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Abstract 
 
 
 

 

This paper presents the implementation of a simulation technique using particles to keep fluid 
sheets preserved based on the papers  (Ando, et al., 2012) and  (Ando & Tsuruno, 2011). Liquid 
simulations in computer graphics is an important part of Computational Fluid Dynamics ( CFD ) 
to create realistic presentation of different forms of fluids such as water, smoke etc which are 
mostly used in visual effects for the movie industry. This project is an implementation of thin sheet 
preservation techniques with a fluid sheets of various animated liquids can be preserved using an 
adaptable sampled Fluid Implicit Particle (FLIP) model that is particle-based and meshless. 
maintaining the fluid sheets by collapsing the broken sheets in the deep water and filling the 
cracking sheets using particle splitting in thin places (Ando, et al., 2012). In comparison to the  
existing techniques for tracking the surface and the most thin areas, the anisotropy of the neighbor 
particles are calculated and that data is used as a resampling reference in the process of 
regeneration of the thin liquid surfaces. The final outputs generated inside houdini demonstrate 
that this tool can create realistic, aesthetically sophisticated liquid animations with thin sheet 
preservation. 
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1. Introduction 
 
Physically based simulation of fluids have accumulated a lot of interest in the visual effects , 
gaming and advertising industry over the past few decades. Modern liquid animations are being 
used to generate stunning visuals following various scientific research and creating realistic 
diverse fluid phenomena, like smoke, fire, and water in the post production of entertainment 
industry. 

 
Simulating thin liquid surfaces has drawn more attention in recent years as it helps in creating 
content which are visually pleasing and with real life accuracy. With conventional techniques, it 
is quite a challenging to be able to follow and generate thin fluid features correctly. The numerical 
diffusion filters the features in an Eulerian representation, such as the level set approach.  The 
reinitialization process of the particle level set approach separates the thin sheets. Today’s 
researches advocate the front tracking method which is also known as mesh-based surface tracking 
method, when used with an Eulerian fluid flow. The common way often used to represent surfaces 
explicitly is by the surface tracking method, with their vertices forming a triangle and being 
translated by the  underlying liquid movement.  These methods can capture data from a simulation  
smaller than the size of a grid cell and do not cause any numerical diffusion, in contrast to implicit 
methods. Mesh based surface tracking techniques have the disadvantage that it is difficult to handle 
topology shifting frequently, anytime topology change events are encountered, to prevent tangling, 
the surface meshes must be thoroughly resampled.. Re-meshing can be accomplished by sewing 
together nearby vertices in front of a collision or by replacing overlapping surfaces that march in 
a cube mesh. Because of the complex nature of mesh connectivity, the sewing technique can be 
challenging to use and result in the loss of surface detail. 
 
By having a thorough understanding of a FLIP solver and various algorithms like Eularian, 
Lagrangian, SPH theory, and Navier Stokes, this project aims to implement a particle-based 
framework that preserves thin liquid sheets based on research by Ryoichi Ando, Nils Thurey, and 
Reiji Tsuruno (Ando, et al., 2012). Houdini is used to accomplish this idea, and an HDA is 
developed utilising a variety of microsolvers, VEX wrangles, and VOP networks. Additional 
features, like as viscosity and surface tension, are generated externally with greater control and 
without using the FLIP solvers default features. Using this tool, users can quickly create a variety 
of intricate fluid animations with greater control over the details and the ability to add extra 
features. 
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2. Previous work 
 
Due to their simplicity of use and applicability for interactive applications, particle-based 
approaches have gained popularity since  (Müller, et al., 2003) introduced the SPH method to the 
field of computer graphics. Although  (Lucy, 1977) (Gingold & Monaghan, 1977) created 
Smoothed Particle Hydrodynamics (SPH) to simulate astrophysical issues, the technique is 
sufficiently universal to be used in any fluid simulations.  
 
Recent efforts on explicit surface tracking (Thurey, et al., 2010) and algorithms that leverage them 
(Yu & Turk, 2013) have made it increasingly evident how important surface-only simulations are. 
(Wojtan, et al., 2011)provide an overview of these recent changes. We suggest a post-process that 
can be applied immediately to any coarse particle simulation and is completely divorced from the 
simulator that produced the data, as opposed to explicitly modelling the fluid surface and carefully 
including it into the core simulation. The upkeep of a simulation mesh is laborious and frequently 
necessitates the use of external geometry processing tools. Because our meshless technique is self-
contained, implementation is made easier. Mesh artefacts are produced while a mesh is being 
created for rendering, although this does not affect how stable the simulation is. 
 
Splash animations can be produced using these particles based techniques, though the simulation 
may experience oscillations due to compressibility. Due to the ease with which such oscillations 
can easily separate thin structures, these approaches are not ideal for tracing very thin fluid 
features. Researchers also suggested different Eulerian-Lagrangian hybrid techniques, in addition 
to SPH. These techniques are made to take full advantage of grids and particles benefits. However, 
because of the nature of the Lagrangian description these can easily rupture because they still rely 
on particles to describe thin sheets. This work heavily rely on Yu and Turk's (Yu & Turk, 2013) 
proposed anisotropic kernels in our study. To determine a particle's stretch and direction, this 
approach computes a weighted PCA ( Principle Component Analysis ) for the nearby particles. 
Reconstructing smooth and detailed surfaces is done using this data. Additionally, To evaluate 
whether the particles are a thin sheet or part of the bulk volume, we use it as a criterion. We 
preferred the use of resampling for particles in thin sheets so that, while minimising changes to the 
simulations dynamics, maintains the thin sheets surface and assures regular particle spacing. 
 
There are two types of surface tracking for liquids: implicit methods and explicit methods. The 
level set approach is one of the most extensively utilised implicit strategies established by Osher 
and Sethian (Osher & Sethia, 1988). The nearest surface position is given a distance function from 
each grid node in the level set procedure, and the surface is implicitly located when the function 
is equal to zero. The approach has undergone numerous revisions and refinements. Lagrangian 
particles were positioned by (Enright, et al., 2002) & (Wang, et al., 2009)  to lessen numerical 
dissipation. A high resolution grid can be used to add more detail overall by using these implicit 
techniques. To the highest of our knowledge, these methods can't completely prevent thin surfaces 
from rupturing. Additionally, other researchers (Foster & Fedkiw, 2001) & (Kim, et al., 2006) 
employed seeded particles to make fluid sheets or splashes. 
 
Volume of fluid vof technique (Hirt & Nichols, 1981), which utilises a portion of the interface for 
the entire cell, is one of the explicit approaches for the dynamics of free borders. Due to the 
difficulty of managing a discontinuous interface, this strategy is rarely used.  The Lagrangian 
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approaches are frequently preferred in explicit procedures. Several mesh-based surface tracking  
techniques have been put out during the last two decades in a variety of research areas, including 
fluid dynamics and the processing of medical images (Muller, 2009) (Wojtan, et al., 2010). 
Typically, a mesh-based surface tracker advects explicit surface components from the underlying 
motion; however, this method may be hindered by complex topology changes or self-intersection. 
Resampling meshes only where collisions occur may help to fix these problems. The algorithm 
tends to become more sophisticated as a result of this tactic because it must be able to handle many 
complex circumstances. We want to be clear that our approach has nothing to do with this group 
of surface tracking techniques. On the other hand, there is no connectivity information in our 
particle-based method. As a result, our approach avoids such complications. 
 
SPH, Moving Particle Semi-implicit, and Meshless Physical Simulations are three examples of 
particle methods that are frequently used to reconstruct surfaces in addition to simulating complete 
physical motion. An original surface reconstruction algorithm from a point cloud was proposed by 
Zhu and Bridson (Zhu & Bridson, 2005), Adams (Adams, et al., 2007), Yu and Turk (Yu & Turk, 
2013). Surfaces are implicitly specified in their approach in relation to particle proximity. The 
ruptures produced by these techniques, however, are blobby and unsatisfactory in areas with sparse 
particles. We use the Yu and Turk (Yu & Turk, 2013) method in our particle-based approach to 
recreate surfaces after securing ruptures with additional particles to protect the sheets. We employ 
a modified version of the hybrid grid and particle based method suggested in as the underpinning 
fluid solver. 
 
According to academic papers by (Adams, et al., 2007) & (Hong, et al., 2008) , the adaptive 
resampling aspect of our method for ocean depths volumes is viewed as a version of adapting 
particle-based approaches, in which the particles typically resampled utilising a range of sizes to 
reduce the processing cost while keeping visual detail. On the other hand, in our concept for thin 
sheet preservation, we mainly concentrate on sustaining the flowing fluid sheets rather than 
increasing efficiency. 
 

3. Technical Background 
 

3.1 Smoothed Particle Hydrodynamics 
 
SPH is a technique for particle system interpolation. SPH allows for the evaluation of field 
quantities that are solely defined at discrete particle positions. The momentum and energy 
equations become ordinary differential equations using this approach. As an example, the force 
between particles will represent the pressure gradient. Also employed and referred to as "the heart 
of SPH" is an interpolation technique that enables any function to be stated in terms of values at a 
collection of disordered locations. The following formulas define the integral interpolant of any 
function: 

 𝐴ூ(r) =∫ 𝐴(𝑟ᇱ)𝑊(𝑟 − 𝑟ᇱ, ℎ) 𝑑𝑟ᇱ (1) 
 
W is an interpolant kernel that is provided with two specific properties: the first and second 
conditions of existence of the kernel. The interpolation is over the entire space. 
 

 ∫ 𝑊(𝑟 − 𝑟ᇱ, ℎ) 𝑑𝑟ᇱ = 1 (2) 
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 lim
௛→଴

𝑊 (𝑟 − 𝑟ᇱ, ℎ) = 𝛿(𝑟 − 𝑟ᇱ)  (3) 

 
SPH uses radial symmetrical smoothing kernels to distribute values in the immediate vicinity of 
each particle for this reason. SPH states that a scalar quantity A is interpolated at location r by the 
weighted total of all particle contributions.  

 

 𝐴௦(r) = ෎ 𝑚௝
஺ೕ

ఘೕ
𝑤൫𝑟 − 𝑟௝ , ℎ൯

௝

 (4) 

 
A set of particles with certain masses is used in SPH to represent the fluid volume. Physical 
characteristics, such as pressure and density, are represented by values that are linked to each 
particle in a specific simulation phase. A weighted contribution of the adjacent particle masses 𝑚௝ 
is added to the density 𝜌௜ for particle i at location 𝑥௜  to interpolate the density. 
 
 

 𝜌௜  = ෍ 𝑚௝𝑊൫𝑥௝ − 𝑥௜ , ℎ௝൯
௝

 (5) 

 
The smoothing radius connected to particle j is known as hj, and W is the smoothing kernel. The 
Tait equation (Monaghan, 1994), which is a common formula for describing the pressure pi of a 
particle i as a function of fluid density, is 
 

 𝑝௜ = 𝑘𝜌଴ ቀቀ
ఘ೔

ఘబ
ቁ

ఊ

− 1ቁ (6) 

 
where the stiffness parameters k and 𝛾are present, and 𝜌଴ represents the fluid's rest density. The 
Navier Stokes equation becomes an ordinary differential equation (ODE) of the form when it is 
discretized on particle locations in the SPH framework. 
 

 𝜌
డ௩೔

௜డ௧
= −(𝛻𝑝)(𝑥)௜ +  𝜇(𝛥𝑣)(𝑥௜) + 𝑓௜

௘×௧ (7) 

 

3.2 Navier-Stokes equations 
 
The Navier-Stokes equations serve as the foundation for the basic theory of fluid motion. The 
physical equations that explain the motion of fluids are known as Navier-Stokes equations. 
Because of this, they frequently serve as the basis for many solutions in current software 
programmes like Houdini. The Impermeable As the foundation for many of the existing solutions, 
a group of partially differential equations are known as the Navier-Stokes equations. that are used 
as the main model to simulate fluids (liquids and gases). These equations can be solved using a 
variety of techniques to produce fluid simulations. Some of them are the Smooth Particle 
Hydrodynamics (SPH), Lattice Boltzmann methods, Eulerian or Lagrangian approaches, and 
others. Depending on the particular requirements, several methods are chosen. 
 
A pressure field and a velocity vector field are used to model the condition of a liquid at a specific 
instant in time. These two fields are connected, and the Navier-Stokes equations explain how they 
evolve over time. The equations offer a mathematical representation of the intricate mathematics 
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of fluid motion in accordance with the rules of physics. By resolving them, we obtain values for 
the fluid's unknown, specifically the new acceleration that enables the determination of its new 
position. Although the equations can be stated in a variety of ways, we'll write them as 
 

 
డ௨ሬሬ⃗

డ௧
+ 𝑢ሬ⃗ ⋅ 𝛻𝑢ሬ⃗ +

ଵ

ఘ
𝛻𝑝 = 𝑔 + 𝑣𝛻 ⋅ 𝛻𝑢ሬ⃗  (8) 

 
 𝛻𝑢ሬ⃗ = 0 (9) 
 
Water naturally has limited viability. As a result, the viscosity-related element in the Navier-Stokes 
equations can be disregarded because it is not as significant as the other terms. With Equation 8's 
viscosity term removed, we obtain 
 

 
డ௨ሬሬ⃗

డ௧
+ 𝑢ሬ⃗ ⋅ 𝛻𝑢ሬ⃗ +

ଵ

ఘ
𝛻𝑝 = 𝑔 (10) 

 

3.2.1 Eulerian fluid simulation 
 
The Navier-Stokes equation is typically resolved over a grid in eulerian fluid simulations. The 
Navier-Stokes equations for incompressible flow were used by Foster and Metaxas to create the 
first fully 3D liquid simulation in the computer graphics community. Based on the pioneering work 
by Harlow and Welch [11] that created the Marker and Cell method, their simulation approach 
was Eulerian. They computed partial spatial derivatives on a fixed finite-difference grid, explicitly 
integrated advection and diffusion, relaxed incompressibility, and represented surfaces with 
massless marker particles. Using a semi-Lagrangian methodology to manage the convection 
component and implicit integration to handle the diffusion term, Stam significantly improved the 
stability of this method of fluid modelling, enabling the use of considerably bigger time steps. The 
fluid moves through the rectangular cells that make up the grid space. At each grid point, the fluid 
quantities are specified. We record the cells of a grid instead of each individual particle and its 
properties because this allows us to track how the values of the cells change over time (Bridson, 
2008). 
 

3.2.2 Lagrangian fluid simulation 
 
In Lagrangian simulations like SPH (Müller, et al., 2003) and Moving Particle Semi-Implicit 
(MPS) (Premože, et al., 2003), the fundamental momentum-carrying fluid mass component is the 
particle. The smoothed particle hydrodynamics (SPH) model that Lucy (Lucy, 1977) created was 
intended to mimic astronomical occurrences. A smoothing kernel can compute the inter-particle 
forces between the fluid's particles, including pressure and viscosity, at each particle's position. 
SPH was first applied to computer graphics by Desbrun and Cani-Gasculel to represent highly 
deformable materials like lava flow. The field quantity could be sampled adaptively during particle 
refining. In less deformed locations, particles were combined into a single giant particle, whereas 
in more damaged parts, they were divided into multiple smaller ones. The fundamental principle 
of the adaptive sampling technique for Lagrangian fluid is similar to Geoffrey's theory (Irving, et 
al., 2006), which used fluid cell coarsening away from the interface for efficiency in Eulerian fluid 
and refinement near the interface for detailed representation. Muller proposed a new method for 
fluid behaviour that takes into account complex interactions between fluids, including those 
involving boiling water, trapped air, and highly deformable objects, by extending Desbrun's SPH 
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based technique to simulate highly deformable objects for interactive fluid simulation. The 
Lagrangian perspective defines fluid flow as a flow of particles, each of which has its own 
characteristics, such as mass, velocity, density, etc. Each fluid particle is directly subject to the 
principles of conservation of mass and Newton. The Lagrangian approach is simple to use because 
all calculations are done on the particles, but because they rely so largely on density, they may be 
highly inaccurate in places with low density (Strantzi, 2016). 
 

3.3 Hybrid Particle Methods 
 
Lagrangian particles or Eulerian grids are the two basic methods for simulating fluid effects in 
computer graphics. The two methods each have advantages and disadvantages. Lagrangian 
particles are excellent at advection but struggle with the pressure and incompressibility limitation. 
Fortunately, the Eulerian grid approach is excellent at handling the pressure and incompressibility 
constraint, but the method has issues with the advection component because of interpolation errors 
from the semi-Lagrangian advection. It is clear that where the Lagrangian approach has problems, 
the Eulerian approach performs very well. By combining these two approaches, Lagrangian 
particles can handle the advection portion while the Eulerian grid can handle the pressure and 
incompressibility constraint, resulting in a more accurate simulation of water effects (Englesson, 
et al., 2011). 
 
Particle level sets, The Particle in Cell (PIC), and the Fluid Implicit Particle (FLIP) method are 
just a few examples of the many various hybrid strategies that exist. Foster and Fedkiw (Foster & 
Fedkiw, 2001) established the particle level set approach in while Harlow (Evans & Harlow, 1957) 
launched the PIC method in 1963. Brackbill and Ruppel (Brackbill & Ruppel, 1986) later refined 
it with the FLIP method in 1986. In 2005, Zhu and Bridson (Zhu & Bridson, 2005) introduced the 
FLIP method to the field of incompressible flow, and it is now the most advanced approach for 
simulating fluids. 
 

3.3.1 PIC / FLIP method 
 
Despite the fact that the PIC and FLIP procedures are nearly identical save for a small variation in 
the velocity update, the fluid properties vary considerably. Due to numerical dissipation caused by 
the double interpolation of the velocity, a fluid that simply utilises PIC is more viscous than a FLIP 
fluid; however, more on that in a moment. However, the FLIP approach has little viscosity and is 
therefore excellent for water effects, although there is undesirable surface noise present. One can 
create a fluid with low viscosity and no surface noise by linearly combining the PIC and FLIP 
approaches. 

 
Interpolation is the root cause of the PIC method's significant numerical dissipation. The Navier-
Stokes equations are used to calculate the new particle velocities, and the smoothed velocity values 
are then interpolated back to the particles to replace the old velocities. The particle velocities are 
transferred to the grid by interpolation, which introduces some smoothing. As previously stated, a 
PIC fluid will seem viscouster than a FLIP fluid because of this excessive double interpolation. 
Brackbill and Ruppel found a solution by interpolating the change in velocity and adding it to the 
already calculated particle velocities rather than interpolating the newly calculated velocities to 
the particles from the grid and replacing the velocities. By doing this, only one interpolation's 
worth of smoothing is carried out, as opposed to the PIC technique's accumulative smoothing, 
which virtually eliminates numerical dissipation in the FLIP approach. 
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4. Implementation 
 

4.1 Interpolation 
 
The Eulerian-Lagrangian hybrid Particle in Cell or the Fluid Implicit Particle (PIC or FLIP) 
technique, which performing similar activities in different a liquid domain with a collection of 
particles, is the basis of our solution. We extrapolate qualities that are based on particles, like 
velocities, using SPH-like interpolation kernels as opposed to the conventional FLIP technique. 
This interpolation is utilised later on in our thin sheet preservation approach as well as for the 
underlying simulation. The fluid's velocity (u) and the position's particle density (x) are determined 
as follows given a particle distribution: 

 𝑢(𝑥) =
ఀ೔௠೔௨೔ௐೄ೓ೌ (௉೔ି௫,ఈೠௗ೔)

ఀ೔௠೔ௐೞ೓ೌೝ೛(௉೔ି௫,ఈೠௗ೔)
 (11) 

 
 𝜌(𝑥) = ∑ 𝑚௜𝑊௦௠௢௢௧௛ ௜ ൫𝑃௜ − 𝑥, 𝛼ఘ𝑑௜൯ (12) 
 
where, in order, 𝑑௜, 𝑃௜, 𝑢௜, and 𝑚௜ stand for the particle's radius, location, velocity, and mass 𝑖, 
respectively. The scaling factors for radius 𝑑௜ are 𝑢 and. Both 𝛼௨ = 1.0 and 𝛼ఘ = 4.0 were applied. 
We utilise two basic kernels for weighting: 

    𝑊௦௠௢௢௧௛ (𝑟, ℎ) = ൝
௛మ

ห|௥|ห
మ − 1 , 0 ≤ ||𝑟|| ≤ ℎ 

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (13) 

 

𝑊௦௠௢௢௧௛ (𝑟, ℎ) = ൝1 −
ห|௥|ห

మ

௛మ
 , 0 ≤ ||𝑟|| ≤ ℎ 

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 
While 𝑊௦௠௢௢௧௛ (𝑟, ℎ) is used to calculate the average of a quantity from neighbouring particles, 
our sharp kernel 𝑊௦௠௢  (𝑟, ℎ) is designed to resample a quantity of the particle such that 𝑢 (𝑃௜) 
= 𝑢௜. Any kernels with comparable qualities, such as those frequently used for SPH simulations, 
would be relevant in this situation. In order to expedite the neighbourhood lookup, we group the 
particles into the grid prior to processing each step of the simulation. If Equation 11's denominator 
is close to zero, we use the velocity of something like the closest particle to prevent roundoff errors. 
In order to determine the location of the free surface, we also compute a level set function for each 
grid cell: 
 ∅௅(𝑥) =  𝛼௅𝑁଴𝜌଴ − ∑ 𝜌(𝑃௜)௜  (15) 
 
where i and 𝜌଴ stand for the initial maximum density at the start of the simulation and the particle 
index within a cell, respectively. 𝑁଴ is the number of particles that are initially supplied to a cell, 
whereas 𝛼௅ is a quantity that is utilised to discriminate between splashing particles and 
incompressible liquid volumes. All cells with ∅௅(𝑥) ≤ 0 belong to the liquid domain. We 
continuously run our three-dimensional simulations with 𝛼௅ = 0.2 and 𝑁଴ = 8. In locations where 
particles are in low quantity, such as liquid sheets or holes in the liquid domain, cells should not 
be mistakenly classified as liquid. This is why Equation 15's implicit functions are used. As a 
result, undesirable volume growth is avoided and liquid particles are kept from drifting on the free 
surfaces.  
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4.2 Grid-based Solving 
 
The particles speed as they are being advected is first mapped onto a Marker and Cell (MAC) grid 
in our simulation. The primary Poisson equation is solved on the grid, making the velocity 
divergence-free. An incompressible particle flow is produced in PIC (Harlow, 1962) by mapping 
the anticipated grid velocity to the individual particles. In line with (Hong, et al., 2008), and (Hong, 
et al., 2009), we employ Equation 11 in our implementation to map the particle-to-grid velocity. 
Although grid based interpolation, for example, as in (Zhu & Bridson, 2005), might be utilised in 
this situation, we opt to employ a similar SPH interpolation since we can reliably use it for both 
our position based corrective strategy from Anistropic Position Correction and for interpolating 
arbitrary physical quantities. To convert particle flow velocity from the grid to the particles, we 
employ a tri-linear interpolation. 
 
Instead of completing an advection step based on a grid, the momentum is naturally transferred by 
PIC utilising the particles. However, PIC is known to result in numerical diffusion due to the 
repetitive back-and-forth interpolation of velocities. For this purpose, (Brackbill & Ruppel, 1986) 
introduced FLIP. In FLIP, only the transition from one time step to the next in the grid velocity is 
projected back to the particles. The updated particle speed for the next time step is obtained by 
adding this delta to the particle velocities. The velocity field on the grid is then used to move the 
particles. FLIP does not experience numerical dissipation, in contrast to PIC. However, because 
there is no viscosity at all in the simulation, FLIP can exhibit noisy behaviour. With the use of a 
scalar parameter called v, the PIC and FLIP velocities are linearly blended as in (Zhu & Bridson, 
2005), we solve this issue as follows: 
  
         𝑢 = 𝑃𝐼𝐶 ∕ 𝐹𝐿𝐼𝑃(𝑢∗) = 𝛼௩𝐹𝐿𝐼𝑃(𝑢∗) + (1 − 𝛼௩)𝑃𝐼𝐶(𝑢∗) (16) 
 

4.3 Preserving Thin Sheets 
 
The key component of our approach is an algorithm that prevents thin sheets from rupturing by 
adding additional particles to vulnerable areas. A general overview of our process is shown in 
Figure 4. We start by removing thin fluid regions. To prevent collisions, fresh particles are 
cautiously injected into such locations at newly computed candidate places. In the subsections that 
follow, we go into greater depth about these steps. 
 
 
 
 
 
 
 
 
    
(1) Input Simulation                     (2) Thin Sheet Area Detection         (3) Candidate Position Detection          (4) Particle Insertion 

 
Fig. 1. (1) Given a collection of particles as input, (2) Particles in thin regions are computed. Filling 
out breaking sheets, (3) We calculate the potential insertion places, and (4) We place the particles 
at the appropriate distance. 
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4.3.1 Thin Particle Extraction 
 
We can determine the so-called thin particles, which produce thin patches, by evaluating the 
flexibility of the distributions of surrounding particles that may eventually fracture. We use (Yu & 
Turk, 2013)’s anisotropic kernel approach to do this. For each particle, we determine the weighted 
mean covariance of the particles C as follows: 

 𝐶௜ =
ఀೕ൫௉ೕି௉ത೔൯ ൫௉ೕି௉ത೔൯

೅
ௐೞ೘೚೚೟  ൫௉ೕି௉೔,ఈഐௗబ൯

ఀೕௐೞ೘೚೚೟  ൫௉ೕି௉೔,ఈഐௗబ൯
 (17) 

Where 
 
 

𝑃ത௜ = 
ఀೕ௉ೕ ௐೞ೘೚  ൫௉ೕି௉೔,ఈഐௗబ൯

ఀೕௐೞ೘೚೚೟  ൫௉ೕି௉೔,ఈഐௗబ൯
   (18) 

 
The accompanying 𝐶௜ Singular Value Decomposition (SVD) provides the following eigenvectors 
and eigenvalues for the direction and stretch of surrounding particle positions: 
 

 𝐶௜ = 𝑅 ቎

𝜎ଵ

𝜎ଶ

𝜎ଷ

቏ 𝑅் (19) 

 
where (𝜎ଵ > 𝜎ଶ > 𝜎ଷ) denotes the eigenvalues in ascending order of magnitude and R and 𝜎௡ the 
eigenvector matrix, respectively. The degree of stretch is indicated by the eigenvalues. Keep in 
mind that the SVD is only used when the particle density is below a certain threshold, 𝜌(𝑝௜) <
𝛼డΩ𝜌଴; otherwise, diag(𝜎ଵ, 𝜎ଶ, 𝜎ଷ) = I is used in its place. This may be carried out relatively 
quickly because the SVD is only computed close to the liquid surface. Thin particles can be 
distinguished by: 
 
       𝜎ଷ ≤ 𝛽௧௛௜௡𝜎ଵ   (20) 
 
where 𝛽௧௛௜௡  refers to a cutoff point that establishes the level of thinness. We applied the parameters 
𝛽௧௛௜௡ = 0.2 and 𝛼డΩ = 0.7 in our implementation. In the subsequent processes, the location of new 
particles is determined using these thin particles. Algorithm 1 displays the pseudo code for our 
thin sheet preservation. 
 

4.3.2 Particle Insertion and Removal 
 
The available openings are typically highly thick, therefore they cannot be employed carelessly. 
We outline a straightforward technique to introduce candidates with the right level of sparsity in 
order to avoid the formation of excessively huge numbers of particles. Let I be the last applicant 
on the list. Given by the lowest density, entry 𝐼ଵ is the least dense contender within S. 
 

𝐼ଵ = arg  min
୨∈ୗ

𝜌(𝑝௝)   (21) 

 
𝐼ଶ = arg  min

୨∈ே಺భ

|ห𝑝௝ − 𝑝ூభ
ห|   (22) 
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We look for pairs (𝑝௜, 𝑝௝) that span breaking holes in the fluid volume inside the collected thin 
particles. A candidate place for insertion is noted as the pair's midway, (𝑝௜+𝑝௝)/2. In our method, 
we select pairings (𝑝௜, 𝑝௝) that meet each of the requirements below: 

 

⎩
⎪
⎨

⎪
⎧ 𝛽௠௜௡𝑑଴  ≤  ቚห𝑝௝ −  𝑝ூభ

หቚ  ≤  𝛽௠௜௡𝑑଴

∑ 𝑊𝑠𝑚𝑜𝑜𝑡ℎ ௞ ቀ
൫௣೔ା௣ೕ൯

ଶ
− 𝑝௞ , 𝛽௠௜௡𝑑଴ቁ = 0

൫𝑝௝ − 𝑝௜൯. ൫𝑢௝ − 𝑢௜൯ > 0

 (23) 

 
In comparison, if an added particle pi meets at the very least one of the two criteria, it is withdrawn 
once again: 
 

 Any ൝
𝜌(𝑝௜) >  𝛽௠௔௫ఘ𝜌଴  𝑎𝑛𝑑 𝜎ଷ ≥  𝛽௧௛௜௡𝜎ଵ

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑗 ቚห𝑝௜ − 𝑝௝หቚ  ≤  𝛽ௗ௜௦௧𝑑଴

 (24)  

 
Algorithm 1 displays the pseudo code for our thin sheet preservation. 
 

Algorithm  1  PRESERVE THIN FLUID SHEETS (Ando, et al., 2012)    

1: C ← Compute Covariance Around P by Eq. 8 
2: RΣRT  ← SVD(C) 
3: P ← Thin Sheet Particles for Extraction (Σ) by Eq. 20 
4: for  all  (i, j) ∈ P  do 
5: if   a pair (Pi, Pj ) satisfies Eq. 23  then 
6: S ← Add a fresh candidate (Pi + Pj )/2 
7: end  if 
8: end  for 
9: I1 ← by Eq. 21 in S 

10: for  n = 2, 3, 4, ··· do 
11:        In  ← search(In−1) in S as Eq. 22 
12: end  for 
13: Insert New Particles I 
14: Collapse Particles that Satisfy Eq. 24  
 

 
We go over three extensions to the simulation algorithm we've been talking about so far in the 
subsections that follow. These include adaptivity, which lowers the overall number of particles 
included in the simulation, and an anisotropic position adjustment for uniform particle distribution. 
   

4.4. Adaptively Sampled Particles 
 
The quality of the surfaces produced by the FLIP process is directly influenced by the quantity of 
liquid particles. Typically, one simulation grid cell starts out with eight particles. Because the FLIP 
technique cannot record fluid movement smaller than a single grid cell, we can save a considerable 
amount of computation resources through iteratively resampling the huge volume of the fluid 
velocity with fewer particles while keeping a high particle sampling along the visible surfaces. By 
doing so, we can reduce the number of particles utilised to sample the bulk volume while 
concentrating calculations on the surface detail that is apparent and retaining the densely packed 
particles there. (Adams, et al., 2007), (Hong, et al., 2009) and (Hong, et al., 2008) are the sources 
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of inspiration for our adaptive sampling approach, which we have modified to fit included into the 
FLIP simulation framework. The prior techniques have undergone two adjustments. First, unlike 
(Hong, et al., 2009) and (Hong, et al., 2008), we merely examine if particles are present next to 
the free surface for particle fusion and separation instead of placing numerous layers and assessing 
Particle separation via Reynolds number analysis. Second, instead of looking for nearby free space 
like (Adams, et al., 2007) did due to the fact that the FLIP simulation is steady independent of the 
particle distance, we just randomly position the particles. In addition, we outline a brand-new, 
straightforward, parallel method for merging particles. 
 
Large particles must be removed from surface cells in order to stop the merger. We divide the large 
particle into the appropriate number of smaller particles, which are scattered randomly over a 
radius of 𝑑௡ surrounding the source particle. The freshly formed little particles' radii are initialised 
in accordance with the giant particle's mass, which is equally distributed among them. The other 
physical quantities have all been duplicated. 
 
In a typical SPH simulation, one such particle split could result in an abruptly huge spring force. 
However, this is not a problem because the standard FLIP algorithm doesn't really apply forces 
based on particle density. To ensure that the particles are spaced evenly, we explain a progressive 
particle displacement technique in the following section. Although a particle split affects the force 
produced, we did not see any instability as a result of the particle split because of its tiny 
magnitude.  
 
The combining and splitting operations can be carried out step-by-step in tandem. Since no 
neighbourhood information is needed, splitting operations can be carried out relatively quickly. In 
our implementation, we introduce a layer of cells between the surface and the deep fluid layers 
where no conversions between small and large particles are made. As a result, excessive combining 
and splitting procedures are avoided at the junction of deep and surface cells. We discovered that 
adaptively merging particles considerably enhances performance while also reducing the total 
number of particles in the simulation. This kind of particle merging can affect the velocities that 
are estimated for the deep cells during the FLIP simulation. We have discovered that this influence 
is minimal and hardly moves the surface that is visible. Algorithm 2 displays the pseudo code for 
our adaptive sampling algorithm. 

 

Algorithm  2  ADAPTIVELY SAMPLE PARTICLES (Ando, et al., 2012)   

1: DeepCells ← FluidCells − dilate(EmptyCells,twice)  
2: SurfaceCells ← FluidCells − dilate(DeepCells,once)  
3: repeat 
4: for  all  particles (Pi, Pj ) ∈ DeepCells do 
5: skip  if ||Pi − Pj || > (di + dj )/2  
6: skip  if arg mink ||Pi − Pk || = j  
7: skip  if arg mink ||Pj − Pk || = i  
8: n ← Sum of small particles.  
9: skip  if n > m 

10: Pk  ← Generate a new particle. 
1 

11: dk  ← n D d0 
12: Remove the particles Pi, Pj  
13: end  for  
14: until no particles merge 
15: for  all  merged particle Pk  ∈ SurfaceCells do 
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16: for   i = 1 → number of particles in Pk  do  
17: Pi ← Generate a new particles at random position around Pk within radius dk .  
18: di  ← d0  
19: end  for 
20: Remove particle Pk  
21: end  for  

 

4.5. Mean Curvature Flow 
 
We will first go through how to compute the original fluid surface's smoothed equivalent, which 
is represented as a triangle mesh. Sussman demonstrated that the distance between the liquid 
surface and a different version of the surface projected by a volume-preserving mean curvature 
flow can be related to the surface tension forces integrated over the span of a time step (VCF). In 
the limit, the VCF solution will condense to one or more spheres with a volume equal to that of 
the fluid component, which is the precise outcome that an isolated surface tension fluid simulation  
 
with viscosity would produce. Keep in mind that the surface tension may cause a single component 
to break up into numerous spheres. We use a VCF to calculate the smoothed surfaces S and T, but 
we solve the VCF directly on the surface mesh rather than the grid. Additionally, we apply this 
technique to both layers of our simulation: the grid's surface tension forces and the fluid's surface 
sub-grid scales. S therefore creates a division between tiny spatial scales, which will be handled 
by our surface dynamics model, and larger scales, which will be handled by the Eulerian fluid 
simulation in our case. We must first find a VCF for the initial, perhaps extremely detailed surface 
of the liquid. We may exploit the wealth of knowledge on curvature fluxes for meshes in this 
situation. The collection of vertex coordinates X of a triangle mesh's general mean curvature flow 
can be expressed as 
 
      𝑋௧ =  𝛾∇ଶ𝑋     (25) 
 

4.6. Surface Tension 
 
One of the most prevalent and significant physical properties that reveal microscopic effects of 
fluids is surface tension. The simulation of surface tension is become more and more alluring due 
to the rising need for specifics and realism in fluid simulation. The cohesion of the fluid molecules 
causes surface tension. Because the molecules inside a fluid are subject to forces coming from all 
angles, they eventually establish mechanical equilibrium. Surface tension is produced even if the 
resultant force of fluid molecules on the surface, which is not zero, indicates the fluid's interior. 
The Laplacian law also states that surface tension has the ability to reduce surface area. For 
instance, when no external force is applied, the droplets condense into a sphere. (Wang, et al., 
2017) 
 
Based on (Morris, 2000) theories, we explicitly model surface tension forces. A fluid's molecules 
are subject to the attraction forces of its nearby molecules. These intermolecular forces balance 
one another and are equal in all directions inside the fluid. On the other hand, the forces on 
molecules near the free surface are imbalanced. The surface normal to the fluid is the direction in 
which the net forces, or surface tension forces, act. They also have a tendency to reduce the 
surface's curvature. The force increases with curvature. 
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Every particle in a particle-based fluid simulation is given a colour field value i, or 𝑐௜ , and all of 
the fluid's particles share the same colour of the field value. This is known as the surface tension 
model. The colour field interpolation formula can be obtained by adding 𝑐௜  to the SPH 
interpolation equation as follows: 

      𝑐௜ =  ෎
௠ೕ௖ೕ

ఘೕ
𝑤௜௝

௝

    (26) 

It is possible for the normal vector of the surface to point toward the fluid's interior when the 
normal vector of the surface is calculated using n = 𝛻c. And the divergence of the normal vector 
can be used to calculate surface curvature (Wang, et al., 2017). Its shape is displayed as follows: 
 

       𝑘 =
ିఇమ௖

|௡|
    (27) 

The normal vector and surface curvature can be used to structure the surface tension of a fluid is 
shown as follows: 

       𝐹௦ = 𝜎𝑘𝑛 = −𝜎𝛻ଶ𝑐
௡

|௡|
  (28) 

 
4.7. Viscosity 
 
The term "viscosity," which is frequently used in fluid simulation, simply refers to a fluid's 
propensity to restrict flow and manifests itself as thickness. For instance, water has low viscosity 
and flows freely. Because honey is thick and opposes flow, it has a high viscosity. The scalar v 
has direct control over the level of viscosity. It should be noted that when mimicking water, this 
phrase is frequently ignored. This factor, which would otherwise be resolved by a Poisson 
equation, is frequently well replaced by the level of numerical degradation introduced by 
interpolation mistakes. 
 

      
డ௏

డ௧
= 𝐹 + 𝑣∇ଶ𝑉 − 𝑉. ∇𝑉 −  

∇୮

஡
  (29) 

 
       ∇. 𝑉 = 0    (30) 
 
When the SPH rule is applied to the viscosity term 𝜇∇ଶ𝑣, asymmetric forces are once more 
produced. 
   

 𝑓௜
௩௜௦௖௢௦௜௧௬

=  𝜇𝛻ଶ𝑣(𝑟௔) = 𝜇 ෍ 𝑚௝
௩ೕ

ఘೕ
𝛻ଶ𝑤൫𝑟௜ − 𝑟௝ , ℎ൯

௝
 (31) 

 
due to the fact that each particle's velocity field is unique. There is a natural way to symmetrize 
the viscosity forces by employing velocity differences because they are solely reliant on velocity 
differences and not on absolute velocities: 
 

 𝑓௜
௩௜௦௖௢௦௜௧௬

=  𝜇 ෍ 𝑚௝
௩ೕି௩೔

ఘೕ
𝛻ଶ𝑤൫𝑟௜ − 𝑟௝ , ℎ൯

௝
 (32) 
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4.8. Houdini  
 
Since most mathematical equations are already incorporated in the form of microsolvers and the 
main objective of the project is the implementation of thin sheet preservation techniques, the major 
difficulty is to study the huge proportion of microsolvers and decide which ones to use and modify 
them in accordance with the requirements. After analysing the Navier- Stokes equations and 
understanding the concepts that regulate fluid motion, it is relatively easy to implement them in 
Houdini. The programme must enable users to quickly and easily construct any type of FLIP 
animation they desire, complete with accurate fluid particle structure and movement. The HDA 
tool has a series of steps that start with creating the particles needed for an emitter source, followed 
by setting up the boundaries for the FLIP sim environment, using a custom procedure to direct the 
fluid simulation to follow a specific pattern using user-defined velocity directions as normals, and 
finally controlling the vdb setup for the collision geometry that is configured to interact with the 
fluid simulation. These are the initial setup parameters for the tool that the user can change and 
adjust to determine the desired bounds for the simulation. 
 
The implementation of thin sheet preservation approaches is done in the subsequent step using a 
variety of microsolvers, VEX code, and VOP networks to create a particle system that accurately 
represents the fluid properties and complies with the preservation methodology. Other 
fundamental principles of fluid simulation, such as surface tension, viscosity, and curvature forces, 
are also implemented together with thin sheet techniques, allowing the user additional control over 
the simulation using present properties. The default solver solver properties are disregarded and 
not used in the project's key principles are implemented using a variety of microsolvers, attribute 
wrangles, pop wrangles, and VOP networks, so the tool can be true to its implementation. The 
surface field's curvature and gradient are computed, and we use the two particular fields to push 
and pull in convex and concave zones such that the particle field tends to form segments and shape 
in attractive ways. Various other assets apply surface tension based on curvature decimation. By 
integrating the curvature decimation approach with additional custom forces and a PBD-based 
strategy, we are taking a different approach in this case. 
 
The core SOP solvers deal with the implementation of the thin sheet techniques , viscosity, surface 
tension and curvature control in the borders. Another feature allowing the user to generate bubbles 
inside the fluid simulation when required is created which can be used for underwater sims, any 
kind of syrups, Honey etc. Additional tests were conducted to examine the APIC method (swirly 
kernel) in Houdini 18.5's FLIP solver with the default one (splashy kernel), which does not employ 
a hole-filling strategy. The mask property regulates the weight or contribution for the cohesiveness 
that determines the behaviour in those tests. The red sections is where complete energy is applied 
to reduce the surface area, which results in spherical formations. 
 
Re-seeding is typically used to give users more control over particle generation, but it also has an 
impact on mesh generation. This is mainly because re-timing can produce strange pulsing artefacts, 
and the only way to avoid this is to over-smooth, which can occasionally be very expensive and 
eliminate nice details. Boundary conditions can also cause flickering due to dense particle clusters 
closer to colliders. Instead of doing this, I employ a technique to redistribute the particles in order 
to achieve a more even distribution among them. By doing this, I am able to create very nice and 
smooth edges without using as many particles, as well as a mesh that is cleaner and smoother 
without sacrificing any details. 
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Various example simulations have been generated to demonstrate the tool efficiency. In the Fig 2 
presumably blood simulation used to demonstrate the various properties of the tool and can be 
clearly portray the implementation concepts. 
 

 
 

Fig 2. Simulation Parameter: Particle separation : 0.01, Thin sheet point count: 5, Thin sheet 
distance :0.05, Thin sheet max vel : 80, Thin sheet scale: 80, Drag :1, Reseeding features On. 
 

 
 

Fig 2. Simulation Parameter: Particle separation : 0.01, Thin sheet point count: 15, Thin sheet 
distance :0.02, Thin sheet max vel : 180, Thin sheet scale: 120, Drag :1, Reseeding features On. 
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Fig 3 shows the simulation of honey with also using the bubbles feature that will create air bubbles 
inside the fluids. Here in both fig 3 & 4 the main features such as Surface tension, Viscosity and 
border curvature thickness come into play. 

 

 
 

Fig 3. Simulation Parameter: Particle separation : 0.003, Thin sheet point count: 0, Thin sheet 
distance :0, Thin sheet max vel : 0, Thin sheet scale: 120, Viscosity : 75, Min age: 0.6, Liquidity : 
40, Solidity: 60, Drag :0.001, with Detailing and Reseeding features On. 
 

 
 

Fig 4. Simulation Parameter: Particle separation : 0.003, Thin sheet point count: 0, Thin sheet 
distance :0, Thin sheet max vel : 0, Thin sheet scale: 120, Viscosity : 50, Min age: 0.2, Liquidity : 
60, Solidity: 40, Drag :0.001, with Detailing and Reseeding features On. 
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5. Results 
Without any prior experience with fluid simulations, a solid foundation in knowledge and 
understanding of the fundamental ideas was required before any work could start. Apart from the 
implementation of Thin Sheet preservation techniques the tool has been extended with additional 
features and more control over concepts such as surface tension, viscosity, mean border curvature 
control. The current Houdini solvers and fluid tools were studied in addition to the scientific and 
technical literature review in order to gain insight into how they operate and potential 
modifications. 
 
Despite the problems that had not been fixed by the time this research was finished, the fluid 
simulation is generally effective and producing satisfying results. The tool successfully 
implements thin sheet preservation techniques by detecting principal stretch and thickness of the 
fluid and inserting additional points based on user defined rules and cutoffs. This can be seen with 
a simple crown sim configuration, where the Anistropic Fluids Tools simulation time is far faster 
than the shelf tool. The tool also offers greater user flexibility and makes it simple to add extra 
details. We might achieve more attainable and effective results by addressing those problems and 
making additional enhancements. 
 

6. Known Issues 
Even if the majority of the objectives were met, the application could have used a little more time. 
Although it includes all of the necessary components of a fluid solver, they are not yet ready for 
commercial use. There are a lot of more complex facets to this topic. The tools at the moment is 
really efficient but can be made even more efficient by constructing the solver from scratch and 
removing any unnecessary concepts from it. In order to achieve such efficiency the anistropy can 
be calculated through covariance matrix singular value decomposition, Rotational iterative SVD 
solver can be constructed in such a way that absolute maximum non diagonal element turns to zero 
with every single iteration. Rotational SVD seems to be most efficient for small (3 x 3) matrices 
decomposition. Typical converge iterations are below 6. Mesh Flickering is observed in the final 
rendered output which should be further evaluated. This flickering can also be seen when the fluid 
gets in contact with any colliding mesh.  
 
 

7. Conclusion and Further Work 
In conclusion, a successful application of a particle-based algorithm that carefully re-samples 
particles to retain thin fluid sheets has been shown. To ensure uniform particle distribution. We 
adaptively sampled particles in the deep sea while keeping dense particles close to surfaces to 
lower the cost of neighbourhood computations. By calculating the stretch of the nearby particle 
distributions, we found thin fluid locations in order to keep fluid sheets from breaking. Most 
significantly, a thorough knowledge of solvers and fluid simulations was gained, along with 
expertise in using Houdini for such simulations. Due to the popularity of fluid simulations as a  
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research area, the rapid pace of new advancements, the intricacy of the tools and microsolvers 
available in Houdini, and other factors, a substantial amount of time was spent researching and 
contrasting different approaches for this project. The tool can be made more efficient by use of 
covariance matrix and create a rotational iterative SVD solver. More user control over external 
forces can be added by allowing them to add inbuilt nodes and control the fuild sim. This could 
open more possibilities for creative fluid animations. Adhesion can be implemented to control the 
stickyness of particles to any collision meshes. Right now the tool is limited to small and medium 
scale level simulations with more work it can be used to generate large scale simulations as well. 
I believe with further more development and reconstruction of this tool will be production ready 
for creating complex fluid animation with all required attributes at the display and allowing user 
for more development can be achieved 
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