

Editable Toon Shading Tool in Maya

Masters Project Thesis

Yiyang Huang
S5303439

 MSc Computer Animation and Visual Effects

Abstract
Toon shading is widely used in anime and game development. However, only

using procedural shader method could not always produce desirable shading

effects. Artists probably need lighting or shading effect for specific areas on

mesh surface, which is required a tool to make it work. In this thesis, the

development of an editable shading tool is explored in Maya, trying to make

shading effect controllable for artists.

Contents

1. Introduction .. 1

2. Previous Work .. 1

2.1 Controllable Stylised Shading ... 2

2.2 Shading Rig .. 3

3. Technical Background ... 4

3.1 Cel Shading .. 4

3.2 Dynamic Lit-Sphere ... 4

3.3 Maya Plugin and Viewport 2.0 .. 5

4. Implementation ... 6

4.1 System Structure .. 7

4.1.1 Overall Structure .. 7

4.1.2 Node Connection ... 8

4.2 Interactive Tools ... 10

4.2.1 Assign Toon Shader .. 10

4.2.2 Create Edit Locator... 11

4.2.3 Move Origin Locator ... 13

4.3 Shading Edit Locator ... 14

4.4 Shading Node .. 15

4.4.1 Hardware Rendering .. 15

4.4.2 Solution Attempts on XML Fragments .. 15

5. Conclusion & Future Work ... 17

References .. 19

Appendices ... 20

The Installation Instruction of Editable Shading Plugin ... 20

1

1. Introduction

Toon shading, also known as cel shading, is a general artistic expression used

in animation and game productions. Compared with realistic rendering, it does

not pursue to simulate the illumination in real-world but keep the art style of

hand-drawn cartoon instead.

However, this procedural process still has its disadvantages in animation and

game development. All the shading effects are generated based on the

interaction between lighting and geometry data. Sometimes artists could obtain

some desirable shading effects especially it is hard to adjust the surface normal,

or sometimes artists might need more shading area but are restricted by the

geometry itself. Although some methods could help adding extra shading

manually as post-process, they are still unavailable for real-time rendering.

A tool could be developed to meet the demands of making toon shading

controllable. Artists could add any control point or locator on the rendered

surface to modify the rendering details, making the area to be lit or shadow. In

order to obtain the desired shading details, each edit has some parameters to

adjust its shading shape. In addition, every shading detail modified by this tool

should be dynamic, which means these shading areas could be adapted to the

dynamic light changing instead of being fixed on the mesh surface. Users could

also interpolate keyframes to these edit points or locators for a desirable effect.

2. Previous Work

The demand for controllable light and shade on stylised shading has already

existed in animation and game industries. For toon shading, the shaded area

is calculated by the normal and light direction. Therefore, obtaining a desirable

2

shading in specific area requires to modify the geometry or its normal map. This

solution is not always flexible because it would result in an undesired shading

area again when light direction changes or object moves. Moreover, the costs

of altering geometry are too great, especially when the model could not be

reused for other occasions. Thus, the prevalent way is to add shaded area

manually during post-process, which is time consuming.

Manual shading is feasible in animation production process but not available

for real-time rendering like game runtime. In order to resolve this problem, some

researches propose their own methods to design the shaded area and apply

the keyframe interpolation.

2.1 Controllable Stylised Shading

The controllable stylised shading was firstly proposed by Todo et al. (2007) In

his work, a painted-brush was used to design the shaded area, whose data

were recorded in each vertex. His main research focuses on keyframe

interpolation for the user-defined shaded area. As shown in Fig. 1, the offset

which was calculated by user-defined shading threshold and dot production

result of light direction and normal, was used to distribute new shaded area.

The interpolation for the offset value used a radial basis function (RBF) based

on research by Turk and O’Brien (1999). In addition, they also built “intensity

brush and smoothing brush” to allow fine adjustment.

However, this method has its shortage. If two keyframes have long interval, the

interpolation could become discontinuous, which means more keyframes are

required to keep shaded area moving smoothly.

3

Fig. 1 Locally Controllable Stylised Shading (Todo et al. 2007)

2.2 Shading Rig

The newly proposed method, called Shading Rig (Petikam et al. 2021),

improved keyframe interpolation problem mentioned above. The RBF used in

his paper was spherical radial basis functions (Tsai and Shih 2006), which could

preserve the continuity of the shaded area.

The way of user-defined lighting in his work used locators instead of painted-

brush as Todo et al. (2007) did. It worked like light projection on object surface

but defined its own texture space, which conducted the lighting area based on

the warped texture coordination. To be artist friendly, each edit locator had

various parameters that could control the shaded shape (seen as Fig. 2). The

definition of the texture space referred to the dynamic lit-sphere (Todo et al.

2013) usage for stylised shading, which will be mentioned in Section 3.2.

Fig. 2 Parameters for each edit to manipulate the shape (Petikam et al. 2021)

4

3. Technical Background

3.1 Cel Shading

Cel shading, also called as toon shading, was first described by Philippe

Decaudin (1996). It is a type of non-photorealistic rendering (NPR) which uses

few colours to make object looks artless. The colour of the cel shading is based

on the different steps of light diffuse on the surface. For a two-step cel shading,

the lighting part satisfies the following condition:

𝑑𝑑𝑑𝑑𝑑𝑑(𝐿𝐿,𝑁𝑁) > 𝑑𝑑0

where L is the light direction and N is the surface normal. The shading threshold

is defined as 𝑑𝑑0, which decides whether this pixel should use light colour or

shadow colour. For three or more step cel shading, the similar method can be

applied.

3.2 Dynamic Lit-Sphere

Lit-sphere was originally designed to capture the feature of NPR shading. It can

be used to generate stylised shading feature via a sphere map. The shading

details are record in this sphere map and can be transferred into corresponding

texture coordination based on the direction of the sphere normal. This method

is also applied as one of the techniques of material capture (MatCap).

The lit-sphere model made by Sloan et al. (2001) was based on the viewport

direction. This approach is efficient to capture the shading details from a static

scene. However, it could lose its shading tones from an environment with

dynamic light.

In order to obtain the better shading effect under dynamic lighting, the proposal

5

of dynamic lit-sphere (Todo et al. 2013) redefine the texture space

transformation, which replaces the viewport direction with the light direction.

The light space normal is defined as 𝑛𝑛𝑙𝑙 = �𝑛𝑛𝑙𝑙𝑙𝑙,𝑛𝑛𝑙𝑙𝑙𝑙,𝑛𝑛𝑙𝑙𝑙𝑙� = (𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙,𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙,𝑛𝑛 ∙ 𝑙𝑙𝑙𝑙),

where n is surface normal and 𝑙𝑙 = (𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙, 𝑙𝑙𝑙𝑙) is light space defined by the light

direction. Then final shading colour can be sampled by (𝑢𝑢, 𝑣𝑣) = (𝑟𝑟𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟),

where 𝑟𝑟 = arccos(𝑛𝑛𝑙𝑙𝑙𝑙) /𝜋𝜋 and 𝑟𝑟 = arctan (𝑛𝑛𝑙𝑙𝑙𝑙/𝑛𝑛𝑙𝑙𝑙𝑙) . The shading sample for

each edit used below is based on this approach.

3.3 Maya Plugin and Viewport 2.0

The purpose of this project is to build an editable shading tool for artists to use.

Maya is a prevalent choice for modelling, animation rigging and rendering. It

also offers artists a good environment to preview their work. Thus, Maya was

chosen to build a plugin for adjusting shading effects.

The Maya Python API 2.0 is a new version of the Maya Python API which

provides a more Pythonic workflow and improved performance (Autodesk Maya

2020). Compared with its old version, the new version still preserves most of

previous features and run faster. The biggest advantage of using Python for

Maya plugin development is that it is easier to compile and debug code than

using C++, though plugins built by C++ are more efficient than Python.

Maya 2012 introduced a new set of API classes for defining custom drawing,

shading and effects in both Viewport 2.0 and Hardware Renderer 2.0 (Autodesk

Maya 2020). Its brand-new rendering architecture has high-performance for

large scene rendering. However, some development details for rendering part

are not documented well, which makes confusing for developers.

6

4. Implementation

To make toon shading editable, a Maya plugin was built base on the Maya

Python API 2.0. Python language was selected for its efficiency on plugin

development. For the Maya version, the plugin was developed in Maya 2020

so the Python language version used was 2.70. The plugin was only tested on

Linux and Windows systems and was compatible with both systems. No extra

extension or library was used in this plugin. This plugin also includes an

installation script (seen as Appendices), which allows plugin installed or

uninstalled more efficiently.

The plugin was developed mainly based on the research work mentioned in

Section 2.2. In the following sections, the basic code structure will be presented.

Moreover, the usage of shading tool will be introduced as well as some

development process being indicated.

7

4.1 System Structure

4.1.1 Overall Structure

In general,

the structure of this plugin system (as seen in Fig.3) could be divided into three

parts: user interface, edit locators and internal shading, where user interface

was built with Maya command line by Python and other two parts were built

mainly based on Maya nodes.

The object presented on Outliner window are not always the object itself. When

users select the object, they usually select the transform of that object as parent

object. In order to organize all the edit locators in a better way, an edit data

manager was built to record all the locator nodes and their parent transforms

as well as the mesh object they belong to. The data manager allows the newly

created nodes to be reused in an efficient way and not need to be retrieved

again via other complex routines.

For each edit node, it was registered with a draw override, where a simple

coordination graphic was drawn to display its location in Maya Viewport. Users

Fig. 3 Overall structure of plugin code

8

can easily figure out where the locator is placed and select it directly in Viewport.

In addition, this draw override is a hardware rendering, which means its graphic

drawing is conducted by GPU.

Shading node is where the major toon rendering takes place. This node was

inherited from a basic dependency node and was implemented to be shown in

Hypershade window. It was registered with a “ShadingNodeOverride” and

turned into a hardware rendering node.

4.1.2 Node Connection

Fig. 4 Node Plug Connection

As shown in the initial design, the shaded area is shaped by the position and

other parameters of the edit locator. Whenever the edit locator makes a change,

the corresponding data should be reflected into the shading node in time. This

requires a connection between two different nodes and update data in an

immediate way.

In Maya, attributes can be connected by plugs. Once the data in an attribute

have changed, the connected attribute will be set dirty and be evaluated

afterwards. This mechanism ensures every data modification from the other

node can be immediately received and the current node can update or respond

other nodes in an effective way.

9

The major node connections in this plugin are illustrated as Fig. 4. The origin

locator belong to the edit pair is used to defined the texture space for each edit,

which will be mentioned in Section 4.3 later. Meanwhile, the corresponding light

space matrix should be computed in the node instead of in the shader, because

it is better to be used as a uniform variable in shader rather than being

calculated for each vertex streamflow.

In shading node, a compound data attribute was set to connect with all the edit

locators. Then all these data would be processed and be passed into shader.

A specific point needs to be noted is that the world position for each edit locator

or its origin locator cannot be obtained from the node itself. In fact, all the

position data can only be found in its parent transform. Therefore, the

connection source is actually the parent transform of source node instead of

source node itself.

10

4.2 Interactive Tools

4.2.1 Assign Toon Shader

Fig. 5 Assign toon shader on mesh surface

Fig. 6 Connect shading node with colour map and normal map

11

Fig. 7 Toon shading after colour map and normal map applied

The toon shader existing in Maya cannot be employed as the task shader. In

order to accept data from edit locators, a new toon shader was built. This shader

is a basic 2-step toon shading process and the shading node is accessible for

normal map. The implementation of normal map used default fragment built in

Maya.

4.2.2 Create Edit Locator

After the custom toon shader was assigned, edit locator could be added to

control the shading area. By default, the locator will be added at world origin if

not specified. This could be troublesome to find the locator if the model mesh

is too big or camera does not face to the origin of the world coordination.

The tool designed here has already solved this problem. A new edit locator

would be created at a proper position based on the viewport (camera view)

facing currently. This could save time for users to roll the screen in order to find

this edit locator.

12

Fig. 8 An edit locator will be automatically created based on current viewport position

Maya API provides a method to get the current viewport position in world space.

Meanwhile, there is a mesh function which can obtain the closest vertex

position on the mesh by the specified world position. The final world position for

edit locator to be created could define as following:

𝑝𝑝𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑟𝑟𝑝𝑝(𝑝𝑝𝑚𝑚,𝑝𝑝𝑣𝑣,𝑘𝑘)

where 𝑝𝑝𝑚𝑚 is the closest position of mesh vertex and 𝑝𝑝𝑣𝑣 is the world position of

the viewport centre. k is the interpolation value, which is set to 0.1 by default.

13

4.2.3 Move Origin Locator

Fig. 9 Locate to the corresponding origin locator

The origin locator also takes part in the shading controlling. By default, it is set

to mesh centre when created. To obtain a desired shading, users still need to

adjust its location.

Similar to creating and obtaining an edit locator, the tool is designed to find the

corresponding origin locator to the current selected edit locator. This process is

fast completed via retrieving the data manager mentioned in Section 4.1.1.

14

4.3 Shading Edit Locator

Fig. 10 Dynamic lit-sphere used to capture stylised shading details in dynamic light environment
(Todo et al. 2013)

In this task, shading is mainly controlled by the edit locators. Origin locator in

this task mainly works as a pivot to generate texture space for shading

projection.

As mentioned above, the texture space is generated via the approach of the

dynamic lit-sphere. The only difference is that no surface normal takes part in

this calculation. The normalized direction from world space position of vertex

pw to world space position of edit locator pl is used to replace the surface normal.

As shown in Fig.2, Bend (𝑤𝑤𝑤𝑤), Bulge (𝑤𝑤𝑤𝑤), and Rotation (𝑟𝑟𝑟𝑟) are used to inflect

and rotate the shading shape. Defining w = (𝑤𝑤𝑤𝑤,𝑤𝑤𝑤𝑤)⊤ and u = (𝑢𝑢, 𝑣𝑣)⊤, a warping

function 𝑟𝑟𝑤𝑤(u) is shown as following:

𝑟𝑟𝑤𝑤(𝑢𝑢) = 𝑘𝑘𝑤𝑤 ∙ (𝑅𝑅(𝑟𝑟𝑟𝑟)𝑢𝑢)

where 𝑘𝑘𝑤𝑤 is set to 10. R(𝑟𝑟) is the 2D rotation matrix given an angle 𝑟𝑟. Then the

warpped (𝑢𝑢𝑤𝑤, 𝑣𝑣𝑤𝑤) coordination could be computed as:

(𝑢𝑢𝑤𝑤, 𝑣𝑣𝑤𝑤) = 𝑤𝑤 + 𝑅𝑅(𝑟𝑟𝑤𝑤(𝑢𝑢))(𝑅𝑅(𝑟𝑟𝑟𝑟)𝑢𝑢 − 𝑤𝑤)

15

With the modification for warpped texture coordination, the intensity of edit

lighting could be sampled on it. Then edit lighting intensity is defined as:

𝐼𝐼(𝑢𝑢𝑤𝑤, 𝑣𝑣𝑤𝑤) = 𝑙𝑙−𝑎𝑎𝑢𝑢𝑤𝑤−
1
𝑎𝑎|𝑣𝑣𝑤𝑤|2−𝑠𝑠

where a is Anisotropy and s is sharpness.

Based on this intensity distribution, all the edit lightings can be accumulated to

generate shading area.

4.4 Shading Node

4.4.1 Hardware Rendering

As mentioned above, a “ShadingNodeOverride” was registered with the

dependency node to implement hardware shading. The rendering work in Maya

Viewport 2.0 is organised by an XML format called as fragment. The real shader

here is call as effect, which can be linked or writing raw text directly in an XML

fragment. Then all the fragments are connected together by a fragment graph,

which will be compiled to form the final rendering outcome.

The basic toon shading has already been implemented for all display drivers.

However, some technical details about fragment implementation are not

mentioned, which leaves a big hole to do the black box test. The problem here

is how to pass all the edit data into shader and obtain the desired shading effect.

4.4.2 Solution Attempts on XML Fragments

Two solutions are tried in shading node so far. Only the last method is feasible

somehow but still has many constraints.

16

The first solution is to regard all the shading edits as lights. The effects of these

shading edits work like multiple lights on the surface rendering in a specific

aspect. Thus, imitating the rendering process of lighting could possibly resolve

the problem. As presented in XML schema (Autodesk Maya 2020) and

examples of development kits, two fragment types, “selector” and “accum”,

could possibly be used for rendering by multiple shading edits. However, all the

examples shown by using this method all take advantage of the default lighting

fragment built in Maya. Therefore, it cannot be confirmed this method is correct.

According to the example of phong1 shader in XML schema, the fragment

graph still needs a struct type as input. Considering the same storage way for

struct and array in memory, an array data was attempted to pass into the

fragment graph. But it was not accepted by the fragment graph even though the

fragment graph with custom ‘accum’ and ‘selector’ fragments was compiled

successfully.

The final solution is to pass array data directly to fragment shader. However,

this approach is only available for Cg implementation. For HLSL and GLSL

implementation, the shader effects would fail to be compiled since the array

parameters were defined. Because this situation still happened even if

parameters did not take part in calculation or no array data were passed in

shader. The assumption is these two types of shaders cannot accept large

number of array data and therefore trigger their restriction.

After Cg shader is implemented, there are still some unpredictable issues.

When no edit locator is added to toon shader, a large area of black block would

appear on the shadow zone (seen as Fig.11). But after edit locator is applied,

this area would return back to normal (seen as Fig.12). This situation does not

only happen after applying editable shading function in shader, but also took

place when completing the basic toon shading by using HLSL. Work is required

17

to figure out the issue behind it.

Fig. 11 Undesired dark block in shadow area (Cg & HLSL implementation)

Fig. 12 Dark block disappear after adding edit locator (Cg implementation)

5. Conclusion & Future Work

Overall, the current outcome of the project does not achieve the initial

objectives. The entire interactive tools built for workflow has been mostly

finished and user can operate the shading tool in a convenient way. However,

18

editable shading effects can only appear in OpenGL Legency environment via

Cg shader language and there are still many issues about algorithm

implementation.

The majority development issue is that a technical solution cannot be found

efficiently. Unclear documentations resulted in plenty of time was taken to

review the code from development examples and do the tests. In order to make

the shader running properly in OpenGL and DirectX environment, two possible

solutions need to be highlighted:

1. Instead of writing raw text shaders in XML fragments, using scripts fragment

commands (Autodesk Maya 2020) and shader files could work for large array

data. The assumption is writing own shader could not define all the uniform data

as parameters of main function of pixel shader, but the raw shader text

compiled by OGS in XML fragment would do that.

2.Use multiple rendering passes instead of pass all the edit data into one

shader. This approach is more feasible because it can highly reduce the

pressure for data storage in shader. The only complex thing is that a rebuilding

for the whole shader node is required.

These solution assumptions are proposed based on the debug test mentioned

above. The issues were confirmed to be caused by too large array data passed

to shaders, but still not confirmed if they were caused by the restriction of

internal shader compiler built in XML fragment.

If this project was to be continue, the first thing would be to test algorithm and

fix up the shading deviation. The debug process for algorithm implemented in

shader could be complicated because no direct output is supported for shader.

Running the shader code step by step or using a texture target output could be

a better solution. In addition, keyframe interpolation for each edit could be

finished as the main task is to ensure algorithm being implemented in a proper

19

way.

The development in Maya would still encounter lots of problems, which are hard

to resolve if some technical details cannot be obtained from documentations

directly. Therefore, technical support could help a lot to make the development

more efficient.

References

Decaudin, P., 1996. Cartoon-Looking Rendering of 3D-Scenes. [online]. Available from:
http://www-evasion.inrialpes.fr/people/Philippe.Decaudin [Accessed 21 Aug 2022].

Petikam, L., Anjyo, K. and Rhee, T., 2021. Shading Rig: Dynamic Art-directable Stylised
Shading for 3D Characters. ACM Transactions on Graphics, 40 (5).

Sloan, P.-P. J., Martin, W., Gooch, A. and Gooch, B., n.d. The Lit Sphere: A Model for
Capturing NPR Shading from Art [online]. Available from:
http://www.cs.utah.edu/npr/papers/LitSphereHTML.

Todo, H., Anjyo, K., Baxter, W. and Igarashi, T., 2007. Locally controllable stylized shading.
ACM Transactions on Graphics, 26 (99), 17.

Todo, H., Anjyo, K. and Yokoyama, S., 2013. Lit-Sphere extension for artistic rendering. In:
Visual Computer. Springer Verlag, 473–480.

Tsai, Y. T. and Shih, Z. C., 2006. All-frequency precomputed radiance transfer using
spherical radial basis functions and clustered tensor approximation. ACM
Transactions on Graphics, 25 (3), 967–976.

Turk, G. and O’Brien, J. F., 1999. Shape transformation using variational implicit functions.
Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1999, 335–342.

20

Appendices

The Installation Instruction of Editable Shading Plugin

Use the python file in folder to install and uninstall the Maya plug-in

In Python3 environment, locate to the path of Maya2UnrealExportTool and run the following

code in terminal:

python installModule.py

or

python installModule.py -d "{Your_Maya_Path}/maya"

The later one is for Maya installed in special machine whose location is not a default path.

To uninstall the plug-in, use the similar way:

python uninstallModule.py

After you install the plug-in, you can search it in Maya's Plug-in Manager (Windows >

Settings/Preferences > Plug-in Manager).

	1. Introduction
	2. Previous Work
	2.1 Controllable Stylised Shading
	2.2 Shading Rig

	3. Technical Background
	3.1 Cel Shading
	3.2 Dynamic Lit-Sphere
	3.3 Maya Plugin and Viewport 2.0

	4. Implementation
	4.1 System Structure
	4.1.1 Overall Structure
	4.1.2 Node Connection

	4.2 Interactive Tools
	4.2.1 Assign Toon Shader
	4.2.2 Create Edit Locator
	4.2.3 Move Origin Locator

	4.3 Shading Edit Locator
	4.4 Shading Node
	4.4.1 Hardware Rendering
	4.4.2 Solution Attempts on XML Fragments

	5. Conclusion & Future Work
	References
	Appendices
	The Installation Instruction of Editable Shading Plugin

