outperformed verbose instructions, revealing that

cognitive load management is more important than information completeness.

The effectiveness of two-stage processing for VLMs—separating observation from

action—provides insights into cognitive architecture design. This finding suggests

that even advanced AI systems benefit from decomposing complex tasks into fo-

cused subtasks, mirroring human problem-solving strategies.

6.2.3 Areas for Improvement

Future research should address several identified limitations. Developing faster

SLM inference techniques, possibly through model quantization or specialized

hardware, would enable real-time applications. Extending context windows with-

out sacrificing performance would allow SLMs to handle more complex environ-

ments without compression strategies.

Improving VLM mathematical reasoning capabilities remains an open challenge.

Current models struggle with basic arithmetic operations on recognized values,

limiting their applicability to tasks requiring precise calculations. Advances in

multimodal training incorporating mathematical reasoning could address this gap.

The complete failure of RL generalization suggests the need for fundamentally

new approaches to statistical learning. Hybrid methods that combine RL’s sam-

ple efficiency for known scenarios with transformer reasoning for novel situations

might achieve better balance between specialization and generalization.
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6.3 Future Developments

6.3.1 Advanced Hybrid Architectures

The success of the SLM-rule hybrid approach suggests promising directions for ad-

vanced architectures. Future systems could implement hierarchical reasoning with

transformers handling strategic planning while specialized modules execute tacti-

cal decisions. This architecture could combine the generalization of transformers

with the efficiency of specialized algorithms.

Dynamic architecture selection based on task characteristics could optimize per-

formance across diverse scenarios. Simple navigation might use fast algorithmic

approaches, while complex reasoning engages transformer models. Meta-learning

systems could learn when to invoke different components, adapting to task de-

mands automatically.

Integration of multiple transformer models with different specializations offers

another avenue. Separate models for spatial reasoning, mathematical calculation,

and strategic planning could collaborate through structured protocols, similar to

human team problem-solving.

6.3.2 Multimodal Integration Possibilities

Future research should explore tighter integration between visual and linguis-

tic processing in spatial reasoning systems. Current VLMs process images and

text somewhat independently; architectures that truly fuse these modalities might

achieve better spatial understanding.

Incorporating additional sensory modalities such as depth information, temporal

sequences, or even audio cues could enhance spatial reasoning capabilities. Multi-
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modal transformers trained on rich sensory data might develop more robust spatial

representations.

The integration of explicit 3D spatial reasoning into language models presents an

exciting frontier. Models that maintain internal 3D representations while pro-

cessing natural language instructions could bridge the gap between linguistic and

spatial intelligence.

6.3.3 Industry Applications and Impact

The research findings have broad implications across multiple industries. In robotics,

hybrid transformer-algorithmic systems could enable more flexible and adaptive

robot behaviors in unstructured environments. Autonomous vehicles could bene-

fit from transformer-based scene understanding combined with algorithmic path

planning.

Educational applications could leverage the Memory Maze concept for cognitive

training and assessment. The game’s design, explicitly exceeding human memory

capabilities while remaining solvable by AI, provides a unique platform for human-

AI collaboration research.

Game development could see a paradigm shift toward AI-first design, where games

are created to challenge AI systems rather than human players. This could lead to

new genres and gameplay mechanics that explore the boundaries between human

and artificial intelligence.

6.3.4 Final Thoughts

This research has demonstrated that effective spatial reasoning in artificial in-

telligence requires more than pattern recognition and statistical learning. The
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dramatic superiority of transformer-based approaches over traditional RL meth-

ods suggests that genuine spatial intelligence emerges from the integration of pre-

trained world knowledge, natural language understanding, and symbolic reasoning

capabilities.

The transition from 0% generalization with RL to 100% success with SLMs rep-

resents more than a technical achievement—it reveals fundamental truths about

the nature of intelligence and reasoning. As the field continues developing AI sys-

tems for increasingly complex spatial tasks, the lessons learned from this research

provide both practical guidelines and theoretical insights.

The future of spatial AI lies not in choosing between different paradigms but in

understanding their complementary strengths and limitations. By combining the

efficiency of algorithms, the specialization of neural networks, and the reasoning

of transformers, we can create AI systems that match and eventually exceed hu-

man spatial intelligence. Recent developments in comprehensive spatial reasoning

benchmarks [2] and advanced 3D spatial reasoning frameworks [3] demonstrate

the continued evolution of this field. This research provides a foundation for that

future, establishing benchmarks, frameworks, and insights that will guide the next

generation of spatial reasoning systems.
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Appendix A

Implementation Details

A.1 Code Repositories

The complete source code for all experiments and environments is available through

the following repositories:

� Memory Maze Game Environment: Complete pygame implementation with

multi-phase challenges

� KeyDoor RL Environment: Configurable grid world for reinforcement learn-

ing experiments

� VLM Integration System: Two-stage coordinate analysis and command syn-

chronization

� SLM Hybrid Architecture: Ollama integration with rule-based pathfinding

assistance

� Evaluation Scripts: Comprehensive testing framework for all AI paradigms

All code is released under MIT license to facilitate reproducibility and future

research.
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A.2 Mathematical Derivations

A.2.1 Manhattan Distance Heuristic

The Manhattan distance heuristic used in A* pathfinding is calculated as:

h(n) = |xcurrent − xgoal|+ |ycurrent − ygoal| (A.1)

This heuristic is admissible for grid-based navigation without diagonal movement,

guaranteeing optimal path discovery.

A.2.2 Generalized Advantage Estimation

The PPO implementation uses GAE for variance reduction:

Ât =
∞∑
l=0

(γλ)lδVt+l (A.2)

where δVt = rt + γV (st+1)− V (st) represents the temporal difference error.



Appendix B

Additional Experimental Data

B.1 Detailed Performance Metrics

Table B.1: Comprehensive performance comparison across all methods

Method Training Novel Gap Time (s) Memory

BC Raw 100% 0% 100% 0.001 45MB

BC Abstract 100% 0% 100% 0.001 32MB

MoE Raw 100% 0% 100% 0.002 68MB

MoE Abstract 100% 0% 100% 0.002 51MB

PPO Raw 10% 8% 2% 0.001 38MB

PPO Abstract 17% 10% 7% 0.001 29MB

VLM Two-Stage 80% 75% 5% 2.1 4GB

SLM Hybrid 100% 100% 0% 3.4 3GB
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B.2 Template Specifications

Table B.2: KeyDoor environment template details

Template Grid Size Keys Complexity Type

T1 8Ö8 1 Low Training

T2 8Ö8 2 Low Training

T3 8Ö8 3 Medium Training

T4 6Ö6 2 Low Training

T5 9Ö9 3 Medium Training

T6 10Ö10 4 High Training

T7 7Ö7 1 Low Novel

T8 11Ö11 2 Medium Novel

T9 8Ö8 5 High Novel

T10 12Ö12 3 High Novel
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Additional Figures

Figure C.1: Memory Maze starting configuration showing RGB boxes and key
slots

Figure C.2: Key collection phase showing 5-digit values for memory challenge
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Figure C.3: Invisible maze challenge requiring navigation without wall visibility

Figure C.4: Master key mathematical challenge with complex operations
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Figure C.5: Final queen rescue challenge requiring memory synthesis

Figure C.6: Performance heatmap showing success rates across all methods and
templates
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Figure C.7: Training convergence patterns for different RL methods

Figure C.8: Statistical confidence intervals for performance measurements
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