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Abstract 
This research critically examines the application of path tracing in rendering, with an 

emphasis on volume rendering. The study presents the development of a path tracer 

renderer, specifically designed to visualise volumes. A notable aspect of this renderer 

is its ability to factor in volume transmittance when casting rays trough the scene, 

ensuring a consistent representation of reality. This implementation is particularly 

relevant for the film and animation industries, offering a technical approach to enhance 

visual outputs. By drawing a clear connection between theoretical knowledge and its 

practical implementation, this work contributes to the broader understanding of current 

rendering techniques. 
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iii  

Acknowledgements 
This work greatly benefitted from the insights and expertise of Professors Jon Macey, 

Ian Stephenson, Jian Chang, and Jian Jun Zhang. My heartfelt gratitude also goes to my 

family and friends, with special appreciation for my father and mother, who have been my 

pillars of support throughout this journey. 



iv  

Contents 
1 Introduction 1 

2 Background 3 

3 Methodology 5 

Overview 5 

3.1 Global Illumination 5 

3.2 Volume 17 

4 Design and Implementation 25 

Overview 25 

4.1 Objectives 25 

4.2 Libraries 26 

4.3 Design 27 

4.4 Volume integration 29 

5 Results 31 

6 Conclusion 37 

References 39 



v  

List of Figures 

3.1  Radiance definition (Jensen, 2001) ........................................................................... 8 
3.2   BRDF reflection (Jensen, 2001) ................................................................................. 9 
3.3  Light reflection in diffuse surfaces (Jensen, 2001)  .................................................... 10 
3.4   Light reflection in specular surfaces (Jensen, 2001) .................................................. 12 
3.5  The path-tracing algorithm (Jensen, 2001) .............................................................. 19 
3.6  RTE terms (Fong et al., 2017)  ................................................................................... 22 
3.7   Visualisation of the VRE (Fong et al., 2017) ............................................................ 24 
3.8   Ray paths modelled by closed-form tracking (Fong et al., 2017) ......................... 25 
3.9   Ray path modelled by delta tracking (Fong et al., 2017) ....................................... 26 

 
4.1  Class Diagram  .............................................................................................................. 28 
 
5.1  Cornell box with two specular balls  .......................................................................... 31 
5.2  Cornell box with 600 spp  ............................................................................................ 32 
5.3  Cornell box with 1200 spp  .......................................................................................... 32 
5.4  Beer’s Law Homogeneous volume (absorption 0.4)  .............................................. 33 
5.5  Beer’s Law Homogeneous volume (absorption 0.8)  .............................................. 34 
5.6  Beer’s Law Homogeneous volume (max absorption 0.5)  ..................................... 35 
5.7  Beer’s Law Homogeneous volume (max absorption 0.8)  ..................................... 35 
5.8   Scene with volumetric, specular, and diffuse shapes  ................................................ 36 
 



1  

1 Introduction 
 

Within the film and animation industry, visual storytelling operates at the intersection 

of narrative coherence and technological sophistication. Historically, filmmakers and 

animators have employed a diverse range of rendering techniques. Each method, while 

offering distinct advantages, also presented its unique challenges. The field of visual 

rendering, however, is constantly evolving and changing. It continually evolves, 

responding to the demands of audiences who seek experiences that resonate with realism 

and immersion. 

 

The digital revolution marked an important moment in the history of the film and 

animation industry. While narrative themes and character development retained their 

central roles, there was a noticeable shift in the technological methodologies employed. 

Among the emerging techniques, path tracing began to gain significant academic and 

industry traction. 

 

From a computational perspective, path tracing models the interactions between light 

and objects, producing images that align closely with real-world visual experiences. Unlike 

many of its predecessors, which often relied on computational shortcuts or subjective 

artistic interpretations, path tracing emphasises the accurate simulation of light’s physical 

behaviour. The rise of this technique can be attributed to two primary factors: the evolution 

of computational algorithms tailored for this purpose and the exponential growth in 

hardware capabilities. 

 

Nevertheless, the industry’s push into path tracing represents merely the initial phase 

of a broader exploration. A particular extension of this method is its application in volume 

rendering. Unlike traditional rendering techniques that primarily focus on external 

surfaces, volume rendering is concerned with visualising data that exists in a three-

dimensional continuum. This approach is especially pertinent in specialised sectors such 

as medical imaging, wherein the detailed representation of internal structures, for 

instance, within the human anatomy, is of paramount importance. 

 

The integration of path tracing with volume rendering is not merely an incremental 

advancement; it signifies a paradigmatic shift, offering levels of depth and a 

comprehensive three-dimensional representation. However, the fusion of these 
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methodologies is not without its complexities. Achieving seamless integration necessitates 

an understanding of both domains and demands innovative solutions to address inherent 

challenges. 

 

This thesis is structured to provide a comprehensive analysis of the development and 

refinement of a path tracer designed explicitly for volume rendering applications. In doing 

so, it aims to bridge theoretical foundations with their pragmatic implementations. 

 

In the following chapters, readers will explore the historical evolution, technical 

foundations, and wider implications of these techniques. The aim is to provide the reader 

with a comprehensive understanding of the topic, including its relevance and potential 

applications.
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2 Background 
 
 

The evolution of computer graphics techniques, specifically volume rendering 

and path tracing, has impacted visual representation. This chapter will cover these 

domains’ historical and contemporary advancements, emphasising their 

convergence. 

 

The mid-1980s brought innovative contributions to computer graphics. Kajiya 

(1986) was important in this era, unveiling the rendering equation, an integral 

equation that encapsulated many known rendering algorithms. This foundation 

paved the way for the Monte Carlo solution and introduced Hierarchical sampling, a 

variance reduction technique.  

 

Parallel to Kajiya’s work, Cook (1984) championed ray tracing as an elegant 

technique in computer graphics. His research underscored ray tracing’s capabilities 

in simulating shadows, reflections, and refracted light. By innovatively distributing 

ray directions based on their sampling analytic function, Cook enabled ray tracing 

to embrace fuzzy phenomena, resolving challenges related to motion blur, depth of 

field, and fuzzy reflections. 

 

Complementing these developments was Cohen’s (1986) exploration of the 

radiosity method. This approach modelled light interactions between diffusely 

reflecting surfaces, offering predictions of global illumination effects with precision. 

Cohen’s emphasis on environment sampling underscored the importance of 

detailed meshes, especially in high gradient intensity zones. His work was a 

cornerstone in predicting global illumination without exorbitant computational 

overhead. 

 

Global illumination techniques gained even more attention in the 1990s. Veach 

(1995) shifted the narrative towards Monte Carlo methods, positioning them as 

viable alternatives to finite-element techniques. These methods, adaptable to 

varied scene descriptions, eliminated the complicated meshing process. Veach’s 

(1998) subsequent contributions delved deeper into light transport algorithms, 

emphasising their capability to simulate light interactions in diverse settings, 

crafting realistic images. 
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In parallel to those advances, Levoy (1987) propelled volume rendering 

techniques to attention, emphasising the potential of representing surfaces from 

three-dimensional scalar functions. This technique highlighted direct shading and 

projection of each sample, eliminating the need for geometric primitive fittings. This 

approach was further enhanced by Drebin (1988), who focused on rendering 

images of mixed material volumes, amplifying the intricacies of both material 

interiors and their boundaries. 

 

Heidrich et al. (1995) introduced an innovative perspective on maximum 

projection, a volume rendering technique. By implementing simple affine 

transformations, this approach facilitated interactive manipulations of volume data, 

allowing for an enhanced balance between interactivity and image quality. 

 

The latter part of the decade saw Engel (2006) presenting a comprehensive 

tutorial on real-time volume rendering techniques optimised for consumer graphics 

hardware. This tutorial encapsulated techniques to harness the power of modern 

graphics hardware and high-level shading languages, ensuring real-time rendering 

of volumetric data and effects. 

 

The integration of volume rendering with path tracing gained momentum with 

Fong et al. (2017) acknowledgement of path tracing’s supremacy in movie 

production. Emphasising the role of evolving computational power and refined 

techniques, Fong highlighted how volume rendering could leverage path tracing’s 

evolution, crafting photoreal images. 

 

In conclusion, the synthesis of foundational works from pioneers like Kajiya 

and Cook, coupled with contemporary innovations, underlines the progress in 

volume rendering and path tracing. Their integration has redefined the boundaries 

of realism in visualisations and set a promising path for the future of computer 

graphics. 
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3 Methodology 
 
Overview 

 

In this chapter, it is explored the techniques used to integrate volume rendering 

with path tracers. Through empirical methods, the aim is to provide a comprehensive 

understanding of how to achieve photorealistic images using rendering methods. The 

methodology used is based on research findings, ensuring a thorough exploration of 

the topic. Readers can expect clear explanations of the techniques used in this 

research. 

 

3.1 Global Illumination 
 

According to Jensen (2001), global illumination is the term used to describe the 

physics-based simulation of light scattering in a synthetic model. This technique aims 

to replicate all light reflections in a model and accurately estimate light intensity at any 

point in the model. To simulate global illumination, it is required to describe the 

geometry, materials, and light sources presented in the scene. The global illumination 

algorithm then calculates the interaction between the light leaving the light sources 

and the described ambient. 

 

3.1.1 Nature of Lights 
 

Global illumination algorithms imitate how light behaves. Therefore, it is necessary 

to understand its nature thoroughly. Throughout history, knowledge of light has 

evolved through discoveries and theories. One enduring model is the ray optics 
model, which portrays light as a series of independent rays following geometric rules 

for reflection, refraction, and image formation. In computer graphics, ray optics is 

widely used due to its effectiveness in representing and manipulating light in a 

computational environment. 

 

It is essential to know that the ray optics model oversimplifies how photons 

disperse and does not consider complex phenomena like diffraction and interference. 

It assumes that light travels infinitely fast, which may seem problematic, but it can still 

simulate most visible light phenomena. Despite its limitations, the emphasis on ray 
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optics in computer graphics shows how well it can capture how light interacts with its 

surroundings, often enough to make things look realistic and immersive. 

 

3.1.2 Radiometry 
 

The branch of optical physics that deals with measuring light and energy is called 

Radiometry. The basic unit of light is called a photon, and the energy of a photon (𝑒𝜆)  

depends on its wavelength (𝜆). Spectral radiant energy (𝑄𝜆) is the total energy of a 

group of photons (𝑛𝜆) with a specific wavelength (𝜆). To find the total energy of a 

collection of photons, also called radiant energy (𝑄), you can integrate (𝑄𝜆) over all 

possible wavelengths. Radiant flux (𝛷) is the rate at which radiant energy flows over 

time in a direction. This is also known as “flux”. 

 

The radiant flux area density is defined as 𝑑𝛷/𝑑𝐴 (differential flux per differential 

area (at a surface)). This measurement is divided: radiosity (𝐵), which measures the 

flux living from a surface, and irradiance (𝐸), which measures the flux arriving at a 

particular point on a surface (𝑥). This relationship is expressed mathematically as: 

 

 E(𝑥) =
dΦ
𝑑𝐴

 (3.1) 

 

Radiance (𝐿) is an essential measurement in global illumination and is often 

represented as 𝐿(𝑥, 𝜔). The 𝑥 denotes position, and the ω indicates the direction. 

Radiance is the amount of light energy per unit of solid angle per projected area and 

captures the inherent colour of an object. It is widely used in ray tracing algorithms, 

which highlights its importance in computer graphics. 

 
Figure 3.1 - Radiance, L, is defined as the radiant flux per unit solid angle, and 𝑑𝜔	⃗, per unit 

projected area, 𝑑𝐴. (Jensen 2001) 
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3.1.3 Local Ilumination 
 

The simulation of light scattering across different surface materials or mediums is 

a crucial aspect of computer graphics. This complex process is commonly referred to 

as local illumination. 

 

Ø Bidirectional	Reflectance	Distribution	Function	(BRDF)	

 

Nicodemus et al. (1977) introduced the Bidirectional Reflectance Distribution 

Function (BRDF) as a way to understand how light reflects off surfaces. Essentially, 

BRDF assumes that the light reflects at the exact point it hits a surface. This model, 

pivotal in explaining local illumination, provides the means to calculate the reflected 

light in all directions when the incoming radiance at a surface location is known. 

 
Figure 3.2 - The BRDF is a model that explains surface reflection of a light. It assumes that all light 

is reflected from the location where it hits a surface. (Jensen 2001) 

The BRDF, symbolised by 𝑓!, establishes the relationship between reflected 

radiance and irradiance as expressed in equation (3.2). It is defined by the following 

formula: 

 
f"(x, 𝜔::⃗ #, 𝜔::⃗ ) =

dL"(x, 𝜔::⃗ )
dE$(x, 𝜔::⃗ #)

=
dL"(x, 𝜔::⃗ )

L%(x, 𝜔::⃗ #)(𝜔::⃗ # ⋅ n:⃗ )dω#::::⃗
 (3.2) 

 

where 𝑛:⃗  is the normal at 𝑥. 

 

What BRDF illustrates is the idea of local illumination. Once the incoming 

radiance at a surface point is recognised, the amount of light reflected in every 

direction can be determined by integrating the incident radiance,	𝐿% ,	as demonstrated 

in equation (3.3):  
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 𝐿!(𝑥, ω::⃗ ) = ?𝑓!(𝑥, 𝜔::⃗ #, ω::⃗ )𝑑𝐸(𝑥, 𝜔::⃗ #)
&

= ?𝑓!(𝑥, 𝜔::⃗ #, ω::⃗ )𝐿𝑖(𝑥, 𝜔::⃗ #)(𝜔::⃗ # ⋅ 𝑛:⃗ )𝑑ω#::::⃗
&

 (3.3) 

  

Here Ω represents the hemisphere of incoming directions at point 𝑥, and 𝜃 is the 

angle between the surface normal and the light source direction, (𝜔::⃗ # 	 · 𝑛:⃗ ) 	= 	𝑐𝑜𝑠	𝜃#. 

 

Jensen (2001) stated that the BRDF has an essential property called Helmholtz’s 

law of reciprocity, which means that the BRDF does not depend on the direction. This 

is a crucial feature that most global illumination algorithms use to track light paths in 

both directions. It also allows for easy validation of the BRDF by checking if it is 

reciprocal. Another essential consideration in evaluating BRDF is the principle of 

energy conservation, meaning that a surface cannot reflect more light than it absorbs. 

 

The measure of the light that a surface reflects in comparison to the light that 

strikes it is known as the reflectance (𝜌) of the surface. It is defined in equation (3.4) 

as: 

 
ρ(𝑥) =

𝑑Φ!(𝑥)
𝑑Φ%(𝑥)

 
  

(3.4) 

 

In this context, 𝜌(𝑥) represents the fraction of incident light that is reflected, while 

the remainder is absorbed or transmitted. In physically-based rendering, this value is 

expected to be within the range of zero to one. 

 

Ø Diffuse	Reflection	

 

When light hits a surface with diffuse reflection, it reflects in all directions. This 

type of reflection usually happens on rough surfaces or materials with subsurface 

scattering. Figure 3.3 (a) shows an example of light reflecting in random directions. 

 

 
Figure 3.3 - Light reflects in all directions when it hits diffuse materials. The two types of diffuse 
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reflection are general diffuse reflection (a) and Lambertian reflection (b) (Jensen 2001). 

 

Lambertian or ideal diffuse reflection is a specific type of diffuse reflection where 

the reflected direction is completely random (Figure 3.3 (b)). Jensen (2001) states that 

this results in a constant reflected radiance in all directions, regardless of the 

irradiance, which leads to a constant BRDF (𝑓!,(): 

 𝐿!(𝑥, ω::⃗ ) = 𝑓!,((𝑥)?𝑑𝐸%(𝑥, 𝜔::⃗ #)
&

= 𝑓!,((𝑥)𝐸%(𝑥)  (3.5) 

 

Considering the above equation and that ∫ (𝑛:⃗ ⋅ ω::⃗ )𝑑ω::⃗& = 𝜋, it is then possible to 

find the diffuse reflectance 𝜌( for Lambertian surface: 

 

𝜌((𝑥) =
𝑑Φ!(𝑥)
𝑑Φ%(𝑥)

=
𝐿!(𝑥)𝑑𝐴∫ (𝑛:⃗ ⋅ 𝜔::⃗ )𝑑𝜔::⃗&

𝐸%(𝑥)𝑑𝐴
= 𝜋𝑓!,((𝑥) (3.6) 

 

For a Lambertian surface, the reflected light’s direction is completely random, as 

previously stated. To determine the cosine-weighted reflected direction (𝜔(:::::⃗ ), two 

randomly distributed numbers can be used (𝜉1	 ∈ 	 [0, 1] and 𝜉2	 ∈ 	 [0, 1]) and the 

following equation: 

 

 ω(:::::⃗ = (θ, ϕ) = Tcos)*TXξ*Z , 2πξ+Z (3.7) 

 

 This equation uses spherical coordinates (𝜃, 𝜑) to describe the direction, with 𝜃 

representing the angle with the surface normal and 𝜑 representing the rotation around 

the normal. 

 

Ø Specular	Reflection	
 
 
Light hitting a smooth surface, like a shiny metal or glass, can cause a specular 

reflection. However, due to imperfections, most surfaces are not perfectly smooth and 

will reflect light in a cone shape around the mirror direction (Figure 3.4(a)). The level of 

imperfection, such as roughness and gloss, is often considered in reflection models for 

these glossy surfaces. In contrast, when the surface is perfectly smooth, it creates a 

perfect specular reflection where light is only reflected in the mirror direction (Figure 

3.4 (b)). 
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Figure 3.4 - When light hits a specular surface, it reflects in the same direction as a mirror. (a) 

displays a glossy reflection, while (b) features a perfect specular reflection. (Jensen 2001) 

 
The radiance reflected due to a specular reflection is represented as: 

 

 𝐿!(𝑥, ω,:::::⃗ ) = ρ,(𝑥)𝐿%(𝑥, 𝜔::⃗ #)	 (2.25) (3.8) 

 

For an ideal specular reflection, the direction of the mirror denoted as 𝜔,::::⃗ , is 

defined by: 

 

 𝜔,::::⃗ = 2(𝜔::⃗ # ⋅ 𝑛:⃗ )𝑛:⃗ − 𝜔::⃗ #	 (2.26) (3.9) 

 

It is important to note that both 𝜔,::::⃗  and 𝜔::⃗ # point away from the surface. 

 

The BRDF for perfect mirror reflection, when using spherical coordinates for 

direction, is described as: 
 

 𝑓!,,(𝑥, 𝜔::⃗ #, ω::⃗ ) = 2ρ,δ(sin+ θ# − sin+ θ)δ(ϕ# − ϕ± π) (3.10) 

 
Ø Bidirectional	Scattering	Distribution	Function	(BSDF)	

 

With a broader perspective, the Bidirectional Scattering Distribution Function, or 

BSDF, emerges as a holistic model enclosing both reflection and transmission of light 

at a surface. While BRDF delves into the reflection of light on surfaces, BSDF offers a 

more comprehensive view, accounting for both the scattering and transmission of light 

when it encounters a material. This concept is essential when it comes to volumes. 

The BRDF can be seen as a specialised version of BSDF, narrowing its focus 

exclusively to reflection. 

 

3.1.4 The Rendering Equation 
 

Jensen (2001) states that the rendering equation, introduced by Kajiya (1986), 
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serves as the mathematical basis for all global illumination methodologies. This 

equation states the necessary conditions for light transport to be balanced in models. 

To determine the outgoing radiance at any surface location in a model, the rendering 

equation can be utilised. This involves calculating the sum of the emitted radiance, 𝐿-, 

and the reflected radiance, 𝐿!, which together form the outgoing radiance, 𝐿.. 

 

 𝐿.(𝑥, ω::⃗ ) = 𝐿-(𝑥, ω::⃗ ) + 𝐿!(𝑥, ω::⃗ ) (3.11) 

 

Using Equation 3.3, it is possible to calculate the reflected radiance: 

 

 𝐿.(𝑥, ω::⃗ ) = 𝐿-(𝑥, ω::⃗ ) + ?𝑓!(𝑥, 𝜔::⃗ #, ω::⃗ )𝐿%(𝑥, 𝜔::⃗ #)(𝜔::⃗ # ⋅ 𝑛:⃗ )𝑑𝜔::⃗ #
&

 (3.12) 

 

This equation integrates over all possible incoming light directions (ω::⃗ ) and 

calculates the outgoing radiance based on the surface’s properties and the incoming 

light. 

For finite element algorithms, the rendering equation is expressed as an integral 

over surface locations. By utilising the differential solid angle, it is possible to express 

de equations in terms of surface locations and normals. 

 

 
𝑑𝜔::⃗ #(𝑥) =

(𝜔::⃗ # ⋅ 𝑛:⃗ #)𝑑𝐴#

e|𝑥# − 𝑥|e
+  (3.13) 

 

It is possible to modify the rendering equation to incorporate the visibility between 

surfaces and light transport by introducing 𝐺. This term accounts for the geometric 

relationship between two surface points (𝑥 and 𝑥′) and their normal (𝑛:⃗  and 𝑛:⃗ #),. 

   

 
𝐺(𝑥, 𝑥#) =

(𝜔::⃗ # ⋅ 𝑛:⃗ #)(𝜔::⃗ # ⋅ 𝑛:⃗ #)

e|𝑥# − 𝑥|e
+  (3.14) 

 

 𝐿.(𝑥, ω::⃗ ) = 𝐿-(𝑥, ω::⃗ )

+ ?𝑓!(𝑥, 𝑥# → 𝑥,ω::⃗ )𝐿%(𝑥# → 𝑥)𝑉(𝑥, 𝑥#)𝐺(𝑥, 𝑥#)𝑑𝐴#
/

 
(3.15) 

 

In this equation: 

 

• 𝐿%(𝑥# → 𝑥) is the radiance leaving 𝑥# in the direction towards 𝑥; 
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• 𝑆 is the set of all surface points;  

• 𝑉(𝑥, 𝑥#) is the following visibility function: 

 

 𝑉(𝑥, 𝑥#) = l1, 𝑥	and	𝑥#	are	mutually	visible
0, otherwise  (3.16) 

 

It is then possible to formulate the rendering equation entirely in terms of surface 

locations x, 𝑥#, and 𝑥##: 

 

 𝐿.(𝑥# → 𝑥) = 𝐿-(𝑥# → 𝑥)

+ ?𝑓!(𝑥## → 𝑥# → 𝑥)𝐿%(𝑥## → 𝑥#)𝑉(𝑥#, 𝑥##)𝐺(𝑥#, 𝑥##)𝑑𝐴##
/

 
(3.17) 

 

The equation considers how light is emitted or reflected from point 𝑥## reaches 

point 𝑥# and contributes to the radiance at point 𝑥. 

 

3.1.5 Monte Carlo Integration 
 

Equation 3.17 is similar to the original rendering equation that Kajiya (1986) 

presented in his seminal paper, where he showed how Monte Carlo methods solve the 

same equation. Monte Carlo integration involves randomly sampling a function to 

evaluate its properties. To integrate a function 𝑓(𝑥) over a one-dimensional domain 

from a to b: 

 

 
𝐼 = ? 𝑓(𝑥)𝑑𝑥

0

1
 (3.18) 

 

The mean value of 𝑓(𝑥) is calculated over the interval a to b and multiplied by the 

length of the interval (𝑏	 − 	𝑎). This mean is obtained by averaging the values of 𝑓(𝑥) 

at 𝑁 locations 𝜉*, 𝜉+, . . . , 𝜉2 , where 𝜉*, . . . , 𝜉2 are random numbers uniformly distributed 

between 𝑎 and 𝑏. 

 
𝐼3 = (𝑏 − 𝑎)

1
𝑁
}𝑓(ξ%)
2

%4*

 (3.19) 

 

𝐼3 is the Monte Carlo estimate of the integral. As the number of samples (N) 

increases, this estimate becomes more accurate. In the limit, it is found that: 
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 lim
2→6

𝐼3 = 𝐼 (3.20) 

 

To understand how fast the estimator 𝐼3 converge towards the correct result 𝐼 it is 

computed the variance 𝜎+ of the estimate 𝐼3: 

 

 
σ+ =

1
𝑁
�? 𝑓+(𝑥)𝑑𝑥

0

1
− 𝐼+� (3.21) 

 

According to Jensen (2001), the Monte Carlo integration is easily applied to most 

problems, but convergence is slow. However, for high-dimensional integrals (such as 

those in rendering), better convergence is often achieved than with any other method.  

The variance 𝜎,+ of the sampling distribution can also be estimated:  

 

 
σ,+ =

1
𝑁 − 1

}(𝑓(ξ%) − 𝐼3)+
2

%4*

 (3.22) 

 

Since this calculation contains the factor 1/(𝑁	 − 	1), the variance (the noise) of 

samples converges as slowly as the variance of the estimate (Jensen (2001)). 

Fortunately, several variance-reduction techniques are available. 

 

Variance-Reduction	Technique	–	Multiple	Importance	Sampling	

 

The Monte Carlo integration benefits from techniques that reduce errors and 

improve results. One such technique is Multiple Importance Sampling (MIS). 

 

MIS combines several sampling methods to evaluate the same rendering 

equation. Not all methods work equally well, so MIS uses multiple methods and gives 

them weights based on their effectiveness. This approach, introduced by Veach 

(1998), ensures that the sampling is balanced and optimised. 

 

The MIS is an extension of the Importance Sampling technique. At its core, 

Importance Sampling aims to reduce variance in Monte Carlo estimations by picking 

samples not uniformly but according to a given probability distribution that reflects the 

importance or relevance to the problem at hand. In simple terms, it tries to sample 

more frequently where the function has higher values, thus producing a better average 

with fewer samples. 
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With this foundation, Multiple Importance Sampling (MIS) emerges as a natural 

evolution. Instead of relying on a single importance sampling strategy, MIS 

recommends the simultaneous use of multiple strategies. By doing so, it reduces the 

overall variance in the estimation. 

 

According to Pharr et al. (2016), The nature of MIS lies in the computation of a 

weighted average of the estimations from each sampling method. The weighting 

mechanism is critical to the success of MIS. A common approach employed is the 

balance heuristic, which calculates the weight based on the number of samples and 

the probability density function (PDF) of each method. 

 

Mathematically, the weight for a sample from a given method is computed as 

follows: 

 

 
𝜔%(𝑥) =

𝑛%𝑝%(𝑥)
∑ 𝑛7𝑝7(𝑥)8
74*

 (3.23) 

 

• 𝜔%(𝑥): This represents the weight of the 𝑖th method’s sample for the function 

value at point 𝑥. It is this weight that determines the contribution of the sample 

from the 𝑖th method to the final estimate. 

 

• 𝑛%: Represents the number of samples taken from the 𝑖th method. In the 

context of MIS, it is crucial to keep track of how many samples are drawn from 

each method, as this directly influences the weight calculation. 

 

• 𝑝%(𝑥): This is the probability density function (PDF) of the 𝑖th method evaluated 

at point 𝑥. The PDF gives us a measure of how likely a sample from the 𝑖th 

method is to land at point 𝑥. A well-crafted PDF will have higher values where 

the function is significant, guiding the sampling process more effectively. 

 

• ∑ 𝑛7𝑝7(𝑥)8
74* : This is the summation of all the products of the number of 

samples and their corresponding PDFs from all 𝑘 methods at point 𝑥. It acts as 

a normalisation factor, ensuring that the weights are distributed appropriately 

among all methods. 
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The adaptability of MIS ensures accurate and efficient integral estimation. In 

practical applications like rendering, MIS balances different contributions for accurate 

results with reduced costs. 

 

3.1.6 Monte Carlo Ray Tracing 
 

Ray tracing is a method used to estimate the interaction of light with a model by 

tracing a path of light through it and determining the resulting radiance. This technique 

is widely employed in computer graphics, particularly when rendering shadows and 

specular surfaces. Introduced by Whitted (1980), the recursive ray-tracing algorithm is 

both straightforward and effective, simulating light from the viewer’s perspective all the 

way back to its source. 

 

For effective ray tracing, certain data are essential: the observer’s position, an 

image plane (which includes its viewing direction and field of view), a comprehensive 

description of the scene’s geometry, and details about the light sources and materials. 

The primary objective is to determine the colour of each pixel on the image plane. This 

process involves sending one or more rays through each pixel and averaging the 

radiance they capture. The direct rays sent from the observer and through the pixels 

are termed primary rays. 

 

To ascertain the radiance of a primary ray, one must pinpoint the closest object it 

intersects. At this intersection point, denoted as 𝑥, the goal becomes deducing the 

emitted radiance in the ray’s direction. This requires knowledge of the surface normal, 

𝑛:⃗ , at 𝑥, as well as the Bidirectional Reflectance Distribution Function (BRDF), 𝑓!. With 

these details in hand, the illumination from each light source can be computed by 

estimating the irradiance at 𝑥. 

 

Ray tracing is adept at rendering reflections on shiny surfaces by tracing rays in 

the mirror direction, ω,:::::⃗ . However, it faces challenges in calculating indirect illumination 

on diffuse surfaces. Consequently, according to Jensen (2001), ray tracing does not 

serve as a comprehensive global illumination algorithm. 

 

3.6.1	-	Path	Tracing	

 

Path tracing builds on the idea of ray tracing, making it possible to compute a 
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complete global illumination solution according to Jensen (2001). The path-tracing 

technique was also introduced by Kajiya (1986) as a solution to the rendering 

equation. This technique was inspired by Cook et al. (1984) paper on the distribution 

ray tracing algorithm, which employed random sampling to capture effects like soft 

shadows and motion blur. Path tracing takes this a step further, sampling across all 

possible light paths. 

 

Path tracing is an enhancement to ray tracing that calculates complex lighting 

effects. It does this by sending out a “random” ray to estimate specific light 

interactions. For instance, when a ray hits a surface that scatters light in all directions, 

the method calculates the scattered light by sending out another random ray. 

 

In path tracing, the lighting pattern is determined by sending rays in random 

directions along all potential light paths. By considering many sample rays for a single 

point in the image, an average value of all light interactions at that point is obtained. 

 

A key feature of path tracing is its efficiency. While it only uses one reflected ray 

to estimate light bouncing off surfaces, it ensures that equal effort goes into surfaces 

directly visible to the viewer. However, to get a precise result for a point in the image, 

it is often necessary to consider the average of multiple primary rays, sometimes 

thousands. 

 

A challenge with path tracing is the inconsistency in its results, which can appear 

as noise in the final image. This noise arises when too few samples are considered for 

a point, leading to an inaccurate light interaction estimate. However, there are 

methods capable of reducing this inconsistency, as the multiple importance sampling 

explained in section 3.1.5, leading to more accurate results. 

 

Jensen (2001) defines the path-tracing algorithm as the one seen in Figure 3.5. 

The main point here is that all rays (not just specular reflections) are traced in the 

shade() function and that additional elements for each ray (such as pixel position) can 

be randomly sampled. 
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Figure 3.5 - The path-tracing algorithm (Jensen (2001)) 

 

 

3.2 Volume 
 

Fong et al. (2017) describe a volume as a collection of particles. These particles 

can be as tiny as atoms and molecules or as vast as stars that contribute to the 

transport of galactic radiance. For a volume to function as intended, the average 

density of these particles should be on the lower side. This ensures that the individual 

size of these particles becomes minor compared to the mean distance separating 

them. Such a setup is conducive for the particles to collide in a statistically 

independent way, a phenomenon frequently seen in gaseous environments. However, 

this is not true with denser substances like sand or snow. When photons traverse 

through such a volume, they might collide with other particles. These interactions 

shape the radiance within the volume. Given the impracticality of individually mapping 

out every particle, they are instead represented using fields that predict the likelihood 

of collisions. The odds of such photon collisions are indicated by a coefficient, 𝜎(𝑥), 

representing the likelihood of a collision for every unit of distance the photon covers 

inside the volume. 

 

3.2.1 Properties 
 

Volumes have specific properties, mainly determined by absorption, scattering 
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coefficients, phase function, and emission (Fong et al. (2017)): 

 

• Absorption (𝜎1(𝑥)): is when a photon gets absorbed by the volume, effectively 

disappearing from the area of interest. In simple terms, the energy from the 

photon gets transferred, often turning into heat. 

 

• Scattering (𝜎,(𝑥)): This is when a photon, upon collision, changes direction but 

keeps its radiance value intact. Any alteration in the radiance value is managed 

through absorption and emission. 

 

• Phase Function 𝑓9(𝑥, ω,ω#): It defines the e angular distribution in which radiance 

is scattered. Phase functions ensure that the scattered radiance remains 

consistent and balanced. Fong et al. (2017) state that phase functions operate 

similarly to the BSDF in surface rendering since its directions are interchangeable 

(they also follow Helmholtz’s law).  

 
Isotropic volumes scatter light uniformly in every direction. Their phase function 

is defined in equation 3.24: 

 

 𝑓9(𝑥, θ) =
1
4π

 (3.24) 

 

In contrast, anisotropic volumes can have more complex phase functions. The 

most commonly used phase function in practical settings is the Henyey-

Greenstein (1941) phase function (equation 3.24), which can model various 

scattering behaviours based on the parameter 𝛿. This parameter controls the 

asymmetry of the phase function modelling backwards scattering when δ < 0, 

isotropic scattering when δ = 0, and forward scattering when δ > 0. 

 

 
𝑓9(𝑥, θ) =

1
4π

1 − δ+

(1 + δ+ − 2δ cos θ)
:
+
 (3.25) 

 

• Emission 𝐿-(𝑥, 𝜔): Volumes can also emit radiance, similar to other light sources. 

The way this radiance is projected can vary, but in general, volumes do not emit in 

any particular direction, making their radiance uniform across all directions. If a 

volume does not emit, its emission value is zero. 
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• Extinction coefficient (𝜎;(𝑥)):: This refers to the sum of the absorption and 

scattering coefficients, symbolised as σ; = σ1 + σ,. Informally, it is often termed 

as the density or the attenuation coefficient. Essentially, the extinction coefficient 

captures the total decrease in radiance due to both absorption and scattering 

within a volume. When an ‘extinction collision’ occurs, it means both absorption 

and scattering play a role, and it is necessary to ensure that the scattered light is 

accurately adjusted in calculations using the single scattering albedo. 

 
• Single scattering albedo (𝛼): Denoted by α = <!

<"
, measures a volume’s overall 

reflectivity, similar to the surface albedo. It determines how much radiance gets 

scattered. If 𝛼 equals 0, all the radiance is absorbed, as seen in substances like 

black coal dust. Conversely, an 𝛼 of 1 indicates that there is no absorption, 

leading to lossless scattering, much like in clouds. 

 

3.2.2 Light propagation 
 

The radiative transfer equation (RTE) is pivotal in delineating the distribution of 

radiance within volumes. Introduced by Chandrasekhar (1950), the RTE explicates the 

equilibrium radiance field denoted as 𝐿(𝑥, 𝜔) when mapped against the position	𝑥 and 

direction 𝜔. This is contextualised within the parameters set by a specific volume, and 

it duly incorporates any boundaries dictated by geometrical constraints and light 

sources. 

The terms that constitute the RTE are the following, according to Fong et al. 

(2017) 

 

• Absorption: When discussing a radiance beam symbolised as 𝐿(𝑥, 𝜔), which 

originates at point 𝑥 and is directed towards 𝜔, it is discerned that the derivative of this 

radiance in the direction of 𝜔 is a function of the radiance present at that specific 

location. This relationship is modulated by the absorption coefficient, 𝜎1, leading to the 

expression:(𝜔 ⋅ ∇)𝐿 = −𝜎1(𝑥)𝐿(𝑥, 𝜔). This equation is essentially a spatial rendition of 

the Beer-Lambert Law that depicts the decrease in radiance resulting from absorption. 

 

• Out-Scattering: The said radiance beam, 𝐿(𝑥, 𝜔), also witnesses a decline in 

its radiance due to out-scattering. This is not a loss in the cumulative radiance field but 

specifically to its original direction 𝜔. The decrement is proportionate to the radiance 

𝐿(𝑥, 𝜔), and this relationship is steered by the scattering coefficient, 𝜎,, as illustrated in 
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the equation: (𝜔 ⋅ ∇)𝐿(𝑥, 𝜔) = −𝜎,(𝑥)𝐿(𝑥, 𝜔) 

 

• Emission, depicted as a distinct radiance field 𝐿-(𝑥, 𝜔), is indicative of the 

radiance added to 𝐿(𝑥, 𝜔). Its mathematical representation can be expressed as(𝜔 ⋅

∇)𝐿(𝑥, 𝜔) = 𝜎1(𝑥)𝐿-(𝑥, 𝜔). It is imperative to note that certain sources, including 

PBRT, approach emission by establishing a radiance or source term sans the 

absorption coefficient, 𝜎1(𝑥). However, for a thorough and congruent explication of 

radiative transfer, it is crucial to incorporate this coefficient to ascertain the correct set-

up of the emissive radiance vis-à-vis absorption. 

 

• In-Scattering: In-scattering emerges from the out-scattering spanning all other 

directions 𝜔# at point 𝑥, thus amplifying the net radiance of the initial radiance beam. 

Mathematically, this can be represented as: (𝜔 ⋅ ∇)𝐿(𝑥, 𝜔) =

𝜎,(𝑥) ∫ 𝑓9(𝑥, 𝜔, 𝜔#)𝐿(𝑥, 𝜔#)d/# 𝜔#. The term 𝑆+ specifically denotes the spherical domain 

surrounding the position 𝑥. In this context 𝑆+ represents a unit sphere that 

encapsulates all possible directions from which light can scatter into the volume at that 

position.  

 

In synthesising the definitive form of the RTE, all the components are combined. 

Given their inherent kinship, both absorption and out-scattering are consolidated 

under the umbrella term of the extinction coefficient, σ; = σ1 + σ,. The resultant 

equation representing this amalgamation is  

 

 (ω ⋅ ∇)𝐿(𝑥, ω) = −σ;(𝑥)𝐿(𝑥, ω) + σ1(𝑥)𝐿-(𝑥, ω)

+ σ,(𝑥)? 𝑓9(𝑥, ω,ω#)𝐿(𝑥, ω#)𝑑ω#
/#

 
(3.26) 

 

 
Figure 3.6 – RTE terms (Fong et al. (2017)) 
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3.2.3 Rendering Equation 
 

The Radiative Transfer Equation (RTE) elucidates how radiance disperses, taking a 

forward-transport approach. It uses gradients to describe the progression of a radiance 

beam. While suitable for finite element methods, its application to path tracing requires 

adaptation. This necessity has led to the formulation of the Volume Rendering Equation 

(VRE). 

 

To streamline this mathematical representation, the in-scattering process is 

condensed, and by integrating both sides of the RTE, the gradients are transmuted into 

an integral, thus providing an explicit formula for 𝐿(𝑥, 𝜔). This transformation produces 

the VRE, denoted as:  

 

 
𝐿(𝑥,ω) = ? exp�−? 𝜎;(𝑥,)

;

/4=
d𝑠� [𝜎1(𝑥;)𝐿-(𝑥; , 𝜔) + 𝜎,(𝑥;)𝐿,(𝑥; , 𝜔)

(

;	4	=

+ 𝐿((𝑥( , 𝜔)] d𝑡 
(3.27) 

 

This equation’s formulation capitalises on the negative part of the radiance beam. By 

parameterising in this manner, the VRE focuses on the origins of radiance rather than 

its destinations. This backwards accumulation of contributions ensures that the direction 

𝜔 consistently indicates the flow of radiance, eliminating any complexities stemming 

from directional ambiguities. 

 

Enhancing clarity, the term that captures the exponential integral is further 

abbreviated as: 

 
𝑇(𝑡) = exp �−? σ;(𝑥,)d

;

/	4=
𝑠� (3.28) 

 

This term, referred to as transmittance, quantifies the cumulative effect of 

absorption and out-scattering from the ray’s origin to any given point. Employing this 

simplification, the VRE is rendered in a more succinct form, conducive for path tracing 

applications. This version of the VRE can be represented as:  
 

 
𝐿(𝑥,ω) = ? 𝑇(𝑡)[σ1(𝑥)𝐿-(𝑥; , ω) + σ,(𝑥)𝐿,(𝑥; , ω)]

(

;4=
d𝑡 + 𝑇(𝑑)𝐿((𝑥( , ω) (3.29) 

 

It is pivotal to note that radiance at any point on the ray needs to account for the 
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transmittance up to that location to determine its contribution to 𝐿(𝑥, 𝜔). Upon 

visualisation, one discerns that the VRE, encapsulated in this equation, is an extension 

of the rendering equation (Kajiya (1986)) to incorporate volume structures, considering 

surfaces as highly dense volumes with intricate phase functions. 

 

 
Figure 3.7 – visualisation of the VRE (Fong et al. (2017)) 

 
 
 

3.2.4 Tracking Approach 
 

Tracking approaches are one of the principal stochastics Monte Carlo approaches 

that can be used to solve the VRE. The tracking methodology utilises strategies such as 

Russian roulette and rejection sampling to determine a single type of photon collision to 

be modelled. By simulating photon interactions within a volume, this method avoids 

fragmenting the radiance beam’s contributions. However, a challenge arises when 

determining the distances a photon travels between different collision types. 

 

Closed-form	Tracking	

 

In simpler volumes, such as those with consistent or polynomial extinction rates, 

free paths can be determined using inverse transform sampling. Especially for the 

homogeneous volume, transmittance is expressed through the Beer-Lambert law as: 

 

 𝑇(𝑡) = exp(−σ;𝑡) (3.29) 

 

This function describes the exponential decrease of radiance. For tracking within such a 

volume, the goal is to pinpoint the exact distance a photon covers given a consistent 

transmittance, and normalising the transmittance function, a probability density function 

is formed, denoted as 𝑝(𝑡) = σ; exp(−σ;𝑡). According to Fong et al. (2017),  this can 
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then be perfectly importance sampled, resulting in 𝑡= = − ?@(*)B)
<$

, which provides the 

photon’s travel distance. When this is integrated into the Volume Rendering Equation 

(VRE) for homogeneous volumes, it becomes necessary to factor in normalisation and 

decide which photon collision to model, whether absorption/emission or in-

scattering.This decision is made using a Russian roulette approach. 

 

The closed-form tracking algorithm efficiently manages this procedure, updating 

the ray’s path based on the collision encountered. This method holds paramount 

significance in production rendering, being exceptionally effective in homogeneous 

volumes like fog or atmosphere. Moreover, for translucent objects requiring subsurface 

scattering rendering, such as skin, this method proves invaluable. 

 

 
Figure 3.8 - A path scatters once and absorbs some emission (top) A path scatters scattering and then 

hitting a boundary (bottom). (Fong et al. (2017)) 

 

Delta	Tracking	

 

Delta tracking is a technique founded on von Neumann’s rejection sampling, with 

origins in both neutron transport and plasma physics (Fong et al. (2017). Also known by 

other names such as Woodcock tracking, it introduces a fictitious collision type referred 

to as a “null-collision” to make the sampling process in heterogeneous volumes behave 

as though the medium were homogeneous. 

 

The concept of null-collision results in scattering in the same incoming direction 
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without any impact on the actual light transport. This is articulated through a null-

collision coefficient σD(𝑥), which functions analogously to the physical coefficients. The 

overall volume is homogenised by choosing 𝜎D(𝑥) such that the sum of all coefficients, 

termed the free-path coefficient σ�, remains constant, expressed as σ� = σ1(𝑥) + σ,(𝑥) +

σD(𝑥) = σ;(𝑥) + σD(𝑥). Furthermore, it is defined that σ� ≥ σ;(𝑥), leading to σD(𝑥) = σ� −

σ;(𝑥). 

 

Since 𝜎� remains constant, it can replace the constant extinction in the closed-form 

tracking equation, resulting in a new expression for distance sampling, 𝑝D(𝑡) =

σ� exp(−σ�𝑡). With three collision types instead of two, probabilities for the collisions are 

defined by the equations, 𝑃1(𝑥) =
EF

E%(G)
, 𝑃,(𝑥) =

<F
<&(G)

, 𝑃D(𝑥) =
<F

<'(G)
 , with the sum 

equalling one. 

	

The application of the null-collision probability gives rise to a recursive form that 

closely resembles the closed-form version of tracking. In the recursion, Russian 

Roulette selects one of the three collision types. If the null collision is chosen, the 

process continues unaltered. The method requires 𝜎" to be close to the maximum of 𝜎;, 

and to achieve efficiency, volumes may be subdivided into domains, allowing for a 

tightly defined 𝜎" in Delta tracking. 

 

This approach, through the introduction of null-collisions, aligns heterogeneous 

media with closed-form tracking while maintaining the efficiency of the calculation and 

introducing the flexibility to handle variations within the medium. It represents an 

elegant solution to a complex problem, balancing computational rigour with the physical 

realities of light transport. 

 

 
Figure 3.9 - A path scatters once and absorbs some emission (top) A path scatters scattering and then hits 

a boundary (bottom). (Fong et al. (2017)) 
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4 Design and Implementation 
Overview 

 

This chapter will delve into the complexity of constructing a stand-alone 

renderer fortified by path-tracing techniques that are adept at rendering specific 

volumes. Drawing from books such as Shirley et al. (2023) and seminal works such as 

Fong et al. (2017), the foundation is meticulously crafted to foster the integration of 

diverse volumetric elements into path tracers. The chapter delineates the objectives of 

crafting scenes with precision and correct material properties, employing Physically-

Based Rendering (PBR) techniques. Building upon a prior project in ray tracing, this 

chapter recounts the assimilation of essential libraries, culminating in an industry-

standard outcome. An exposition of the software framework is provided, emphasising 

its modular architecture, promoting ease of understanding and further enhancement. 

The chapter further elucidates the nuanced dynamics of volume integration, 

underpinning the various challenges and solutions in this domain. Through 

exploration, the reader gains a comprehensive understanding of the renderer’s 

design, functionalities, and the techniques employed in achieving the envisaged 

objectives. 

4.1 Objectives 

This thesis is dedicated to the creation of a stand-alone renderer, supported by 

path tracing techniques, with the capacity to render some volumes. The foundational 

structure for this work is heavily influenced by the methodologies elucidated in Shirley 

et al. (2023) and Fong et al. (2017). These pivotal papers offer techniques that facilitate 

the creation of a renderer and the integration of a variety of volumetric elements into 

path tracers. 

 

The objective of this project is to render scenes where objects are presented with 

precision and correct material properties. In achieving this, PBR (Physically-Based 

Rendering) techniques were harnessed. Furthermore, the capability to render 

geometries with the nuances of homogeneous and heterogeneous volumes was 

established. 

 

This project is a progressive continuation of an earlier work on ray tracing. This 
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antecedent project was part of the Animation Software Engineering (ASE) module, 

which I undertook in the first semester of the MSc Computer Animation and Visual 

Effects course. The structure of that project was based on Buck (2018). 

 

4.2 Libraries 
 

In this project, certain dependencies were selected to align with industry norms. 

These decisions were necessary to take advantage of existing solutions while focusing 

on the primary objectives. 

 

The integration of the Intel Threading Building Blocks (TBB) library is important. 

TBB is a C++ template library that offers a set of components for parallel programming. 

This library enhances the program’s performance by optimising the execution of tasks. 

 

The NGL library also plays an important role, offering a suite of tools tailored for 

graphics and rendering in C++. While complex in its capabilities, it streamlines the 

rendering process, ensuring that graphic representations are correct. 

For the construction and generation process, the vcpkg toolchain was utilised. 

This ensures that dependencies are managed and integrated, simplifying the build 

process and ensuring compatibility. 

 

Furthermore, Qt, a widget toolkit, was utilised to create a graphical user interface 

to visualise the rendered image. 

 

In terms of versioning, the libraries were chosen as follows: 

 

• TBB (as per the version offered by vcpkg) 

• NGL (as per the local configuration) 

• Qt (prioritising version 6, but falling back to version 5 if not available) 

 

All libraries were incorporated to aid in the development and ensure that the 

RayTracer maintains performance and robustness. It is pertinent to mention that while 

building the project, using CMake with a minimum version of 3.12 is advocated to 

ensure seamless integration of all the components.  
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4.3 Design 
 

The software framework organises functions and features in a clear way, making 

it easy to understand and expand upon, enabling the creation of realistic scenes.  

  

• Modular Design: At the core of the framework is a modular design ethos. 

Each component or functionality is encapsulated in its own class, ensuring clear 

separation and minimal overlap. This approach promotes ease of maintenance and 

potential future expansions. 

• Rendering Components: The rendering pipeline relies on foundational 

classes like Ray and Intersection, with the NGLScene class serving as the primary 

rendering context.  

• Lighting: The framework introduces a class for AreaLight, as well as 

Bidirectional Scattering Distribution Function (BSDF) subclasses like LambertianBSDF 

(a surface BSDF) and IsotropicBSDF (a volume phase function), to ensure realistic and 

physically based lighting in rendering. 

• Materials: Materials determine how surfaces interact with light, reflecting 

realism. The architecture includes Material and subclasses like Lambertian and 

BeersLawHeterogeneousMaterial for nuanced properties and shading. 

• Geometric Primitives: The framework can handle different geometric shapes. 

The Sphere and Triangle subclasses represent specific shapes, while the Group class 

enables complex scene compositions with a hierarchical structure. 

• Volume Rendering: Incorporating volumetric effects adds layers of depth to 

the scenes. The framework includes classes such as Volume and its subclasses like 

BeersLawVolume. These subclasses are the ones responsible for defining a volume 

transmittance and its tracking approach. 

• Utilities: To streamline operations and foster efficiency, utility classes like 

Utility and Transformations have been incorporated. These serve as essential tools, 

assisting in common tasks and ensuring a seamless workflow. 

• Scene Management: The Scene class orchestrates the assembly of objects, 

lights, and other elements, encapsulating the essence of a structured approach to 3D 

environment composition. 

• Viewing Mechanisms: Perspective and projection play a crucial role in 

rendering. The Camera and Canvas classes in the architecture ensure dynamic viewing 

angles and diverse perspectives. 

• File Handling: Interactivity and compatibility are achieved through the ObjFile 
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class, which allows for the integration of external 3D models with the OBJ format. 

 

In resume, the software framework offers a meticulously crafted design, 

prioritising realism and flexibility. Its modular and comprehensive nature ensures that it 

stands as a robust platform for both current and future rendering implementations. A 

class diagram that elucidates the overall relation of the classes is shown in Figure 4.1. 

The system implementation can be found online in the following GitHub repository: 

https://github.com/gabicfa/volume-rendering-through-path-tracing   

 

 
Figure 4.1 – Class Diagram 

https://github.com/gabicfa/volume-rendering-through-path-tracing
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4.4 Volume integration 
 

According to Fong et al. (2017), no single preferred integration technique for 

volumes works well across every type of participating media. Simpler cases can be 

efficiently addressed through a direct beam transmittance computation incorporated 

into a path tracing algorithm’s throughput calculation. Conversely, intricate situations, 

for instance, light dispersion through media with low albedo properties like smoke, 

predominantly demand algorithms tailored for single scattering. The utmost complex 

media categories, exemplified by phenomena like clouds, necessitate intensive multiple 

scattering coupled with sophisticated anisotropic phase functions.  

 

To optimise the complexity of various volume integration models within a lighting 

integrator, there is a concerted effort to separate volume integration from the 

overarching light integration problem. This approach sees the integration domain 

partitioned into smaller volumetric subdomains, especially when participating media 

comes into play. Control over the integration within these domains is then designated to 

more compact volume modules. 

 

To do so, for each geometric primitive present in the scene, a corresponding 

instance of the Material class is attached to that specific primitive. Upon the incidence 

of a ray striking a geometric primitive, the geometric attributes at the point of impact are 

consolidated within a Computation, encompassing essential parameters such as the 

position of the point of contact, the surface is normal, and the reverse direction of the 

incoming ray, denoted as eye. 

 

Every Material inherently possesses a createBSDF() method. This method yields 

a BSDF object when provided with a Computation. Furthermore, this BSDF object is 

structured to accommodate both an evaluateSample() method and a generateSample 

method(). These methods, potentially using the data from the Computation, determine 

their operational procedure. The evaluateSample() is utilised to ascertain the BSDF’s 

response to a sample of light, especially when given an incoming ray direction labelled 

as sampleDirection and the outgoing ray’s direction derived from Computation.eye. 

Meanwhile, the generateSample() method’s primary function is to sample the BSDF. It 

achieves this by producing an outgoing ray direction, the sampleDirection, which stems 
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from an evaluation of a BRDF, and the subsequent PDF associated with that ray 

direction. 

 

Central to this process is the light integrator module within the Scene class, which 

takes on the role of executing a path-tracing algorithm. This operation is facilitated by a 

RendererServices object, which furnishes services essential for sampling the scene’s 

lights. The RendererServices object incorporates a generateLightSample() method that 

is instrumental in sampling the light database using a shading context derived from a 

particular point. The outcomes from this method are a sampled direction – 

sampleDirection, the radiance L reaching the point from this direction, the related 

probability density pdf, and crucially, the beamTransmittance between the point and the 

source of light. A parallel method, the evaluateLightSample(), designed for BSDF 

sampling, delivers a similar set of results. However, for both methods to be executed, 

the calculation of beamTransmittance necessitates the initiation of a transmission ray. 

 

Incorporating volumes into the path-tracer required the Material class to be 

adapted to produce a Volume object and led to the creation of the Volume interface. A 

Volume, when instantiated, utilises a Computation, which fundamentally represents the 

geometric context of the hit point that initiates the volume interval. The volume’s 

integration starts with the integrate() method, which requires an input ray featuring 

direction wi and origin Computation.point, specifying the direction of the volume 

interval. This choice is typically influenced by the BSDF::generateSample() executed at 

the hit point Computation.point, and a RendererServices object that aids the Volume 

during integration. The outcomes encompass the radiance L along the ray, the 

radiance estimate’s weight, the beam transmittance across the volume integration 

interval, and the hit point. The volume integrator determines the distance d and returns 

𝑥( in the output parameter P, and concurrently offers 𝑇(𝑑) in the output parameter 

transmittance. 

 

It is pivotal to recognise that within this configuration, a volume integrator does not 

operate by itself. Instead, it is an component of a Material, governing solely the 

volumetric integration within a geometric entity. The surface attributes of this geometry 

are exemplified by the BSDF, which is a product of the createBSDF() method within 

that Material 
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5 Results 
 

 

The results delineated within this chapter derive from exploration the path tracer 

tailored for volume rendering. The main objective of this empirical analysis is to discern 

the effectiveness and potential areas of improvement in the developed rendering 

methodology. 

 

Several scenes were rendered to elucidate the capabilities of the lights and BSDF. 

A salient aspect evaluated was the influence of ‘samplesPerPixel’ on the rendered 

image’s quality. Additionally, the impact of MIS Sample was examined. A further 

exploration was conducted with spheres employing both Homogeneous Beer’s Law and 

Heterogeneous Beer’s Law volumes to it. 

 

The first image analysed was a scenario where two specular balls were positioned 

within a Cornell Box. The image was rendered with 1600 samples per pixel, and the 

results are illustrated in Figure 5.1 

 

 
Figure 5.1 – Cornell box with two specular balls 

 

Upon analysis, it is evident that the reflections captured are accurate, with the wall’s 
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colour influencing the hues of the shadows. Although the image quality is good with few 

noise, some noise can still be discerned. 

 

Following this, the Cornell Box was rendered with two boxes and a reduced 

resolution of 600 samples per pixel (spp), showcased in Figure 5.2 

 

 
Figure 5.2 – Cornell box with 600 spp 

 

 
Figure 5.3 – Cornell box with 1200 spp 
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While the reflections remain accurate, the image displays a pronounced noise level, 

suggesting that an increase in samples per pixel might enhance the quality. 

 

To test this hypothesis, the Cornell Box was rendered again, this time with an 

elevated 1200 samples per pixel. As seen in Figure 5.3, the increased number of samples 

results in a significant noise reduction, thus underscoring the pivotal role of sample count. 

 

Shifting the focus to volume rendering, spheres were rendered using the 

Homogeneous Beer’s Law. This method interprets light absorption as it traverses a 

shape, with the specific volume designated to its BSDF, much akin to fog without internal 

light scattering. The absorption coefficient of the medium determines how much light is 

absorbed as it travels through the volume. In Figure 5.5, a sphere with 0.4 absorption 

coefficient is presented, revealing a pronounced transparency. 

 

 
Figure 5.4 – Beer’s Law Homogeneous volume (absorption 0.4) 

 

With absorption levels ratcheted up to 0.8, as depicted in Figure 5.6 there is a 

discernible escalation in density, making the volume less see-through. Also, the shadows 

in these renderings are rightly defined, as they consider volume transmittance when being 

rendered. 
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Figure 5.5 – Beer’s Law Homogeneous volume (absorption 0.8) 

 

Further delving into volume rendering, the Heterogeneous Beer’s Law Volume was 

harnessed. This modality combines Beer’s Law within a heterogeneous medium, 

permitting variations in absorption properties. The absorption disparity was computed 

employing Perlin noise, predicated on ray intersection points with the shape. Figure 5.7 

and Figure 5.8 register the renderings using this method, elucidating the effects of 

differential maximum absorption intensities. Here too, the shadows rendered are 

particularly noteworthy, as they take into account volume transmittance, further 

accentuating the accuracy of the technique.try defined, as they consider volume 

transmittance when being rendered. 

Concluding the image analyses, a rendering was assessed where a specular object 

was juxtaposed next to a volume. As delineated in Figure 5.8. It is possible to see that the 

specular object delivers a reflection through the volume, amplifying the visibility of entities 

positioned behind the volume. 
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Figure 5.6 – Beer’s Law Homogeneous volume (max absorption 0.5) 

 
 

 
Figure 5.7 – Beer’s Law Homogeneous volume (max absorption 0.9) 
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Figure 5.8 – Scene with volumetric, specular and diffuse shapes 

   

To conclude, the empirical results delineated within this chapter offer a 

comprehensive insight into the capabilities and nuances of the developed path tracer 

tailored for volume rendering. Through analysis of various renderings encompassing 

diverse environments and absorption levels, the research underscores the role of precise 

sample counts and the application of both Homogeneous and Heterogeneous Beer’s Law. 

Especially noteworthy is the renderer’s adeptness at accounting for volume transmittance, 

ensuring that media and shadows are rendered accurately.  
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6 Conclusion 
 

The completion of this research project is encapsulated in this Conclusion 

chapter, providing an overview and synthesis of the main findings and implications. 

  

At the beginning of this project, the primary objective was to develop a stand-

alone path tracer renderer with a specific capability to render volumes akin to 

atmospheric phenomena such as fog. This endeavour was successful, with the 

renderer visualising such volumes. Moreover, another important result relates to the 

Bidirectional Scattering Distribution Function (BSDF) of diffuse and specular objects, 

which were accurately rendered in the developed system. Furthermore, the role of the 

‘samples per pixel’ parameter was highlighted, with the research elucidating its direct 

impact on image clarity and accuracy. 

  

Throughout the research process, it was important to maintain a sense of critical 

examination, ensuring the methods employed and results obtained were both reliable 

and valid. The stand-alone path tracer renderer’s development, which is proficient in 

volume rendering, represents a significant milestone. However, some aspects need to 

be examined more closely. The image quality, although satisfactory, still exhibits a 

degree of noise, even with higher sample counts. Moreover, the renderer is proficient at 

rendering volumes but can be quite slow. 

  

As the research concludes, it highlights potential avenues for exploration in 

subsequent stages of development. The challenge of performance optimisation is 

central among these. While promising, the current renderer version could benefit from 

enhancements that enable faster render times. As the demand for high-quality graphics 

grows, ensuring that the renderer is accurate and efficient and delivers optimal results 

without extended wait times becomes crucial. 

  

Simultaneously, there is an expanding interest in rendering more complex 

volumes. The realm of computer graphics is increasingly moving towards replicating 

intricate real-world phenomena. One such example is the rendering of single scatter 

volumes, akin to the visual properties of smoke. Another intriguing prospect is the 
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rendering of multi-scatter volumes, which could simulate the appearance of clouds. The 

renderer could be improved to render more realistic and immersive visual experiences 

by accommodating these complex volumes. 

  

In summation, the research has achieved its objectives. However, there are 

areas that could be improved. 
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