

Real-time

Game Mechanics & Procedural

Tooling with Vulkan API
(Using SDF Raymarching)

Master’s Thesis

Hirad Yazdanpanah

MSc in Computer Animation and Visual Effects

National Centre for Computer Animation

Bournemouth University

August 2021

Abstract
SDF raymarching algorithms have been typically slow for real-time use until today. And no
matter how optimized and efficient they are, real-time and interactive usage of these
algorithms, once the CPU-GPU communication occurs, can be quite resource-intensive and
expensive, which may lead to low performance and stalling the application.

This thesis describes a Vulkan-based implementation for SDF Raymarching in real-time aiming
to provide a proof-of-concept, as a mean for creating efficient solutions that simplify runtime
evaluation of complex data through the GPU with a low-overhead CPU to GPU abstraction.

Keywords
Vulkan, Direct3D, Metal, Pipelines, Command Buffers, Graphics Queue, SDF, Ray marching,
Sphere Tracing,

Acknowledgements
I would like to thank my supervisor, Jon Macey, for his guidance, support, and patience
through every step of this project.

I also, would like to thank my family and friends for their continuous support and
encouragement throughout this path.

Contents
Chapter 1 Introduction .. 1

1.1 Background .. 1

1.2 Aims & Objectives ... 1

Chapter 2 Previous Work ... 2

2.1 SDF implementations .. 2

2.1.1 Games .. 2

2.1.2 SDF Modelling Toolset ... 2

2.2 Vulkan Implementations ... 2

Chapter 3 Technical Background .. 3

3.1 OpenGL, Direct3D, Metal, Vulkan, etc. .. 3

3.2 Optimization Techniques .. 4

3.2.1 GUI and Graphics API .. 4

3.2.1.1 GUI Overhead (Qt Interface) .. 4

3.2.1.2 Graphics API Abstraction Overhead (Qt Vulkan Renderer) .. 5

3.2.2 Storage Buffers to send SDF data per bounded volume ... 5

3.2.3 SDF Raymarching ... 6

3.2.3.1 Space Subdivision Methods (e.g., BSP, kD-Tree, Octree, etc.) ... 6

3.2.3.2 Object Subdivision Methods (e.g., BVH) .. 6

Chapter 4 Implementation .. 7

4.1 Application Architecture ... 7

4.1.1 Overview ... 8

4.1.2 Build and Configuration .. 9

4.1.3 Debugging .. 9

4.1.4 Windowing System .. 10

4.1.4.1 SDF Graph Viewport ... 10

4.1.4.2 Scene Viewport (Vulkan Window) ... 11

4.1.5 Renderer .. 12

4.1.5.1 Pipelines ... 12

4.1.5.2 SPIR-V Compiler ... 13

4.2 Depth Buffer with SDF Raymarching... 14

Chapter 5 Conclusion .. 16

Bibliography .. 17

Appendices .. 19

List of Abbreviations
AoS ……………………………………………………………………………………..……………….…….. Array of Structures

BVH ………………………………………………………………………………………..…. Bounding Volume Hierarchies

DCC ……………………………………………………………………………………………………. Digital Content Creation

DX 11/12 ……………………………………………………………………………………………………. Direct3D/2D 11/12

GLSL ……………………………………………………………………………………………….. OpenGL Shading Language

kD-Tree ……………………………………………………………………………………………………... k-dimensional Tree

MOC ………………………………………………………………………………………………..……. Meta Object Compiler

SDF ………………………………………………………………………………………….. Signed Distance Field/Function

SPIR-V ……………………………….……….……. Standard Portable Intermediate Representation - Vulkan

POD …… Plain Old Data

PSO ……………………………………………………………………………………………………….... Pipeline State Object

SDFR ……………………………………………………….… SDF (Signed Distance Field/Function) Raymarching

SIMD …..………………………………………………………………………….……… Single Instruction, Multiple Data

SoA ……….. Structure of Arrays

VMA …………………………………………………………………………………………….….. Vulkan Memory Allocator

List of Figures
Figure 4-1 – Application High Level Architecture .. 7

Figure 4-2 – Abstract IO Control Flow ... 8

Figure 4-3 – SDF Graph Basic Architecture ... 10

Figure 4-4 – SDF Graph Async Data Flow Model using Vulkan Pipelines 11

Figure 4-5 – Vulkan Pipeline Architecture ... 12

Figure 4-6 – SPIRV Compiler Architecture ... 13

Figure 4-7 - Depth Texture Buffer Calculation and Multi-pass Transfer Model 14

Figure 5-1 – SDFR Project Demo ... 16

Chapter 1 - Introduction

1

Chapter 1 Introduction

1.1 Background
Following a previous project in the personal inquiry unit, the author implemented and
demonstrated dynamic transformation of 3D objects to 4D and vice versa in real-time as a
game mechanic feature, using SDF Raymarching, with HLSL compute shaders, in Unity Game
Engine.

The implementation, however, needed to address some more details to implement and future
work which are as follows:

- It lacked correct depth buffer calculation in the shaders so that it can project Mesh-
based rasterized models along with the SDF-based models (e.g., an interactive player
character) in the same scene.

- It lacked certain optimizations for the SDF raymarching algorithm (e.g., scalability)
- CPU to GPU Performance overhead was automatically managed by the named Game

Engine through Direct3D 11 API
- There was no SDF modelling toolset, to simplify the usability of this feature for the

game artists and developers.

A screenshot of the implementation is illustrated at Appendix A1 with follow up improvements
after the project delivery from Appendix A2 onwards demonstrating its performance
comparisons in different Graphics APIs.

1.2 Aims & Objectives
The aim of this project is to provide a proof-of-concept solution addressing some of the above-
mentioned problems using the Vulkan graphics and compute API as an optimized ecosystem
enabling and allowing for any further advanced optimization techniques.

Therefore, it should be noted that the concentration of this project is to represent an optimum
solution using Vulkan-based functionalities towards approaching such complex problems,
rather than an algorithmically extensive approach towards SDF raymarching, though briefly
discussed, in this thesis.

The Vulkan-based implementation is written in C++ using SPIR-V shaders which some are pre-
compiled during cmake compilation with shell script instructions and some at runtime through
GLSLang library to be consumed by the SDF Modelling Toolset.

Chapter 2 - Previous Work

2

Chapter 2 Previous Work

2.1 SDF implementations

2.1.1 Games
SDF-based raymarching algorithms and SDF-based point/surface splatting have been used
amongst a few games in real-time, from amateur to industry standard, which were also named
in the previous project briefly (Yazdanpanah 2021) and can be found in Appendix B. Although,
their use of these algorithms and their target audience is quite limited due to technical
complexities, including the one this project attempts to propose a solution for.

2.1.2 SDF Modelling Toolset
One of the most missing features in SDF Raymarched implementation is, the ability to create
SDF Models easily with no requirement to understand programming. Thus, to engage with the
artists allowing them to create implicit surfaces and morphed objects in real-time specially for
games. This is because these types of models do not depend on rasterizing vertices and can be
adopted to respond to quite unique modelling requirements (Sanchez et al. 2015; Lindborg et
al. 2017).

Node-based procedural modelling has become quite popular technique for creating game
assets, with efficient and quite fast results. Therefore, procedural SDF Raymarched Modelling
can also provide new opportunities to create special geometries that would be, otherwise,
quite difficult to create using the existing DCC and procedural modelling toolsets (Lindborg et
al. 2017).

2.2 Vulkan Implementations
Vulkan API has been used across many real-time engines and games despite being a relatively
new API since 2016 (Khronos 2016). A non-exhaustive list of these engines and games can be
found in Appendix C.

There are also some abstractions and libraries around Vulkan SDK such as the one that author
has used for this implementation, through which they require less developer time and can
allow for better understanding of the graphics pipeline while can be used to provide proof of
concepts and minimum viable products much faster and build further. These implementations
include but not limited to (Willems et al. 2021):

- Qt Vulkan Renderer (Qt-based wrapper around Vulkan SDK)
- vk-bootstrap (C++ utility library automating Vk instance, device & Swapchain creation)
- Google’s Vulkan-cpp-library (C++ 11 Vulkan abstraction library)
- V-EZ (light-weight middleware layer for Vulkan API)
- AMD’s Anvil (cross-platform framework for Vulkan)
- Intrinsic Engine (Vulkan based game engine)
- Spectrum (framework and abstraction layer for Vulkan)
- MoltenVK (MacOS/iOS compatible Vulkan Interop – Metal API interface)

Chapter 3 - Technical Background

3

Chapter 3 Technical Background

3.1 OpenGL, Direct3D, Metal, Vulkan, etc.
Starting with OpenGL as to provide reasonings for further discussions on why there are other
Graphics APIs like Vulkan. OpenGL as a high-level abstraction graphics API continually being
developed by Khronos Group and supported by most platforms.

It is basically a large state machine that keeps track of application state, enabling its users to
take advantage of availability of the software components across different contexts and
platforms, while abstracting and hiding away the low-level architecture of the software by
managing those resources on its own (de Vries).

These abstractions include memory management and host-device synchronization. Error
handling, checking and validation is also embedded in OpenGL for both development and
production environments. Shader compilation is also done at runtime. All these contribute to
more performance overhead.

Vulkan, on the other hand, is a low overhead graphics and computing API also by Khronos
Group, with a much more optimized abstraction to access the GPUs. Therefore, it provides
better performance for the user and less error prone and surprising driver behaviours
comparing to other existing graphics APIs. The advantage of Vulkan not only stems from its
efficiency and productive approach, but also it is fully cross-platform across major platforms
(Overvoorde 2020).

As opposed to Other APIs, such as OpenGL and Direct3D 11, Vulkan requires deeper
understanding of the graphics pipeline, as the API demands for setting up every detail from
scratch. Although, this verbose approach, may seem quite cumbersome at the beginning as it
necessitate for significant amount of work and depth of knowledge, once the setup is made
the graphics driver needs far less attention (Overvoorde 2020).

Up until recently, Direct3D 11 and below, had similar approach to OpenGL with high level of
abstractions and therefore less verbose, which may have contributed to many CPU-GPU
related performance bottlenecks (Sheng and Nan 2018).

Direct3D 12, however, introduced a lower level of abstraction with improved multithreaded
scaling and utilizing far less CPU resources than its earlier versions. DX11 comparison with
DX12 are mainly around the level of consumption for the resources between the CPU and the
GPU (Sheng and Nan 2018; J'Lali 2020).

Direct3D 12 follows a similar pattern to of Vulkan’s, where developers must maintain and
control the resource management of the graphics application explicitly rather than offloading
the burden onto the driver (Microsoft 2018b).

Concepts like Descriptor Sets and Tables, Pipeline State Objects (PSOs), Batches of Commands
and Draw Calls, are quite common with narrow borderline between Vulkan and Direct3D 12,
which some of these will be discussed in a bit further detail in the next chapters.

Chapter 3 - Technical Background

4

Metal API from Apple, also aimed to produce low-overhead Graphics and Compute API,
combing features from OpenGL and OpenCL to improve performance by low-level access to
the GPU, initially targeting mobile platforms.

This API is comparable to Vulkan and Direct3D 12, in the sense that it utilizes GPU low-level
access to batch and encode commands before submitting to the GPU with asynchronous
execution. This is quite comparable to Command Buffer Generation and Graphics Queues in
Vulkan (Apple 2021).

Most recently, another low-level graphics API has emerged currently known as WebGPU
attempting to follow the same pattern to other low level graphics APIs, addressing similar
problems, while being developed by the web community engineers (Malyshau and Ninomiya
2021).

These similarities are mainly because, all these APIs attempt to take the same approach in
rendering and accessing data, to the graphics hardware and to how they are built and operate
internally. GPUs essentially, are asynchronous compute units which can access and process a
significant amount of data. Providing lower-level access to the hardware opens a new door for
enhancement and optimization.

3.2 Optimization Techniques

3.2.1 GUI and Graphics API
In optimising a Graphics application, several points need to be considered, which are mainly
related to speed and memory usage, to have a performant and optimized implementation.

At this point this is an abstract overview on how basic optimizations can be applied for
complex graphics applications like this one which will be further discussed in more details.

It is worth noting that by performance the author refers to efficiency of both memory usage
and speed as a co-dependent and unified component rather than independent subjects. For
example, if only the speed of a runtime process is optimized, that might not necessarily involve
less memory usage but quite the opposite. Therefore, it would not be considered as an
efficient optimization.

3.2.1.1 GUI Overhead (Qt Interface)
Naturally, using a Native API could be the most performant way to implement a GUI
application. However, Qt as a wrapper around the native API has some features helping to
lower the performance bottleneck:

- Qt Signal-Slot fast mechanism (statically typed and MOC slot method calls)
- Qt Multithreading (QtConcurrent & QFuture) - equivalent of C++ std::async &

std::future

Chapter 3 - Technical Background

5

3.2.1.2 Graphics API Abstraction Overhead (Qt Vulkan Renderer)
As stated earlier, Vulkan already contributes directly to the optimization of the rendering
engine. But the question is whether the abstraction implemented around the API may involve
any overhead that requires attention and further optimizations.

As Qt framework supported Vulkan rendering since version 5.10 (Agocs 2017), the
implementation is being further developed and optimized. However, the overhead of any
wrapper around the Native Vulkan API weighs the same for the purpose of this project, unless
the application requires quite explicit micro-optimization for certain scenarios in the future.

For instance, Memory Allocation is managed via Qt Vulkan Device Functions which has no
more visible overhead than if it was managed natively or through VMA, which is a Vulkan
Memory Allocation Library, simplifying the creation and allocation of resources, while giving
access to Vulkan functions.

However, it is important to note that the resource management (i.e., objects creations and
destruction) within the project’s implementation are carefully considered for efficient usage of
Vulkan functions across the application lifecycle.

Also, Shader Compilation/Loading, Pipeline Creation and Command Buffer Generations can be
certainly optimized within the project scope using Multithreading, which will be discussed in
the next chapter.

3.2.2 Storage Buffers to send SDF data per bounded volume
There is also a method through which the SDF related model data, such as position, scale,
rotation, colour, shape type, the Boolean operation, etc., can be passed over through to the
shaders (i.e., either Fragment or Compute Shaders) by what are known as Compute or
Structured Buffers in Unity Engine (Unity 2021) or Direct3D (Microsoft 2018a) terms and in
Vulkan as Storage Buffers (Blanco et al. 2020).

Storage Buffers are generally used as GPU Data Buffers which are typically used with compute
shaders, though can be utilized with fragment shaders too. They’re normally used to hold data
for all the objects within a scene. And as they’re unsized arrays, it is important to explicitly
ensure when and how many times they need to be sent over to the GPU to avoid any
performance loss (NVIDIA 2015; Blanco et al. 2020).

These essential model data or in other words object matrices can be uploaded at the
beginning of the frame all at once and it is no longer needed to exchange data on every draw
call (Blanco et al. 2020). Then on the GPU side they can be used to bind the raymarching
algorithm with an acceleration structure algorithm such as BVH for an individual volume to
cast rays for. Hence more efficient usage of GPU device by batching data in advance on the
host (i.e., through the CPU), and finally sending a bundle over to the GPU to consume without
major interruptions.

This method was implemented during the personal inquiry unit with Unity Engine, C# and HLSL
compute shaders. As the engine has all the required abstractions available for the developer at
their disposal, it was a straightforward approach.

Chapter 3 - Technical Background

6

However, when it comes to Vulkan implementation with no boilerplate code to rely on, the
requirements become much larger than the scope of the project and timeframe. Therefore,
the author decided to keep focusing on the Vulkan basics implementations for the purpose of
this thesis.

3.2.3 SDF Raymarching
Optimizing SDF Raymarching can be done in a few different ways from SIMD instructions with
Structure of Arrays (SoA), creating Uniform Buffer Objects for transferring the volumetric data,
to Acceleration Structures with space subdivision methods such as BSP, kD-Tree, Octree, etc.
and object subdivision methods such as BVH, and finally pre-processing.

Acceleration structures are algorithms aiding to determine, which object in the scene, a ray is
more likely to intersect amongst other objects and therefore to ignore others.

Due to the wide diversity of these techniques, in this project, the author attempts to apply a
basic optimization for SDF raymarching and consider the possibilities while briefly describing
them in the thesis.

3.2.3.1 Space Subdivision Methods (e.g., BSP, kD-Tree, Octree, etc.)
These methods typically subdivide the space with planes recursively with no reliance on the
geometry through the space. As they don’t rely on the geometry, if the geometry should
change (i.e., a dynamic geometry) they typically need to recreate the acceleration structure.
Also, they could result in deeper recursive trees, making them inefficient in many cases
(Glassner 1984; MacDonald and Booth 1990).

3.2.3.2 Object Subdivision Methods (e.g., BVH)
This method subdivides the geometry recursively into smaller pieces, until it wraps around
each piece with a closely tight bounding volume. In evaluating SDF models this approach could
result in a reduced complexity of the SDF evaluation, and therefore less expensive (Thrane and
Simonsen 2005; Quilez 2019).

The more complex the SDF data, the deeper the Bounding Volumes recursion needs to be.
There are however some efficient BVH algorithms to use for such complex SDF data which can
alleviate the complexity by automatic recursion for example (Wodniok and Goesele 2017;
Quilez 2019).

Both these classes of algorithms are efficient in mostly interactive rendering at their best and
the main issue remains which is the real-time rendering (Schütz et al. 2020). So, why not look
at this problem from a different angle, as quite often the real-time, refers to dynamic scene
and geometry and therefore real-time interactions throughout, which requires more CPU
usage and communication with the GPU.

Chapter 4 - Implementation

7

Chapter 4 Implementation

4.1 Application Architecture
The architecture of the application is represented in Figure 4-1. It uses Vulkan as the graphics
API, integrated with Qt as its main windowing system, and takes advantage of two more
external libraries, as follows:

- GLSLang, which is used for compiling GLSL shaders into SPIRV bytecodes for Vulkan
- Node Editor, which is a node-based editor used for SDF Modelling (i.e., SDF Graph)

Figure 4-1 – Application High Level Architecture

Chapter 4 - Implementation

8

4.1.1 Overview
The Qt Vulkan Implementation is basically an abstraction around the Vulkan API which exposes
Vulkan instance and functions through the Qt interface, while taking care of the CPU-GPU
(host-device) Synchronization, Swapchain creation and other major Vulkan functionalities.
Although they’re abstracted away from the user of the library, they can still be overridden by
custom implementations.

The reason for choosing Qt as opposed to other GUI systems was that, firstly the Node Editor
library adopted for this implementation depends on it extensively. And secondly, the focus of
this project is not the fundamentals of entire Vulkan ecosystem and therefore many of the
complexities within, can be hidden away to allow for implementation of a basic proof of
concept using Vulkan with SDF Raymarching, with near efficient results.

The application is split between a Windowing system and a Renderer. The Windowing system
controls the Visual Scenes and the Widgets visible to the end user, while the Renderer
integrates the Vulkan Rendering Pipelines to the Scenes, which both will be discussed further
in this chapter. Figure 4-2 illustrates an abstract overview of the Input/Output control flow of
the Windowing Systems and the Renderer.

The Windowing System itself is split between Vulkan Window and Main Window, each having
their own input event management mechanism depending on whether the input is from either
the Node Editor (i.e., SDF Graph) or the actual Scene. The Vulkan window is injected into the
Main Window to push the events and rendered scenes through from the Renderer to the final
view.

The Renderer inherits Vulkan functions to create and execute the pipelines and interact with
the scenes, while integrating with Shader related functionality. It also integrates with the SDF

Figure 4-2 – Abstract IO Control Flow

Chapter 4 - Implementation

9

Graph that allows for compiling node-based shader graph into SPIR-V shaders at runtime, to
be consumable for the renderer in the pipeline.

4.1.2 Build and Configuration
CMake build system was used to build the project with UNITY_BUILD activated in for faster
builds.

Shaders were split between statically loaded shaders which are compiled at compile-time and
converted to SPIRV files using shell scripts to detect and concatenate if needed. Dynamically
loaded shaders are the ones to be used by the SDF Graph and are in plain GLSL format.
Although some are configured into separate shader files for each shader language so that they
can be maintained easily for the user and then at runtime compile they’re concatenated and
serialized correctly to form the final SPIRV format.

4.1.3 Debugging
As the application utilizes graphics implementation with shaders and GPU related
functionality, not only there was a need for C++ debugging which the development editor
could already provide, but a combination of other debugging applications was needed in
different scenarios to debug per frame shader data and other graphics and rendering related
functions.

So, NSight from NVIDIA and RenderDoc an MIT Licensed Open-Source graphics debugger along
with Vulkan Validation Layers were used providing very useful information in quite complex
situations.

Chapter 4 - Implementation

10

4.1.4 Windowing System

4.1.4.1 SDF Graph Viewport
As the name suggests, this
viewport manages editing the
node-based graph for SDF
Raymarched models and pushing
them through to the renderer to
compile and load on the actual
scene viewport (Vulkan
Window).

The structure that makes this
modelling system possible is
illustrated in Figure 4-3. It
basically uses a Node tree to
recursively traverse through, and
serialize the shader instructions
into a single, final, and valid
SPIRV-compatible GLSL shader
and then compile.

Each Node in the tree represents
a specific shader
instruction/function which can
take a course to connect to other
relevant intermediary nodes (i.e.,
3D Primitive Geometries and
Boolean Operations), specifying
the shader functions execution
control flow.

Once this execution control flow specified, it needs to be finalized by connecting to the final
output node which represents a map function in the shader, that its result is the SDF Model
based on the Primitive Geometries combined with the specified Boolean Operations.

The node editor library provides a data model class for any type of node data, which are used
here to represent the 3D Primitive Data Models and the Operation Data Models.

The Object-oriented architecture for this graph is naturally following the same pattern of the
library itself as it uses inheritance with abstract classes which at certain points serve as pure
interfaces that force the subclass to implement the function of their superclass owner.

Figure 4-3 – SDF Graph Basic Architecture

Chapter 4 - Implementation

11

The graph needs to push shader data to the scene once compile them through nodes. It is a
relatively complex and delicate data flow to achieve an efficient runtime shader load through
the Vulkan pipelines while being aware of running command buffers per frame.

This process is illustrated in Figure 4-4, which represents an asynchronous multithreaded data
flow while creating new pipelines and destroying the olds ones when the command buffers
finished using them.

4.1.4.2 Scene Viewport (Vulkan Window)
This viewport is the glue between the Main Window and the Renderer, which, as mentioned
briefly earlier, it pushes the rendered scenes and events through to the Main Window after
they’re processed.

As with the main Window, this Window also uses a signal-slot event system to handle widget-
based events and allow for interactivity through the session.

Figure 4-4 – SDF Graph Async Data Flow Model using Vulkan Pipelines

Chapter 4 - Implementation

12

4.1.5 Renderer
This is the core of the application, where the rendering engine operates. In an abstract view,
the Renderer consists of Resource Initializers and per-frame Command Buffers Generation &
Draw Calls. As shown in Figure 4-1, Resource Initializers handle the Pipeline and Swapchain
resources at the start of the application and before the frame loop, while Command Buffers &
Draw Calls manage the Render Pass and any Sub-Passes if available, after the resource
initialization and per frame.

4.1.5.1 Pipelines
The entire workflow of the Renderer as with any Vulkan implementation is through creation
and execution of the pipelines as it was briefly mentioned earlier. So, the core structure of the
application must be optimized to respond to this requirement as to manage multiple pipelines
efficiently and to allow for introducing new pipelines as and when needed.

Therefore, by introducing structured generic pipeline data containers that can be reused and
customized, the application’s complexity can be reduced to an abstracted reusable container
which holds data for each specific pipeline and with attributes that correspond to main
components of render-able 2D or 3D objects. These components form what most Game
Engines and DCC tools call a Material.

Figure 4-5 – Vulkan Pipeline Architecture

Chapter 4 - Implementation

13

Pipelines use these materials to carry over their required data throughout the entire lifecycle
of the Vulkan application and execute their command buffers and draw calls by these data
containers. As materials need to expose data instantly to the Vulkan functions, the best
approach is to make them as simple structs serving a similar purpose to PODs (though with
constructors that are explicitly required to create shaders and textures).

A Material struct has these main following properties:

- Shaders (Vertex, Fragment, Compute)
- Texture
- Descriptors
- Push Constants
- PSOs
- Shader Stage Infos
- Pipeline Layout
- Pipeline
- RenderPass

4.1.5.2 SPIR-V Compiler
This functionality uses GLSLang library to compile GLSL Vulkan compatible shaders into SPIR-V
bytecodes at runtime. As briefly stated earlier, it is required for the SDF Graph to Compile the
generated nodes into shader instructions. The workflow and architecture of this construct is
illustrated in Figure 4-6.

GLSLang basically uses the same API as the glslc compiler that is used for command line
compilation of shaders to SPIRV bytecodes.

Figure 4-6 – SPIRV Compiler Architecture

Chapter 4 - Implementation

14

4.2 Depth Buffer with SDF Raymarching
To sort the depth between the Raymarched objects and a rasterized mesh object, there must
be a mechanism to calculate the depth in one render pass through the model view and project
data of the vertex shader and send it over through as a texture sampler to the second pass’s
fragment shader, where the rasterization and SDF raymarching happen.

This mechanism, illustrated in Figure 4-7, through Vulkan takes a journey through two
pipelines. A rasterization Pipeline, known as Depth Only Pass and a SDF Raymarching Pipeline
which is basically a full colour pass.

The required data which needed to be initialized and prepared for running the pipelines are
first to acquire the Near and Far clipping planes from the projection matrix. And, second to
create an image view and a texture sampler to hold the depth data and its consumption.

Once the required resources initialized and the pipelines were created (in this case in parallel),
the Command Buffers take over and execute the pipeline. In the buffer generation step the
pipeline need to bind to rasterization pass via Uniform Buffer Objects (UBOs) and bind to
Raymarching pass Descriptor Sets, so that the data can be applied to the pass accordingly.

Figure 4-7 - Depth Texture Buffer Calculation and Multi-pass Transfer Model

Chapter 4 - Implementation

15

In the Draw Calls step the depth buffer Is calculated through the fragment shader’s zBuffer and
to apply it to the world space, it needs to be linearized by the near and far clipping planes
which were acquired by the perspective projection data earlier on. Then in the SDF
Raymarching Pass, the Combined Image Sampler or texture Sampler can be sent to the
fragment shader and from there on used with the texture coordinates to apply the depth per
each ray casting.

The entire process within Vulkan requires a quite in-depth understanding for when and where
the resources are needed to be created and consumed and understanding of the correct
creation of descriptor sets and layouts to lay out the structure of the buffers to be used later in
the draw calls.

This process has been implemented and available within the project. Although the depth
texture is available for consumption through the raymarching pass, the calculation of the ray
casting with the depth buffer has not been implemented at the time as the scope of the
project was becoming larger due to the extensive requirement of handling every little detail
manually, as was proposed at the beginning of this thesis. Therefore, a fine line was drawn to
limit the scope of the implementation to a minimum proof of concept.

Chapter 5 - Conclusion

16

Chapter 5 Conclusion
As a result of this project, a basic proof of concept is provided demonstrating how efficient SDF
raymarching can be in real-time using the right tools along with a modelling toolset that
enables the user to create multiple objects in the scene while potentially can interact with
different elements of the engine (Figure 5-1).

Also, it is worth noting that, regardless of complexities involved with Vulkan implementation
and the learning curve that it might require, the benefits of applying such implementation for
complex scenarios such as real-time Ray Tracing and Raymarching are evident outside the
current academic context, as the examples of which are provided in the Appendices in this
thesis.

It should be noted that despite the complexity of the topic and intricacies of efficiency and
performance for a real-time renderer that essentially contribute to what is known as a Game
Engine, the author was able to dive deep into the subject area and manage to achieve
interesting results, while some are outside the scope of this current project.

As a follow up for this project, there could be further improvements as suggested, in the
earlier chapters, in using storages buffer to allow for more efficient CPU to GPU
communication and implement more advanced optimization techniques for the SDF
raymarching algorithm.

This project can be considered as base for game engine development as it touches the
essential parts of a real-time rendering engine. Also, it is hoped that the project could be used
as a motivation to adopt the fundamentals of Vulkan or a similar graphics API in the academic
context’s teaching agenda and their syllabus, encouraging students for better understanding
of the graphics pipeline.

Figure 5-1 – SDFR Project Demo

17

Bibliography
Agocs, L., 2017. Vulkan Support in Qt 5.10 - Part 1.

Apple, 2021. Setting Up a Command Structure [Available from:
https://developer.apple.com/documentation/metal/setting_up_a_command_struc
ture [Accessed 22 August 2021].

Blanco, V., DiGioia, D., Giessen, C. and Miller, A., 2020. Vulkan Guide - Storage Buffers.

de Vries, J., OpenGL.

Glassner, A. S., 1984. Space subdivision for fast ray tracing. IEEE Computer Graphics and
applications, 4 (10), 15-24.

J'Lali, Y., 2020. DirectX 12: Performance Comparison Between Single- and Multithreaded
Rendering when Culling Multiple Lights
[http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20201]. Student thesis (Independent
thesis Basic level (degree of Bachelor)).

Khronos, 2016. Khronos Releases Vulkan 1.0 Specification [online]. Khronos Group.
Available from: https://www.khronos.org/news/press/khronos-releases-vulkan-1-
0-specification [Accessed 22 August 2021].

Lindborg, T., Gifford, P. and Fryazinov, O., 2017. Interactive parameterised heterogeneous
3D modelling with signed distance fields. ACM SIGGRAPH 2017 Posters, Los
Angeles, California. Association for Computing Machinery. Article 6. Available from:
https://doi.org/10.1145/3102163.3102246 [Accessed 22 August 2021]

MacDonald, J. D. and Booth, K. S., 1990. Heuristics for ray tracing using space subdivision.
The Visual Computer, 6 (3), 153-166.

Malyshau, D. and Ninomiya, K., 2021. WebGPU.

Microsoft, 2018a. StructuredBuffer.

Microsoft, 2018b. What is Direct3D 12?

NVIDIA, 2015. Understanding Structured Buffer Performance.

Overvoorde, A., 2020. Vulkan Tutorial [Available from: https://vulkan-tutorial.com/
[Accessed 22 Aug 2021].

Quilez, I., 2019. SDF Bounding Volumes.

Sanchez, M., Fryazinov, O., Fayolle, P. A. and Pasko, A., 2015. Convolution filtering of
continuous signed distance fields for polygonal meshes, Computer Graphics Forum
(Vol. 34, pp. 277-288): Wiley Online Library.

Schütz, M., Mandlburger, G., Otepka, J. and Wimmer, M., 2020. Progressive Real-Time
Rendering of One Billion Points Without Hierarchical Acceleration Structures.
Computer Graphics Forum, 39 (2), 51-64.

Sheng, G. and Nan, M., 2018. Performance, Methods, and Practices of DirectX* 11
Multithreaded Rendering.

18

Thrane, N. and Simonsen, L. O., 2005. A comparison of acceleration structures for GPU
assisted ray tracing.

Unity, 2021. ComputeBuffer.

Willems, S., Zhang, V. and Gil, M., 2021. Awesome Vulkan [online]. Available from:
https://github.com/vinjn/awesome-vulkan [Accessed 22 August 2021].

Wodniok, D. and Goesele, M., 2017. Construction of bounding volume hierarchies with SAH
cost approximation on temporary subtrees. Computers & Graphics, 62, 41-52.

Yazdanpanah, H., 2021. Real-time 4D Transformations for Games. University of
Bournemouth.

19

Appendices
Appendix A in-Game Graphics API Comparison with SDFR ... i
Appendix B List of SDF-based Implementations .. iii
Appendix C Non-exhaustive List of Vulkan-based Engines .. iv

i

Appendix A in-Game Graphics API Comparison
with SDFR

Appendix A.1 Direct3D 11 (Personal Inquiry)

Appendix A.2 OpenGL

OpenGL

ii

Appendix A.3 Direct3D 11

Appendix A.4 Direct3D 12

Direct3D 12

Direct3d 11

iii

Appendix A.5 Vulkan

Appendix B List of SDF-based Implementations

Name Type Year
Introduced/Published

Dreams Game/Game Creation System 2015-2020

4D Explorer Game (Platformer/Puzzle) 2020

MarbleMarcher Game (Fractal Racing) 2019

Claybook Game (Puzzle) 2017

Vulkan

iv

Appendix C Non-exhaustive List of Vulkan-based
Engines

Name Type Year Vulkan
Supported

Unreal Engine 4+ Game Engine February 2016

Unity Engine 5.6+ Game Engine

CryEngine Game Engine

Source 2 Game Engine

Valheim Game (Sandbox/Survival) February 2021

Star Citizen Game

Dota 2 Game

Ashes of the Singularity: Escalation Game (RTS) Next Version

Ballistic Overkill Game (FPS) May 2017

Doom Game (FPS) July 2016

Doom 3 Game (FPS) August 2017

F1 2017 Game (Racing) -

Mad Max Game (Action-Adventure) -

Quake Game (FPS) July 2016

Quake III Arena Game (FPS) May 2017

Counter-Strike: Global Offensive Game (FPS) Will transfer to
Vulkan (Source 2)

Rise of the Tomb Rider Game (Adventure) November 2017

Serious Sam VR: The Last Hope Game (FPS) 2017

The Talos Principle Game (Puzzle) -

Total Ware Saga: Thrones of Britannia Game (RTS) 2018

Warhammer 40,000: Dawn of War III Game (RTS) 2017

Wolfenstein II The New Colossus Game (Action) 2017

