
A Maya Terrain Generator Based on Perlin Noise

Master's Project Thesis

Aslan Saparov

MSc Computer Animation and Visual Effects
30th August 2021

Abstract

This thesis report documents the terrain generation, the research on different
methods and techniques possible to generate a terrain as well as the implementation
of it in this project. The Maya tool produced for this project aims to generate a few
types of terrain based on Perlin noise and found in the real world and appear semi-
realistic as well as provide artists or game developers the means to produce areas
for levels. The tool consists of a user interface with a number of parameters to
control the output such as the frequency and amplitude of the noise forming the
shape of the terrain and produces the results that are different on every generation.
The tool then textures the generated mesh with different levels of biomes such as
water, land, mountain and others. The tool achieves its goal to produce simple
landscapes that are realistic and “believable” to an extent as well as providing a
certain control over the outcome with the user interface. It could be noted the terrains
generated with this tool could be particularly suitable for low poly games or games
with low level of detail such as a strategy game for example where the majority of the
camera time is arguably spent far away from the ground. It is recognised, however,
that the tool could be improved with the use of more advanced techniques of
developing terrain landscapes such as polygonal map generation or the use of
erosion, etc. The technique itself, Perlin noise terrain generation, could be improved
in ways that may not be documented online or otherwise.

Introduction

Generating terrain landscapes can be dated to as early as 1982 if not earlier and has
since been a broad topic in computer graphics and video games industry. Though
not limited to just terrain procedurally generating realistic terrain could be of a high
interest to video game developers as it might be safe to assume that such production
technique is favourable to resource and time management. Therefore, learning and
applying such techniques might prove useful.

Previous Work

Some of the earliest work in landscape generation can be dated back to 1982 with
the release of Star Trek 2: The Wrath of Khan and attributed to Loren Carpenter who
developed a software for generating and rendering fractally generated landscapes
(Nnart 2022). That was pertaining to cinema, whereas in regard to video games the
first game to feature 3D fractal landscapes was “Rescue on Fractalus!”, a 1985 first-
person shooter game where the player must carefully traverse the fractal
landscape’s valleys in order to find injured pilots (Ahoy 2018). To touch on terrain
generated specifically using Perlin, Simplex or any other type of noise maps, there
wasn’t much to be found other than demos made in Unity and the following

examples shown in the figures 1 and 2, the work of which most of this project is
focused and based on.

Figure 1. Perlin noise based terrain (RedBlobGames 2022)

Figure 2. Terrain generation by Sebastian Lague (2022)

Technical Background

One of the first works that was found during the background research and then later
applied in this project was Sebastian Lague's (2022) series of Unity 3D tutorials
covering terrain generation using Perlin noise. Perlin noise is “a type of coherent
noise” where “changes occur gradually” and could be used as a height map where
values would commonly go from 0 to 1 where 0 represents dark areas or areas of
negative elevation and 1 represents light areas or places of elevation which leaves

valleys or hills in the middle. The figure 1 below demonstrates what Perlin noise
usually looks like. It could be argued that Perlin noise is most suitable for generating
terrain since gradual changes seem more natural. For the purposes of this project, it
was not required to obtain more details on the calculation of Perlin noise itself. It
might be noteworthy to add that Perlin noise can be described as a wave as shown
in the figure 2. Lague (2022) goes on to describe a Perlin noise wave as an outline of
a mountainous region which can then be used as a general shape for the terrain
while overlaying more noise maps or octaves can add more detail to the terrain as to
not for it to appear “too smooth”.

Figure 3. Perlin Noise (RedBlobGames, 2022)

Figure 4. Perlin Noise as Waves or Octaves (Lague, 2022)

Those waves or noise maps can be also referred to octaves. To reiterate the basics
of generating terrain shape is to overlay several octaves on top of each other.
However, as was noted before, the first octave is used as basic outline of the overall
terrain, therefore it would be reasonable to assume that it is desirable to preserve to
an extent. Therefore, the frequency and amplitude of each progressing octave would
have to be controlled. To be more precise, the frequency controls the length of the
waves on the noise map in x-axis while amplitude determines height of the waves on
the noise map in the y-axis.

To control the frequency and amplitude of each subsequent noise level it is
suggested to use lacunarity and persistence.

Lacunarity variable “controls increase in frequency of octaves” making frequency go
from the lowest to highest value in each new noise map adding more detail or
waves. Lague (2022) demonstrates assigning frequency of the first octave lacunarity
raised to the power of 0, the second octave lacunarity to the power of 1 and so on.
Increasing the frequency with each map.

The Persistence variable therefore “controls decrease in amplitude of octaves” or
reduces amplitude in each subsequent octave. This ensures that every new octave
has less effect on the overall shape of the terrain. Similar to lacunarity, the
persistence value is determined by raising the amplitude to the power of 0 in the first

octave, to the power of 1 in a second octave and so on reducing the amplitude in
every new map.

It is recommended to keep persistence variable from 0 to 1 for the optimal terrain
generation.

Solution

This project is about creating a tool in Maya that generates terrain based on the
given noise maps through mesh manipulation or displacement of vertices. The goal
for this project was also to give a user the control over the terrain generation. This is
achieved with a user interface written in PySide 2. The UI allows the user to control
such parameters as width and height divisions and number of octaves to control the
detail of the mesh.

Mesh Generation

To utilise the above-mentioned information on Perlin noise and use them as height
maps for the terrain it is required to retrieve values from Perlin noise ranging from 0
to 1. To do that in Maya, this project makes use of previous coursework in Pipeline
and Technical Direction which displaces every vertex on a mesh based on an alpha
channel value of a corresponding UV of a given image. In this project’s case, the
same methodology was used to evaluate and calculate an array of values ranging
from 0 to 1 taken off of one noise map per loop. To evaluate on that, one element of
the array would read and add values of the corresponding UV on all iterations and all
noise maps. The value on every iteration, however, would be reduced by
persistence. Having combined all noise values together, every value in the array
would divide by the amplitudes added together from every octave. To show the
necessity of the above, figure 4 shows the absence of division by amplitudes.

Figure 5. Development bug on the right

Redistribution

Following the above, the tool produces terrain similar to what is demonstrated by
figure 5. Although this terrain could potentially be deemed complete and realistic, the
absence of valleys or flat areas restricts the variety limiting the use of the tool.

Figure 6. Terrain without redistribution

RedBlobGames (2022) recommends to raise the elevation or processed vertex
height values to a power. “Higher values push middle elevations down into valleys
and lower values pull middle elevations up towards mountain peaks”. This is where
the modifier is also introduced allowing to alter the height of the elevations even
further.

Terraces

Terraces can be formed by “rounding the elevation to the nearest of n levels”. In the
implementation it would look more like this “round(elevation*n)/n”. The lesser the n
value the less terraces are formed due to the higher range of elevation becoming
equal. The parameter used to control number of terraces in the UI is named “Round
Levels”

Ridged Noise

The Ridged noise technique mentioned in RedBlobGames (2022) blog was used
sparingly as it was not fully understood. However, it is used to create sharp ridges
and it is especially noticeable on higher elevation values such as mountains. The
tool’s UI allows to turn the ridged noise on and off.

Island formation

The island formation according to RedBlobGames (2022) can be achieved by
utilising the following two principles:

1. “A distance function assigns a distance to every position on the map, from 0
at the centre to 1 at the border.

2. A shaping function (as used in the Redistribution section) takes an elevation
as input and chooses a new output elevation.”

The blog presents several ways to implement a distance function such as Square
Bump, Euclidean, Hyperboloid, Trig Product and more. For the implementation of the
tool in this project, Square Bump distance function was used. Since the distance

function considers the width and height of the map and all noise maps as well as the
terrain plane are of the same width and height distance is calculated on the first
iteration or first octave only.

The linear shaping function is then applied further into the terrain generation after
processing all noise maps combined. The UI has a island modifier parameter which
allows to change how much the shaping function is affecting the island.

The UI

Most of the UI was written with the help of Chris Zurbrigg's (2022) courses on using
PySide 2 for Maya. Other than the tutorial availability, PySide 2 was also chosen due
to the fact that it was installed and available to use with the version of Maya provided
in the labs. Although most of the knowledge regarding PySide 2 came from
Zurbrigg’s (2022) tutorials, Stack Overflow was used substantially to aid with any
import errors or questions regarding any particular class in PySide 2 or any problem
with Python in general

Texturing

It was originally intended for the user to be able to upload texture files for the tool to
apply to the generated mesh. An uploaded texture file could have been chosen for
any level or biome of a terrain such as water, land, mountain or any user defined
levels. Instead, a decision was made to keep texturing to the tool itself both due to
the time constraints and lack of knowledge on the subject.

During the research on procedural texturing methods in Maya only a few options
were found such as selecting and colouring each vertex with Maya's
"polyColorPerVertex" command, generating a texture file with Python Imaging
Library or PIL or using QImage class from PySide 2.

Maya's "polyColorPerVertex" command was the first method taken to develop a
texture file for the terrain mesh in Maya. The process behind applying the command
and colouring of every vertex was selecting a vertex after its position or height was
displaced through noise and processed further. Having selected a processed vertex,
its height is then evaluated to see where it lies within a range of hardcoded biome
thresholds which then leads to colouring the vertex accordingly. The colours at the
time were hardcoded as well for testing purposes. Having used
"polyColorPerVertex", it was found that this texturing process took a considerable
amount of time after the generation of the mesh, possibly tripling the amount of time
required for the complete terrain generation. It's not clear whether the additional time
taken is longer due to the fact that Maya's select command is ran to process every
vertex and could be unoptimized or that the "polyColorPerVertex" command itself is
a time consuming command. It might be possible to attribute such a delay to both.

PIL or Python Imaging Library is a python package that, as the name suggests, is
used for image processing. Although Python Imaging Library could have been used
to develop file textures for biomes of the terrain, it was decided to avoid using it
partially due to the fact that it requires an installation process which was not possible
to replicate due to the time constraints.

Closer to the end of the development of the project texturing was added with QImage
from PySide 2. The tool uses QImage class to produce a texture with the width and
height matching the number of width and height subdivisions of the terrain poly plane
respectfully. The image is then flipped vertically as the image produced the first time
is flipped and does not match the terrain. The image is then saved with a PNG file
format and then the tool then creates a file node, a lambert shading node as well as
a shading group. The saved image is uploaded into the file node the colour output of
which is then connected to colour input of the lambert shader which is then
subsequently connected to the shading group’s surface shader. The resultant
material is then applied to the terrain mesh.

Saving created textures

To make texturing work on any platform “QDir.homepath” was used when naming
the texture generated by QImage. It was intended for the tool to generate more than
one terrain in Maya; therefore, textures are saved in the home directory on any
platform reducing the risk of failure.

Originally, every time terrain generation procedure was executed, a new texture
image would be generated. The problem with that was that every new texture would
overwrite the existing file and therefore previously created terrain meshes would
adopt the new texture and discard the old one due to the fact that every texture
would have the same name “QImage”.

To solve that and to give the image texture a new name every time a generate
button is clicked and keep old textures applied to the old meshes without overwriting
them, python's time module is imported and used. To be more precise, every new
texture would be named as the amount of time passed in milliseconds since January
1st 1970. That method was chosen instead of using the random python module
functions to avoid possible a small chance of repetition.

Profiles

Profiles are a feature of this tool that allows the user to select a set of pre-existing
values which are applied to the given parameters to formulate a look of a certain
terrain type as well as act as a means to convenience. To get into more detail, the
existing profiles are named "Island", "Hills, "Mountains" and "Desert" which aim to
achieve the look of the named terrain types. This project stores each profile as a
dictionary which is then stored in a list of dictionaries. This allows for modularity and
creation of new profiles if needed. Each profile stores such data as number of
octaves, lacunarity, persistence, the height modifier, exponent, round levels of the
terrain, island boolean which determines whether or not the terrain should be mostly
surrounded by water, a ridge noise boolean and a list or an array of levels or biomes.

Array of biomes

As mentioned above, each profile contains a number of parameters used to generate
terrain, one of which is the array of biomes or list of levels as it is named in the

project code. The list of levels contains arrays of four elements used to describe a
biome which includes a threshold value, red, green and blue colour values.
A threshold value is used in a loop and compared against the height of every vertex
in a terrain plane mesh to determine whether or not the colour associated with that
threshold should be applied to a pixel corresponding to the vertex in question. In
case, the height of the processed vertex happens to be higher than the threshold
value, the loop moves onto the next biome array where the process is repeated with
that array's threshold value. The threshold value in the last biome in the biomes
array should be the highest and should therefore be covering any other vertices
unaffected by previous biomes. On another note, the threshold values are calculated
in such a manner that they can be expressed as percentages. That is achieved by
determining what the highest height value among all vertices is and then counting a
percentage off of that.

To make texturing more modular it should be possible to add new levels or biomes to
an existing list of levels. If statement running through a list of levels to colour a pixel.

Switching mesh and texturing options in the UI

A design decision was made to keep the dialog window of fixed size. Therefore to fit
all of the UI widgets within the same window it was decided to separate them into
ones that allow the control of mesh generation and ones that are responsible for
texturing the mesh. To realize that two radio buttons were created - "Mesh" and
"Texturing". Those buttons being radio buttons ensures that one of them is selected
which is necessary for the switching to work. Selecting one of the radio buttons hides
all UI elements tied to either "Mesh" or "Texturing". For example, when "Texturing" is
selected parameters such as width and height subdivisions, number of octaves,
lacunarity, persistence, modifier, exponent, number of round levels, island and ridge
noise booleans are hidden while combo box for levels or biomes, red, green and
blue channel values are shown.
It could be argued that the use of tabs would be preferable to using radio buttons as
the widgets and layouts containing those widgets could be hidden in less lines of
code. However, it was decided against it as it would have been consuming.

Switching from MEL to Python

This project is building off of the coursework for pipeline and technical direction unit
which was written in MEL scripting language. However, Maya's Python was chosen
to write this project as it potentially has more functionality and allows for use of third-
party libraries as well as it being a useful learning experience. To expand more on
the topic of functionality, at some point during the development it was required to clip
a number of decimal points off a certain variable, the option that could not be found
in MEL, but could, however, be found in Python.

Choosing Maya for this project

Maya 2020 was chosen as a primary software for this project as it was intended to
learn more about the software and apply terrain generation techniques in an area
seemingly untouched by the subject.

Conclusion

To reiterate, the goal of the tool written in this project was to procedurally generate a
terrain mesh with minimal input and effort from the user and produce results that can
be considered semi-realistic. The tool also provides texturing capabilities which
develop a texture file using PySide 2 with dimensions set by the width and height
subdivisions of the plane acting as terrain. The texturing itself aids in an objective to
create visually semi-realistic terrain by applying biomes such as water, land,
mountains and other biomes.

It could be argued that the goal has been achieved since the tool produces simple
terrain landscapes which are visibly believable in a short amount of time. The
amount of time it takes to produce a terrain with 100 subdivisions in width and height
is around 4 to 5 seconds whereas generating a terrain with subdivisions of a 150 by
a 150 in width and height takes around 10 seconds. In addition, the generated terrain
could be exported into a game engine albeit with a few tweaks and without the use of
the tool, manually.

The project is missing a few features mentioned in the RedBlobGames (2022)
document such as biome variation with the use of noise maps and geometry
placement of such meshes as rocks and trees. The blog also hints that the noise
maps could provide more options and could be even used in ways that are
undocumented which is something to consider in the future.

Of the feature goals that were set for the project itself: it was intended for this python
tool to be imported as a maya plug-in, to add new levels to the levels list, add new
profiles and write the changes to a text file that could be read in later on the tool start
up. Those features were not complete and added to the project, but this could be
something to implement in the future to improve the project and make it a complete
tool.

Another possible way to improve this project’s artifact after its submission is to use
more advanced techniques such as erosion.

Using Maya's noise textures as a base for generating a terrain only one drawback
was noticed: as the frequency in higher octaves increases and reaches a certain
point a uniform pattern can be observed in noise textures through Hypershade
window. Maya's Perlin noise texture node appears to be missing an attribute that
controls its variety. Using a dedicated python library to generate Perlin noise could
have been an improvement and solved the problem with uniform patterns in octaves
with higher frequencies. To counter that, however, the detail in later octaves is
affected by the lower amplitude and therefore could be considered negligible.

One minor detail that the tool can fix is to manage the created shading nodes better.
Although it is intended for the tool to keep terrain and its material in the scene as
opposed to replacing it with the newly generated one, the tool still removes the
previous noise textures.

This leads into another suggestion on how to improve the current project and its tool.
Currently there is no way to affect the created terrain by adjusting the widgets of the

user interface during run-time. Doing so could increase the convenience of the tool in
that it would allow for immediate feedback and increase the precision and accuracy
of the user to achieving the result that they would want.

For the future reference, Houdini can be taken as an example of generating realistic
terrain with height fields. Houdini has a workflow for generating terrain using its
heightfield nodes which follows these steps: Massing Model, Seeding, Lobing,
Remapping, Up-sampling, shaping, re-seeding, erosion and scattering or adding
shaders (Houdini n.d.)

References:

Ahoy, 2018. RetroAhoy: The Secret of Monkey Island [online]. Available from:
https://youtu.be/9F9ahZQ7oP0 [Accessed 30 August 2022]

Lague, S., 2016. Procedural Landmass Generation (E01: Introduction) [online].
Available from: https://youtu.be/wbpMiKiSKm8 [Accessed 1 August 2022]

RedBlobGames, 2022. Making maps with noise functions [online]. Available from:
https://www.redblobgames.com/maps/terrain-from-noise/ [Accessed 4 August 2022]

SideFx, n.d. Realistic terrain with heightfields [online]. Available from:
https://www.sidefx.com/docs/houdini/model/terrain_workflow.html [Accessed 1
August 2022]

Zurbrig, C., 2022. Courses [online]. Available from:
https://zurbrigg.teachable.com/courses [Accessed 20 August 2022]

Available from: https://stackoverflow.com/questions/20632841/qt-horizontalslider-
send-float-values [Accessed 24 August 2022]

Nnart, n.d. History of Fractals [online]. Available from: https://nnart.org/history-of-
fractals/ [Accessed 30 August 2022]

https://youtu.be/9F9ahZQ7oP0
https://youtu.be/wbpMiKiSKm8
https://www.redblobgames.com/maps/terrain-from-noise/
https://www.sidefx.com/docs/houdini/model/terrain_workflow.html
https://zurbrigg.teachable.com/courses
https://stackoverflow.com/questions/20632841/qt-horizontalslider-send-float-values
https://stackoverflow.com/questions/20632841/qt-horizontalslider-send-float-values
https://nnart.org/history-of-fractals/
https://nnart.org/history-of-fractals/

