
Maya Paint and Retopology

Pipeline Tool

By

Nina Olga Kokot

MSc Computer Animation and Visual Eects
National Centre for Computer Animation
Department of Media and Communication
Bournemouth University, Bournemouth, UK

August 2024

Supervisor Jonathan Macey

ABSTRACT

Topology is a geometric characteristic of 3D mesh represented by a number of faces

and vertices creating a layout in a three-dimensional space. It is an important element of the

pipeline, but its importance is determined mostly by the fact that good topology inuences

rendering time, the process of rigging, which is a process of preparing the asset to be moved,

and animating, the model. Usually, before the 3D mesh can be used in the next stages of

production it needs to be re-topologised, which is a process of re-creating the original mesh

or altering it. There are various tools available for re-topology that vary in approaches.

One of the most popular ones is Quad Draw Tool from Autodesk Maya. It is a simple but

powerful solution that allows the artists to prepare their models for production. This method

however is time-consuming and not very intuitive for beginners. The information on how

to make a good topology is limited online. Pixar Animation Studios is one of the leading

industry studios that published papers and materials on topology and how to prepare your

mesh to be t for the production pipeline. However, it is not all in one place and one must do

thorough research to be condent in the re-topologising skills. This project aims to create a

plugin that eases the user into the re-topology workow and provide examples and guidance

throughout. For more experienced artists it is a tool that can help speed up a process and

therefore improve the pipeline. It is based on the two tools available in Maya, Paint Vertex

Color and Quad Draw. The idea is to simplify the process of activating both tools and

following the usual necessary steps to create a new mesh. It combines many steps into one

or two buttons instead. The current workow can also be confusing, especially if working

on big meshes. This tool can be used as an alternative to the current re-topology workow

that many follow and instead help speed up a tedious and prone-to-mistakes process.

Key words: brush, GUI, Maya, paint, Pixar, re-topology, topology, user interface,

vertex

i

DEDICATION

Dedicated to my family and friends who supported me throughout this project.

ii

ACKNOWLEDGMENTS

I wanted to express gratitude to my supervisor for his guidance and to my friends for their

patience and support during this project.

iii

Contents

Page

1 Introduction 1

1.1 Introduction . 1

1.1.1 Aims . 2

1.1.2 Objectives . 2

1.1.3 Thesis overview . 3

2 Previous work 4

2.1 Related work . 4

2.2 Previous work . 7

2.2.1 OpenSubdiv . 7

2.2.2 Topogun . 8

2.2.3 QuadPatch . 8

3 Technical Background Research 9

3.1 Maya API . 9

3.1.1 OpenMaya . 9

3.1.2 maya.cmds . 10

3.2 Paint Vertex Color Tool . 10

3.3 Quad Draw Tool . 10

3.4 Qt . 11

iv

3.4.1 Pyside2 . 11

3.5 Topology research . 11

4 Implementation 14

4.1 Overview . 14

4.2 Initial tests . 14

4.3 Final implementation . 15

4.3.1 References . 15

4.3.2 Interface design . 18

4.4 Summary . 28

5 Results 29

5.1 Results . 29

5.2 Conclusions . 31

6 Conclusions 32

6.1 Summary . 32

6.2 Evaluation . 32

6.3 Future work . 33

References 34

Index 35

Appendix 1 35

Appendix 1 42

v

Chapter 1

Introduction

1.1 Introduction

Topology is a fundamental part of 3D modelling. It refers to creating a geometric mesh that

will later be used in the production pipeline, so it must follow some standards commonly

used by 3D modellers. Pipeline is an industry term for a series of dierent stages in creating

3D or CGI productions.

The importance of topology is determined by a wide range of reasons, such as UV

unwrapping, texturing, rendering time and memory saving, but mostly by how much rigging

and animating depends on it. One of the essential parts of creating a topology suitable for

those stages of the pipeline is ensuring that the main areas of deformation of the mesh are

clearly determined.

Often the initial models made by 3D artists are not suitable for production until they

undergo a process called re-topology. That method is either re-making a new mesh on top

of the original one or optimising the current model.

Nowadays, there are many dierent tools available for re-topology, each DCC (Digital

Content Creation) has its own way of doing it that varies in implementations and uses. The

one that is widely used is from Autodesk Maya and is called Quad Draw Tool. It is based on

the idea of drawing vertices and connecting them on top of the original mesh. The current

1

Introduction

workow for re-topology available in Maya is not very ecient nor easy for new artists to

navigate.

1.1.1 Aims

The aim of this project is to create a tool that helps with introducing the user to the ’painting

on the mesh rst’ re-topology workow and that provides them with dierent options for the

artists to choose from that will t their approach best. One of the main goals for this project

is to design a well-thought interface for the user. The key challenge is to make the nal tool

useful and easy to navigate. Another aim is to limit the amount of unwanted mistakes that

are often being done during re-topology and reduce the time needed to be spent on this

process.

1.1.2 Objectives

In order to make this new tool it is crucial to use the right resources available. Autodesk

Maya has already two tools that can be used in the proposed workow of this tool.

Combining the Paint Vertex Color and Quad Draw tool from Maya will help automat-

ing the whole process of re-topology.

Creating the desirable interface is possible by using Pyside2 and Qt. By conducting

a through research and providing the user with some references this tool should become an

educational tool to some etent.

2

Introduction

1.1.3 Thesis overview

Thesis overview Part 1. starting with this Chapter 1. contains Introduction, Aims, Objec-

tives and Thesis overview. Part 2. focuses on previous work in Chapter 2. In Chapter 3. the

technical background is being presented. Part 3. is an implementation of Part 2. in Chapter

4. Part 4. shows results of Part 3. in Chapter 5. and concludes them in Chapter 6.

3

Chapter 2

Previous work

2.1 Related work

User experience is the main focus of this project alongside the goal of creating a useful

pipeline tool that will improve the experience and reduce the time needed to be spent. The

nal output should help with the learning curve for novices and speed up the re-topology

workow for the other artists.

Pixar Animation Studios is a studio whose computer graphics research for years has

been inuencing the eld and the production pipeline. Great example for this statement is a

ground-breaking paper from 1998 "Subdivision Surfaces in Character Animation" by Tony

DeRose et al. It introduces the subdivision surfaces into the pipeline and encourages it to be

more wide-spread than it used to be. Instead of using NURBS (Non-uniform rational basis

spline) surfaces, which are simple geometrical representations of curves, that oer topological

restrictions, Pixar’s researchers developed a method that relies on their own algorithm which

allows creating smooth surfaces on the model. This method involves constructing a surface

from a regular polyhedron and dividing each face many times to achieve a smooth surface

(DeRose et al. 1998). The implementation presented in this paper relies on Catmull-Clark

surfaces subdivision that are used to create a smooth surface. As mentioned in the paper,

the equation underneath shows how to calculate new edge points as an average of edge end

points and adjacent face points, where ei+1

j is computed as shown in Figure 2.1

4

Previous work

Figure 2.1: The case surrounding the v0 vertex of valence n (DeRose et al. 1998,p.3)

ei+1

j =
vi + eij + f i+1

j−1
+ f i+1

j

4
(2.1)

Then eventually the new position of the vertex point vi is calculated as

vi+1 =
n− 2

n
vi +

1

n2

∑

j

eij +
1

n2

∑

j

f i+1

j (2.2)

Pixar’s researchers adapted this method from Catmull-Clark subdivision surface to

their own needs and integrated it into RenderMan, Pixar’s rendering software, which required

some changes and additional math solutions but in the end they achieved the desired goal

and had great results.

Introducing subdivision surface technique into pipeline allowed the modellers to ar-

range control points of the model into more naturally looking geometry that helped with

achieving the nal look of a real-life characters (DeRose et al. 1998). In the end, their new

technique proved to be so useful that most of the DCCs nowadays have their own surface

subdivisions method, including Maya, and it forever changed the modelling process and the

approach to the topology.

5

Previous work

In Course Notes "Art and Technology at Pixar, from Toy Story to today" made

for SIGGRAPH ASIA 2015 by Pixar Animation Studios presenters, Villemin R., Hery C.,

Konishi S., Tejima T., Yu D., studio’s modeling pipeline is described in more detail. It starts

with a 3D scan of a digital mesh or of character’s real-life sculpt. That scan is then adjusted

for rigging by correcting the topology and subdiving it. In those course notes, it is also

mentioned how they improved their cloth pipeline. Before, creating "clothing followed a 2D

pattern tailoring system" (Villemin R., et al. 2015, p. 8), which meant that only people

who had enough pattern drafting knowledge were able to use it. Now, more modelers can be

involved in this part of a pipeline and therefore improve it. Pixar put great focus on rening

that tool to accommodate artists without the more-in depth knowledge.

"Sketch-based modeling: A Survey" by L. Olsen, F. Samavati, M. Sousa and J. Jorge is

a great example of a similar approach in relation to GUI to the one proposed for this plug-in.

This paper considers how the classical user interfaces for modelling tools can be discouraging

and over-complicated or non-intuitive for novices. In their tool, the authors proposed a more

accessible way of creating an interface that was more "artist-friendly". Based on the idea

of allowing the user to sketch in the tool, the user interface for modelling for that tool

is supposed to be sketch-based (SBIM). The goal of this paper was to explore options of

mapping 2D sketches into 3D models and making the GUI (Graphical User Interface) easier

to navigate for less technical artists. In this case, the input is mostly acquired from pen-

based or other devices with screen display. Later, the sketches are embedded into 3D by

projecting onto drawing canvas or mesh itself (Olsen et al. 2009). SBIM (Sketch-based

Interfaces and Modeling) is the authors solution to the traditional windows-based interface

that proved to be not useful for their approach. "Unlike a command selected from a menu,

freehand input is inherently ambiguous and open to multiple interpretations." (Olsen et all.

2009, p.90) This means that this GUI is supposed to oer many dierent options depending

on what is the artist’s intent, if they want to create fully 3D model from their sketch or

6

Previous work

just deform the existing one with their sketches. For the interface design, paper focuses on

creating a nal product that is intuitive and easy to navigate even for new modellers without

a need of learning new and complicated tools. A common approach in sketch-based systems

is supporting gestures that resemble real-life sketching process. "Some examples of gestural

commands are cutting and deleting strokes, object grouping, erasing and local smoothing ,

and stroke blending" (Olsen et al. 2009, p. 96). In the paper, it is also mentioned that even

with a dierent approach to creating a new interface, the GUI might be less overwhelming

for beginners but it still requires some getting used to and therefore clear instructions might

be one of the ways to improve the user’s experience.

2.2 Previous work

The nal plug-in depends on Paint Vertex Color and QuadDraw tool that are Maya’s internal

functions. Achieving the correct topology at the end is one of the purposes of this project

and by combining those two tools there is a new one created that has the functionality that

QuadDraw tool does not has on its own. There are some examples in the industry of tools

having similar approaches to the one proposed in this project, for many the most related

would be Topogun and QuadPatch. It is also worth mentioning OpenSubdiv.

2.2.1 OpenSubdiv

OpenSubdiv is a set of open source libraries which were developed by Pixar Animation

Studios. This tool is used mostly for rendering but it relies on Catmull-Clark subdivision

surface algorithm that was improved to t their own product better. It is used in many

DCCs. It allows working with dense meshes and updating it in real time which proves useful

since it is important to observe how changes are aecting the topology.

7

Previous work

2.2.2 Topogun

Topogun is an application used for re-topology and baking maps. It has set of dierent tools

for making new topology that allow the user to edit or draw directly on the mesh. It also has

an automatic re-topology feature. Topogun also puts emphasises on a user-friendly interface

that it is straightforward and can be easily personalised.

2.2.3 QuadPatch

QuadPatch is a great example of a re-topologising tool with a well-made interface that is

easy to learn with enough descriptions and useful features, such as Dynamic Path Drawing,

to allow the user to ease into re-topology workow. It is a tool developed for Blender 3.0

that helps to save time when working on larger meshes without many details.

8

Chapter 3

Technical Background Research

3.1 Maya API

Maya API (Application Programming Interface) is an interface that allows programmers to

access Maya’s internal libraries in order to create new plug-ins, scripts, tools and nodes.

It is available in C++, Python and MEL (Maya Embedded Language). In the context of

this project, using Maya API is crucial because it helps automatise and systematize all the

essential processes of creating a plug-in. After initial research, Python proved to be the best

language to use for many reasons, including having many resources available, such as ocial

Maya documentation, and generating less code than C++. For this project’s purposes,

’OpenMaya’ and ’maya.cmds’ were considered and both were used in appropriate places.

3.1.1 OpenMaya

Initially, options of mostly using ’OpenMaya’ module were considered because it allows direct

geometry manipulation through dierent function sets, such as MFnMesh. After exploring

dierent approaches with MPxNode, MPxDeformer and MPxToolCommand, MPxCommand

proved to be the best choice because it has all the functionality required by Maya to execute

the tool as if it were embedded in.

9

Technical Background Research

3.1.2 maya.cmds

’maya.cmds’ is a Maya Python module that is a part of Maya API. It allows the programmer

to access the available tools and commands of Maya in an accessible and easy-to-navigate

way. It is also a wrapper for MEL which is a native Maya scripting language. This means

it has thorough documentation that corresponds to the MEL’s and therefore proved to be

more useful for this particular project that required the use of many MEL commands as

’maya.cmds’. Using this module over ’OpenMaya’ was also determined by the fact that

the latter oers low-level access to Maya’s internal interface while ’maya.cmds’ is great for

higher-level access to Maya functions.

3.2 Paint Vertex Color Tool

Paint Vertex Color is a tool from Maya, which allows the artists to assign colors directly

to vertices of the geometry they are working on. It is often used instead of texturing or to

create color masks for shaders for later. Some artists use it in the process of re-topology but

it is not commonly used for this reason. This tool is an important part of the nal plug-in

as its main idea is developed around it.

3.3 Quad Draw Tool

QuadDraw tool is one of the most well-known tools for retopology in the industry, as many

studios use Maya and this tool is a part of it. QuadDraw allows the user to draw new faces

directly on the 3D model. Its name comes from quad which means that is the point of the

tool, rst artist draws four vertices and then it creates a new polygon on the surface of the

10

Technical Background Research

original mesh.

3.4 Qt

Qt is a framework for developing cross-platform applications which create graphical user

interfaces. It is often used in the process of creating a new tool in Maya to customise its

graphical interface. Qt’s libraries are shipped with Maya and for the plug-in aspect there

is Maya’s own application object that can be passed into it therefore it does not require

creating QtApplication at all.

3.4.1 Pyside2

Pyside2 is the ocial Python binding for Qt on Python. It comes pre-installed in Maya so

it is more suitable for a plug-in developed for this particular DCC rather than using PyQt5

which would require additional installation. This would add an additional step in setting

up the tool because the purpose of this project is to make it easy for beginners and since

essentially both PySide2 and PyQt5 are using the same libraries it is not needed.

3.5 Topology research

In this section, the topology research was conducted and its results are shown. According to

Pixar, well-constructed subdivision geometry have those key characteristics in common:

1. "They consist primarily of regular faces (quads for Catmull-Clark, tris for Loop)

2. They contain few extraordinary vertices

11

Technical Background Research

3. They eciently describe the intended shape

4. They are topologically manifold "

(Pixar, 2024)

Two more important techniques that are also mentioned in ’Modeling Tips’ on Pixar’s

website are Edge-Loop Transitions and Triangles and N-Gons.

The rst one is based on the fact that sometimes in order to control the density of the

mesh, it is necessary to use "extraordinary vertices" that can help with the amount of edge

loops and ow of the topology. It is often needed in the areas around ngers, on the head or

on the back where the deformations are not happening directly but it is still important to

maintain those areas. In the underneath example this method is shown with using a valence

5 vertex to lower 2 edge loops into 1 (Fig. 3.1).

Figure 3.1: An example using a valence 5 vertex to lower 2 edge loops into 1 (original

The Triangles and N-Gons technique is about using the non-quadratic polygons in the

topology in the strongly deforming areas such as shoulders, arm pits or hips. It is not a good

practice to use many of triangles or polygons with more than four faces but it is allowed in

12

Technical Background Research

those areas as long as it helps with maintaining a smooth surface and right topology ow

(Fig. 3.2).

Figure 3.2: An example of using N-Gons technique (Pixar, 2024)

13

Chapter 4

Implementation

4.1 Overview

In this chapter, the implementation of conducted research and the nal solution is presented.

The nal product’s goals are to have an interface that is easy to navigate for novices and

allows them to learn the techniques and to be useful and improve the pipeline for more

experienced artists that will cut the unnecessary mistakes.

4.2 Initial tests

Initially, using only OpenMaya was considered but it proved to be too in depth for the

amount of time given for this project to explore it enough. However, some research was

conducted for it and it resulted in a test of writing a paint tool as a MPxDeformer (see

Appendix 1). This approach proved to be over-complicated and not necessary when another

test with maya.cmds was done. This new method was chosen over only using OpenMaya

because it works on higher-level and therefore it saves time and allows access to tools such

as Paint Vertex Color and QuadDraw which were essential for this plug-in.

14

Implementation

4.3 Final implementation

The nal Maya Paint and Retopology Tool plug-in was based on the technical background

and created with the main goals of this project.

4.3.1 References

Using topology research, there were several references created to be later used in a tool as

Image Planes that user can easily create and have on the side while working. It focused on

the most important parts where deformations commonly occur, such as head, hands, knees,

elbows and chest.

Figure 4.1: Stylised head reference

Figure 4.2: Normal head refernce

Figure 4.3: Back reference

15

Implementation

Figure 4.4: Front reference

Figure 4.5: Arm/shoulder reference

Figure 4.6: Elbow reference

Figure 4.7: Knee reference

16

Implementation

Figure 4.8: Template 1

Figure 4.9: Template 2

Figure 4.10: Template 3

All of the references and templates used in this tool were made specially for this

project and are original.

17

Implementation

4.3.2 Interface design

While developing the tool, the interface design was constantly being updated according to

any changes and new features to ensure that it will be easy to navigate and accessible. For

the design, it follows a straightforward format with two buttons at the top and four, clearly

named tabs with dierent functions (Fig. 4.1 1). In order to make the GUI more user-

friendly, there is a few hidden functionalities that are disabling or hiding dierent parts of

the interface, depending on the user input. Initially, everything except for ’Select Mesh’ and

create references buttons are disabled because it prompts the user to rst select the geometry

to work on and this is a crucial step for the tool to work. Another deactivation takes place

when the user chooses to use a template on the model because unless they want to use the

paint tool to x the sides, it is not necessary for them to use it. It also hides the ’Focus only

on one color’ button since it enables the option to work on one of the predened colors from

Paint tab. Reference template tab’s functions change texture into color but the vertices are

not being assigned any value so that option will not work when the template is used instead

of the method of simply painting on the mesh. As mentioned before, there are four main

tabs: Examples, Paint, Use reference template and QuadDraw. Each of those has dierent

functionalities but they all depend on others in one way or another.

18

Implementation

Figure 4.11: Design of the Example tab

• Example tab

Example tab has two sections vertically placed: Explanation and Examples. The

rst one is using a QLabel and is only used as an introduction to the tool and quick

explanation of the re-topology workow proposed for this tool.

Examples section uses a grid layout that is used to place the reference pictures in the

right places with corresponding buttons underneath each of them. ’Create a reference

button’ is using a command that creates and imagePlane in Maya with a right le path

(Fig. 4.1 1).

• Paint tab

19

Implementation

Paint tab is split into two sections as well: Brush size and Choose color. The former

oers the user to change the size of the paint brush they are using with a slider and to

activate or deactivate the symmetry according to dierent axis. Slider is created with

createSlider function that calls two functions changedValue, which changes string put

in the value box into a oat, and synValues, that then takes that oat and assigns it

to the slider value that is connected to the brush size value. Symmetry buttons are

simply calling an original options from Paint Vertex Color Tool.

Choose color group uses a grid layout as well because it is the most optimal way to

display the colors in the desired way. Each paint button has dierent predened color

assigned to it. There are only nine colours available to the user as opposed to the

original Paint Vertex Color because QuadDraw tab functions depend on it and also

because it is to make the user to follow the provided examples that are using the same

limited colors (Fig. 4.12). There is also an ’Erase paint’ button for erasing the paint

and ’Exit the Paint Tool’ button to come back to the Selection mode.

20

Implementation

Figure 4.12: Paint tab

• Use reference template tab

Use reference template tab uses grid layout in a similar way that Examples section from

Examples tab does to display the available templates to the user and have matching

button underneath. ’Use this’ button calls on shaderCreator function and disables

Paint tab and hides ’Focus on one color’ button with all its option from QuadDraw

tab.

21

Implementation

Algorithm 1 shaderCreator
1: Set orthographic view and select front camera

2: Open UV Editor

3: Select mesh

4: Delete any UVs and then create new one that is camera-based

5: Toggle the UV texture image display option

6: Create shader with a chosen template

7: Create lambert shader called myShader

8: Create le texture node called myFile

9: Create place2dTexture called myPlace2dTexture

10: Connect place2dTexture to le texture node

11: Connect le texture node with shader

12: Set path to the le texture node with the chosen template

13: Create shaderGroup called myShaderGroup

14: Assign shaderGroup to the shader

15: Assign shader to the selected mesh

16: Change texture into color information

This option is meant for faces, not the rest of the body and oers a few dierent size

options and painted mesh divisions.

’Use UVs size to the reference’ button selects the UVs for the user who can then adjust

them to t their model best. Since this is the model that will be disregarded, their

UVs do not need to be correct and can be used in this way to make them match the

templates the best way possible.

’Paint’ button enables Paint tab again and takes user straight into it to allow them

to make any necessary changes on the mesh since the texture only works for the front

of the face, but not the sides so if the user wants to improve the sides as well they can

22

Implementation

do it with this button. ’Done’ button exits the tool and comes back to the Selection

mode.

Figure 4.13: Use reference template

• QuadDraw tab

QuadDraw tab has two sections: QuadDraw tool and Reminder. The rst one uses

vertical layout but when ’Focus on only one color’ button is clicked that opens a

group inside of it with color buttons using grid layout, similar to the Paint tab layout.

’START’ button calls the QuadDraw tool. In order to use this tool, the user would

have to rst make the object live and it is also a common practice to duplicate your

original mesh and hide it to have it as a cautionary measure. This whole process of

creating a duplicate, hiding the original and making the object live is done for the

user instead when the start button is clicked. duplicateMesh function is responsible

23

Implementation

for duplicating the geometry and putting the original one on a new displayLayer that

makes it invisible and unselectable.

’Focus on only one color’ is enabled after ’START’ button is clicked and disabled.

When this button is triggered it shows the same color buttons with the same color

values assigned to them as in the Paint tab but are used dierently. They all call

quadToolColor function.

24

Implementation

Algorithm 2 quadToolColor
Check if there already exists layer called "color copy" and duplicate of the mesh called

"colorCopy" with deleteCopyColor

Select the duplicate

Delete it

Delete the "color copy" layer

Set .copied to False

Make copy of the mesh, call it "colorCopy" and hide its layer

Select it

Group vertices into each color group with RGB value with groupAndCopyVer-

tices

Select duplicated mesh "colorCopy"

Get the vertices of the mesh

Make a group for a called color

Get the color information of each vertex

Group vertices into group depending on their color

Select the group

Convert selected vertices into faces

Delete selected faces

Select mesh "colorCopy" again

Paint all of its vertices into a color=(0.4, 0.4, 0.4)

Scale the "colorCopy" to (1.01, 1.01, 1.01) to make it bigger than the original mesh

Select the orignal mesh

Set .copied to True

When the ’Selects Mesh’ option is triggered all the vertices are being assigned the

same color value that is not being used by any other colors (rgb= 0.4, 0.4, 0.4). This

25

Implementation

is done in order to avoid a situation when the unpainted area becomes part of the

black-painted one since the initial color values of all vertices are rgb=(0.0, 0.0, 0.0)

and color black has the same RGB.

The features described above are not available if the user chooses to use template since

texture colors are not assigned to the vertices as the same values that this plug-in uses

and therefore the groupAndCopyVertices would not work.

’DONE’ button calls on functions that exit the QuadDraw tool, disables the Live mode

and cleans up after all the other functions so there are no displayLayers or duplicated

objects left but only the original mesh and new re-topolgised one. ’Mirror’ button

should be used afterwords if the mesh was only done in half and was meant to be

mirrored.

Reminder section is a simple QLabel with a text to remind the user how to use Quad-

Draw and what to press to create a new polygon.

26

Implementation

Figure 4.14: QuadDraw tab before enabling ’Focus on only one object’

27

Implementation

Figure 4.15: QuadDraw tab after enabling ’Focus on only one object’

There is also ’Choose a New Mesh’ button that enables after ’Select Mesh’ options is used

and it resets the tool to the beginning so the user can start working on a new geometry.

4.4 Summary

In summary, this chapter presented an overview of the implemented design for the plug-in

and its features created with variety of functions.

28

Chapter 5

Results

5.1 Results

To test if the initial goals have been achieved, two tests have been conducted on the same

high-poly 3D model to compare the results. These can help proving the objectives of this

project has been achieved. However, they cannot determine how much as there should be

more tests done on dierent types of meshes because it can be expected that the higher the

poly count the less eective the Paint tool option is as it has more calculations to be done.

For the future, it would be useful to explore when the tool stops working depending on the

density of the geometry.

Both tests were done with a head sculpted originally in Zbrush, 3D sculpting software,

and re-meshed in it as well so the topology needs to be redone completely if the character

were supposed to be used in production.

29

Results

Figure 5.1: Both started with the same original high-poly mesh

First test was done with just the standard use of QuadDraw tool inside Maya and

took around 15 minutes while the test involving the Maya Paint and Retopology plug-in took

only around 12 minutes.

Figure 5.2: Final times sped up in comparison

It is also important to notice that in the initial test there were more mistakes done

and there was more need for deleting newly created faces than in the other one where it was

easier to follow the pre-painted areas and keep all the edge loops and the "extraordinary

vertices" in the right places (Fig 5.3).

30

Results

Figure 5.3: Dierent uses of valence points

On the other hand, the second test was done after the previous one which meant

more familiarity with the mesh and knowing what mistakes to avoid from the previous try.

Therefore this comparison is biased and therefore cannot be used as a denitive argument

in favour of the plug-in’s solution.

5.2 Conclusions

In conclusions, the conducted tests proved the nal tool achieved at least one of its objectives

but should not be used as conclusive argument supporting its usefulness since the results

cannot be entirely objective. However, it is worth mentioning that the proposed method

works as intended by not prolonging the pipeline, even hopefully cutting the time, and by

not costing the artist many unwanted mistakes and has the potential to work even better as

an educational tool.

31

Chapter 6

Conclusions

6.1 Summary

Topology is a vital part of the production pipeline because many other parts of it depends

on it. Nowadays, to ensure the correct topology there are many tools available either for

subdivision or re-topology but not all of them are t for beginners. QuadDraw Tool from

Autodesk Maya is one of them. It only oers the solution without much explanation of how

the re-topology works. This is why this Maya Paint and Retopology Tool was created to

help with this problem. Another reason was to also improve the pipeline in general with

a ’painting on the mesh’ workow and reduce potential mistakes as much as possible and

therefore not having a negative impact on the further processes in the pipeline, such as

rigging and animating. The nal output’s result suggest that this has been achieved to at

least some extent.

6.2 Evaluation

This project’s main goals were to create a tool that can be easily navigated by novices and

used as a proposed workow for other artists to limit the number of mistakes and help with

the amount of time spent on creating the right topology. This was achieved with a well-

thought design of the user interface and functionalities in it. There are also explanations

32

Conclusions

and reminders throughout the tool that serve as guidelines.

In conclusion, the nal product has successfully met the initial criteria and has been

developed with the user experience in mind. This can be used as an educational tool, as well

as just another process for the artists to create new topology.

6.3 Future work

There are things that could be improved or explored further, such as allowing the user to

input their own template in the ’Use reference template’ tab. This could positively impact

the interactivity of the tool and oer the artists more options to explore. Another idea that

could further improve this tool is using ray casting as part of using the templates to project

onto the mesh. However, with the short amount of time frame given for this project, this

could not be achieved at the time because it requires a lot of time, tests and likely lower-level

scripting in OpenMaya.

Overall, the nal Maya Paint and Retopology Tool achieved the original aims and

objectives. It also proved to be useful and has room for improvement.

33

Conclusions

References

1. DeRose, T., Kass, M., Truong, T., 1998. Subdivision Surfaces in Character Animation.

Pixar Animation Studios. Available from: https://graphics.pixar.com/library/Geri/paper.pdf

[Accessed: 10/08/2024]

2. Villemin, R., Hery, C., Konishi, S., Tejima, T., Yu, D., 2015.Art and Technology at

Pixar, from Toy Story to today. Available from: https://graphics.pixar.com/library/SigAsia2015/p

[Accessed: 10/08/2024]

3. Olsen, L., Samavati, F., Sousa, M., Jorge, J., 2009. Sketch-based modeling: A survey.

Computers Graphics, 33(1), 85-103. Available from: https://www.sciencedirect.com/science/articl

[Accessed: 10/08/2024]

4. Pixar, 2024. Modeling Tips. Available from: https://graphics.pixar.com/opensubdiv/docs/modnote

10/08/2024]

34

35

Appendix 1

Appendix

Appendix 1

Algorithm 3 paintVertices
import maya.OpenMaya as OpenMaya

import maya.OpenMayaMPx as OpenMayaMPx

import sys

nodeName = "paintVertices"

nodeId = OpenMaya.MTypeId(0x100f)

class paintVertices(OpenMayaMPx.MPxDeformerNode):

"""

Commands —> MPxCommand

Custom —> MPxNode

Deformer —> MPxDeformerNode

"""

mObjpaintAttr = OpenMaya.MObject()

mObjweightAttr = OpenMaya.MObject()

def –init–(self):

OpenMayaMPx.MPxDeformerNode.–init–(self)

def deform(self, dataBlock, geoIterator, matrix, geoIndex):

input = OpenMayaMPx.cvar.MPxGeometryFilterinput

1. Attach a handle to input Array Attribute

dataHandleInputArray = dataBlock.inputArrayValue(input)
36

Appendix 1

print(f"geoIdx: geoIndex")

2. Jump to particular element

dataHandleInputArray.jumpToElement(geoIndex)

3. Attach a handle to specic data block

dataHandleInputElement = dataHandleInputArray.inputValue()

4. Reach to the child - inputGeom

inputGeom = OpenMayaMPx.cvar.MPxGeometryFilterInputGeom

dataHandleInputGeom = dataHandleInputElement.child(inputGeom)

inMesh = dataHandleInputGeom.asMesh()

if inMesh.isNull():

raise RuntimeError("inMesh is None. Failed to get a valid mesh object.")

Envelope

envelope = OpenMayaMPx.cvar.MPxGeometryFilterEnvelope

dataHandleEnvelope = dataBlock.inputValue(envelope)

envelopeValue = dataHandleEnvelope.asFloat()

Paint

dataHandlePaint = dataBlock.inputValue(paintVertices.mObjPaintAttr)

paintValue = dataHandlePaint.asFloat()

Weight

dataHandleWeight = dataBlock.inputValue(paintVertices.mObjWeightAttr)

weightValue = dataHandleWeight.asFloat()

37

Appendix 1

Colors and their weight values

colorWeightValues =

(0.0, 0.0, 0.0): 1.0, black

(1.0, 1.0, 1.0): 2.0, white

(1.0, 0.0, 0.0): 3.0, red

(0.0, 1.0, 0.0): 4.0, green

(0.0, 0.0, 1.0): 5.0, blue

(1.0, 1.0, 0.0): 6.0, yellow

(1.0, 0.5, 0.0): 7.0, orange

(1.0, 0.0, 0.5): 8.0, pink

(1.0, 0.0, 1.0): 9.0 purple

weight = colorWeightValues.get(paintValue, 0.0)

if weight is None:

raise RuntimeError(f"No value found for pValue: paintValue")

mFloatVectorArrayNormal = OpenMaya.MFloatVectorArray()

mFnMesh = OpenMaya.MFnMesh(inMesh)

mFnMesh.getVertexNormals(False, mFloatVectorArrayNormal, OpenMaya.MSpace.kObject)

mColorArray = OpenMaya.MColorArray()

mFnMesh = OpenMaya.MFnMesh(inMesh)

mFnMesh.getVertexColors(mColorArray)

print(f"Normal count: mFloatVectorArrayNormal.length(), Color count: mColorArray.length()")

38

Appendix 1

while (not geoIterator.isDone()):

index = geoIterator.index()

weightValue = self.weightValue(dataBlock, geoIndex, index)

geoIterator.setPosition(geoIterator.position() * (1.0 - envelopeValue + weight * envelope-

Value))

if (mColorArray[geoIterator.index()] == paintValue):

mColorArray[geoIterator.index()] *= weight

geoIterator.next()

mFnMesh.setVertexColors(mColorArray)

print("all good")

Creator

def deformerCreator():

nodePtr = OpenMayaMPx.asMPxPtr(paintVertices())

return nodePtr

Initialize the script plug-in

def nodeInitializer():

"""

Create Attributes - check

Attach Attributes - check

Design Circuitry - check

39

Appendix 1

"""

mFnAttr = OpenMaya.MFnNumericAttribute()

paintVertices.mObjPaintAttr = mFnAttr.create("PaintValue", "PVal", OpenMaya.MFnNumericData

0.0)

mFnAttr.setDefault(0.0, 0.0, 0.0)

mFnAttr.setKeyable(1)

mFnAttr.setMin(0.0)

mFnAttr.setMax(1.0)

paintVertices.mObjWeightAttr = mFnAttr.create("WeightValue", "WVale", OpenMaya.MFnNumeric

0.0)

mFnAttr.setKeyable(1)

mFnAttr.setStorable(0)

mFnAttr.setReadable(1)

mFnAttr.setWritable(1)

paintVertices.addAttribute(paintVertices.mObjPaintAttr)

paintVertices.addAttribute(paintVertices.mObjWeightAttr)

"""

SWIG - Simplied Wrapper Interface Generator

"""

outputGeom =OpenMayaMPx.cvar.MPxGeometryFilteroutputGeompaintV ertices.attributeAffect

paintVertices.attributeAects(paintVertices.mObjWeightAttr, outputGeom)

Initialize the script plug-in

def initializePlugin(mobject):

40

Appendix 1

mplugin = OpenMayaMPx.MFnPlugin(mobject, "Nina Kokot", "1.0")

try:

mplugin.registerNode(nodeName, nodeId, deformerCreator, nodeInitializer, OpenMayaMPx.MPxNode.

OpenMaya.MGlobal.executeCommand("makePaintable -attrType multiFloat -sm deformer

paintVertices paintVal")

except:

sys.stderr.write("Failed to register command: " + nodeName)

Unintialize the script plug-in

def uninitializePlugin(mobject):

mplugin = OpenMayaMPx.MFnPlugin(mobject)

try:

mplugin.deregisterNode(nodeName)

except:

sys.stderr.write("Failed to de-register command: " + nodeName)

input = OpenMayaMPx.cvar.MPxDeformerNodeInput

sel = OpenMaya.MSelectionList()

OpenMaya.MGlobal.getActiveSelectionList(sel)

dagPath = OpenMaya.MDagPath()

sel.getDagPath(0, dagPath)

41

