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Abstract 
SDF raymarching algorithms have been typically slow for real-time use until today. And no 
matter how optimized and efficient they are, real-time and interactive usage of these 
algorithms, once the CPU-GPU communication occurs, can be quite resource-intensive and 
expensive, which may lead to low performance and stalling the application. 

This thesis describes a Vulkan-based implementation for SDF Raymarching in real-time aiming 
to provide a proof-of-concept, as a mean for creating efficient solutions that simplify runtime 
evaluation of complex data through the GPU with a low-overhead CPU to GPU abstraction. 
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Chapter 1 Introduction 

1.1 Background 
Following a previous project in the personal inquiry unit, the author implemented and 
demonstrated dynamic transformation of 3D objects to 4D and vice versa in real-time as a 
game mechanic feature, using SDF Raymarching, with HLSL compute shaders, in Unity Game 
Engine. 

The implementation, however, needed to address some more details to implement and future 
work which are as follows: 

- It lacked correct depth buffer calculation in the shaders so that it can project Mesh-
based rasterized models along with the SDF-based models (e.g., an interactive player 
character) in the same scene. 

- It lacked certain optimizations for the SDF raymarching algorithm (e.g., scalability) 
- CPU to GPU Performance overhead was automatically managed by the named Game 

Engine through Direct3D 11 API 
- There was no SDF modelling toolset, to simplify the usability of this feature for the 

game artists and developers. 

A screenshot of the implementation is illustrated at Appendix A1 with follow up improvements 
after the project delivery from Appendix A2 onwards demonstrating its performance 
comparisons in different Graphics APIs. 

1.2 Aims & Objectives 
The aim of this project is to provide a proof-of-concept solution addressing some of the above-
mentioned problems using the Vulkan graphics and compute API as an optimized ecosystem 
enabling and allowing for any further advanced optimization techniques.  

Therefore, it should be noted that the concentration of this project is to represent an optimum 
solution using Vulkan-based functionalities towards approaching such complex problems, 
rather than an algorithmically extensive approach towards SDF raymarching, though briefly 
discussed, in this thesis. 

The Vulkan-based implementation is written in C++ using SPIR-V shaders which some are pre-
compiled during cmake compilation with shell script instructions and some at runtime through 
GLSLang library to be consumed by the SDF Modelling Toolset. 
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Chapter 2 Previous Work 

2.1 SDF implementations 

2.1.1 Games 
SDF-based raymarching algorithms and SDF-based point/surface splatting have been used 
amongst a few games in real-time, from amateur to industry standard, which were also named 
in the previous project briefly (Yazdanpanah 2021) and can be found in Appendix B. Although, 
their use of these algorithms and their target audience is quite limited due to technical 
complexities, including the one this project attempts to propose a solution for. 

2.1.2 SDF Modelling Toolset 
One of the most missing features in SDF Raymarched implementation is, the ability to create 
SDF Models easily with no requirement to understand programming. Thus, to engage with the 
artists allowing them to create implicit surfaces and morphed objects in real-time specially for 
games. This is because these types of models do not depend on rasterizing vertices and can be 
adopted to respond to quite unique modelling requirements (Sanchez et al. 2015; Lindborg et 
al. 2017). 

Node-based procedural modelling has become quite popular technique for creating game 
assets, with efficient and quite fast results. Therefore, procedural SDF Raymarched Modelling 
can also provide new opportunities to create special geometries that would be, otherwise, 
quite difficult to create using the existing DCC and procedural modelling toolsets (Lindborg et 
al. 2017). 

2.2 Vulkan Implementations 
Vulkan API has been used across many real-time engines and games despite being a relatively 
new API since 2016 (Khronos 2016). A non-exhaustive list of these engines and games can be 
found in Appendix C. 

There are also some abstractions and libraries around Vulkan SDK such as the one that author 
has used for this implementation, through which they require less developer time and can 
allow for better understanding of the graphics pipeline while can be used to provide proof of 
concepts and minimum viable products much faster and build further. These implementations 
include but not limited to (Willems et al. 2021): 

- Qt Vulkan Renderer (Qt-based wrapper around Vulkan SDK) 
- vk-bootstrap (C++ utility library automating Vk instance, device & Swapchain creation) 
- Google’s Vulkan-cpp-library (C++ 11 Vulkan abstraction library) 
- V-EZ (light-weight middleware layer for Vulkan API) 
- AMD’s Anvil (cross-platform framework for Vulkan) 
- Intrinsic Engine (Vulkan based game engine) 
- Spectrum (framework and abstraction layer for Vulkan) 
- MoltenVK (MacOS/iOS compatible Vulkan Interop – Metal API interface) 
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Chapter 3 Technical Background 

3.1 OpenGL, Direct3D, Metal, Vulkan, etc. 
Starting with OpenGL as to provide reasonings for further discussions on why there are other 
Graphics APIs like Vulkan. OpenGL as a high-level abstraction graphics API continually being 
developed by Khronos Group and supported by most platforms.  

It is basically a large state machine that keeps track of application state, enabling its users to 
take advantage of availability of the software components across different contexts and 
platforms, while abstracting and hiding away the low-level architecture of the software by 
managing those resources on its own (de  Vries). 

These abstractions include memory management and host-device synchronization. Error 
handling, checking and validation is also embedded in OpenGL for both development and 
production environments. Shader compilation is also done at runtime. All these contribute to 
more performance overhead. 

Vulkan, on the other hand, is a low overhead graphics and computing API also by Khronos 
Group, with a much more optimized abstraction to access the GPUs. Therefore, it provides 
better performance for the user and less error prone and surprising driver behaviours 
comparing to other existing graphics APIs. The advantage of Vulkan not only stems from its 
efficiency and productive approach, but also it is fully cross-platform across major platforms 
(Overvoorde 2020). 

As opposed to Other APIs, such as OpenGL and Direct3D 11, Vulkan requires deeper 
understanding of the graphics pipeline, as the API demands for setting up every detail from 
scratch. Although, this verbose approach, may seem quite cumbersome at the beginning as it 
necessitate for significant amount of work and depth of knowledge, once the setup is made 
the graphics driver needs far less attention (Overvoorde 2020). 

Up until recently, Direct3D 11 and below, had similar approach to OpenGL with high level of 
abstractions and therefore less verbose, which may have contributed to many CPU-GPU 
related performance bottlenecks (Sheng and Nan 2018). 

Direct3D 12, however, introduced a lower level of abstraction with improved multithreaded 
scaling and utilizing far less CPU resources than its earlier versions. DX11 comparison with 
DX12 are mainly around the level of consumption for the resources between the CPU and the 
GPU (Sheng and Nan 2018; J'Lali 2020). 

Direct3D 12 follows a similar pattern to of Vulkan’s, where developers must maintain and 
control the resource management of the graphics application explicitly rather than offloading 
the burden onto the driver (Microsoft 2018b). 

Concepts like Descriptor Sets and Tables, Pipeline State Objects (PSOs), Batches of Commands 
and Draw Calls, are quite common with narrow borderline between Vulkan and Direct3D 12, 
which some of these will be discussed in a bit further detail in the next chapters. 
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Metal API from Apple, also aimed to produce low-overhead Graphics and Compute API, 
combing features from OpenGL and OpenCL to improve performance by low-level access to 
the GPU, initially targeting mobile platforms. 

This API is comparable to Vulkan and Direct3D 12, in the sense that it utilizes GPU low-level 
access to batch and encode commands before submitting to the GPU with asynchronous 
execution. This is quite comparable to Command Buffer Generation and Graphics Queues in 
Vulkan (Apple 2021). 

Most recently, another low-level graphics API has emerged currently known as WebGPU 
attempting to follow the same pattern to other low level graphics APIs, addressing similar 
problems, while being developed by the web community engineers (Malyshau and Ninomiya 
2021). 

These similarities are mainly because, all these APIs attempt to take the same approach in 
rendering and accessing data, to the graphics hardware and to how they are built and operate 
internally. GPUs essentially, are asynchronous compute units which can access and process a 
significant amount of data. Providing lower-level access to the hardware opens a new door for 
enhancement and optimization. 

3.2 Optimization Techniques 

3.2.1 GUI and Graphics API 
In optimising a Graphics application, several points need to be considered, which are mainly 
related to speed and memory usage, to have a performant and optimized implementation. 

At this point this is an abstract overview on how basic optimizations can be applied for 
complex graphics applications like this one which will be further discussed in more details. 

It is worth noting that by performance the author refers to efficiency of both memory usage 
and speed as a co-dependent and unified component rather than independent subjects. For 
example, if only the speed of a runtime process is optimized, that might not necessarily involve 
less memory usage but quite the opposite. Therefore, it would not be considered as an 
efficient optimization. 

3.2.1.1 GUI Overhead (Qt Interface) 
Naturally, using a Native API could be the most performant way to implement a GUI 
application. However, Qt as a wrapper around the native API has some features helping to 
lower the performance bottleneck: 

- Qt Signal-Slot fast mechanism (statically typed and MOC slot method calls) 
- Qt Multithreading (QtConcurrent & QFuture) - equivalent of C++ std::async & 

std::future 
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3.2.1.2 Graphics API Abstraction Overhead (Qt Vulkan Renderer) 
As stated earlier, Vulkan already contributes directly to the optimization of the rendering 
engine. But the question is whether the abstraction implemented around the API may involve 
any overhead that requires attention and further optimizations. 

As Qt framework supported Vulkan rendering since version 5.10 (Agocs 2017), the 
implementation is being further developed and optimized. However, the overhead of any 
wrapper around the Native Vulkan API weighs the same for the purpose of this project, unless 
the application requires quite explicit micro-optimization for certain scenarios in the future. 

For instance, Memory Allocation is managed via Qt Vulkan Device Functions which has no 
more visible overhead than if it was managed natively or through VMA, which is a Vulkan 
Memory Allocation Library, simplifying the creation and allocation of resources, while giving 
access to Vulkan functions. 

However, it is important to note that the resource management (i.e., objects creations and 
destruction) within the project’s implementation are carefully considered for efficient usage of 
Vulkan functions across the application lifecycle.  

Also, Shader Compilation/Loading, Pipeline Creation and Command Buffer Generations can be 
certainly optimized within the project scope using Multithreading, which will be discussed in 
the next chapter. 

3.2.2 Storage Buffers to send SDF data per bounded volume 
There is also a method through which the SDF related model data, such as position, scale, 
rotation, colour, shape type, the Boolean operation, etc., can be passed over through to the 
shaders (i.e., either Fragment or Compute Shaders) by what are known as Compute or 
Structured Buffers in Unity Engine (Unity 2021) or Direct3D (Microsoft 2018a) terms and in 
Vulkan as Storage Buffers (Blanco et al. 2020). 

Storage Buffers are generally used as GPU Data Buffers which are typically used with compute 
shaders, though can be utilized with fragment shaders too. They’re normally used to hold data 
for all the objects within a scene. And as they’re unsized arrays, it is important to explicitly 
ensure when and how many times they need to be sent over to the GPU to avoid any 
performance loss (NVIDIA 2015; Blanco et al. 2020). 

These essential model data or in other words object matrices can be uploaded at the 
beginning of the frame all at once and it is no longer needed to exchange data on every draw 
call (Blanco et al. 2020). Then on the GPU side they can be used to bind the raymarching 
algorithm with an acceleration structure algorithm such as BVH for an individual volume to 
cast rays for. Hence more efficient usage of GPU device by batching data in advance on the 
host (i.e., through the CPU), and finally sending a bundle over to the GPU to consume without 
major interruptions. 

This method was implemented during the personal inquiry unit with Unity Engine, C# and HLSL 
compute shaders. As the engine has all the required abstractions available for the developer at 
their disposal, it was a straightforward approach. 
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However, when it comes to Vulkan implementation with no boilerplate code to rely on, the 
requirements become much larger than the scope of the project and timeframe. Therefore, 
the author decided to keep focusing on the Vulkan basics implementations for the purpose of 
this thesis. 

3.2.3 SDF Raymarching 
Optimizing SDF Raymarching can be done in a few different ways from SIMD instructions with 
Structure of Arrays (SoA), creating Uniform Buffer Objects for transferring the volumetric data, 
to Acceleration Structures with space subdivision methods such as BSP, kD-Tree, Octree, etc. 
and object subdivision methods such as BVH, and finally pre-processing. 

Acceleration structures are algorithms aiding to determine, which object in the scene, a ray is 
more likely to intersect amongst other objects and therefore to ignore others. 

Due to the wide diversity of these techniques, in this project, the author attempts to apply a 
basic optimization for SDF raymarching and consider the possibilities while briefly describing 
them in the thesis. 

3.2.3.1 Space Subdivision Methods (e.g., BSP, kD-Tree, Octree, etc.) 
These methods typically subdivide the space with planes recursively with no reliance on the 
geometry through the space. As they don’t rely on the geometry, if the geometry should 
change (i.e., a dynamic geometry) they typically need to recreate the acceleration structure. 
Also, they could result in deeper recursive trees, making them inefficient in many cases 
(Glassner 1984; MacDonald and Booth 1990). 

3.2.3.2 Object Subdivision Methods (e.g., BVH) 
This method subdivides the geometry recursively into smaller pieces, until it wraps around 
each piece with a closely tight bounding volume. In evaluating SDF models this approach could 
result in a reduced complexity of the SDF evaluation, and therefore less expensive (Thrane and 
Simonsen 2005; Quilez 2019). 

The more complex the SDF data, the deeper the Bounding Volumes recursion needs to be. 
There are however some efficient BVH algorithms to use for such complex SDF data which can 
alleviate the complexity by automatic recursion for example (Wodniok and Goesele 2017; 
Quilez 2019). 

Both these classes of algorithms are efficient in mostly interactive rendering at their best and 
the main issue remains which is the real-time rendering (Schütz et al. 2020). So, why not look 
at this problem from a different angle, as quite often the real-time, refers to dynamic scene 
and geometry and therefore real-time interactions throughout, which requires more CPU 
usage and communication with the GPU. 
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Chapter 4 Implementation 

4.1 Application Architecture 
The architecture of the application is represented in Figure 4-1. It uses Vulkan as the graphics 
API, integrated with Qt as its main windowing system, and takes advantage of two more 
external libraries, as follows: 

- GLSLang, which is used for compiling GLSL shaders into SPIRV bytecodes for Vulkan 
- Node Editor, which is a node-based editor used for SDF Modelling (i.e., SDF Graph) 

Figure 4-1 – Application High Level Architecture 
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4.1.1 Overview 
The Qt Vulkan Implementation is basically an abstraction around the Vulkan API which exposes 
Vulkan instance and functions through the Qt interface, while taking care of the CPU-GPU 
(host-device) Synchronization, Swapchain creation and other major Vulkan functionalities. 
Although they’re abstracted away from the user of the library, they can still be overridden by 
custom implementations. 

The reason for choosing Qt as opposed to other GUI systems was that, firstly the Node Editor 
library adopted for this implementation depends on it extensively. And secondly, the focus of 
this project is not the fundamentals of entire Vulkan ecosystem and therefore many of the 
complexities within, can be hidden away to allow for implementation of a basic proof of 
concept using Vulkan with SDF Raymarching, with near efficient results. 

The application is split between a Windowing system and a Renderer. The Windowing system 
controls the Visual Scenes and the Widgets visible to the end user, while the Renderer 
integrates the Vulkan Rendering Pipelines to the Scenes, which both will be discussed further 
in this chapter. Figure 4-2 illustrates an abstract overview of the Input/Output control flow of 
the Windowing Systems and the Renderer. 

The Windowing System itself is split between Vulkan Window and Main Window, each having 
their own input event management mechanism depending on whether the input is from either 
the Node Editor (i.e., SDF Graph) or the actual Scene. The Vulkan window is injected into the 
Main Window to push the events and rendered scenes through from the Renderer to the final 
view. 

The Renderer inherits Vulkan functions to create and execute the pipelines and interact with 
the scenes, while integrating with Shader related functionality. It also integrates with the SDF 

Figure 4-2 – Abstract IO Control Flow 
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Graph that allows for compiling node-based shader graph into SPIR-V shaders at runtime, to 
be consumable for the renderer in the pipeline. 

4.1.2 Build and Configuration 
CMake build system was used to build the project with UNITY_BUILD activated in for faster 
builds.  

Shaders were split between statically loaded shaders which are compiled at compile-time and 
converted to SPIRV files using shell scripts to detect and concatenate if needed. Dynamically 
loaded shaders are the ones to be used by the SDF Graph and are in plain GLSL format. 
Although some are configured into separate shader files for each shader language so that they 
can be maintained easily for the user and then at runtime compile they’re concatenated and 
serialized correctly to form the final SPIRV format. 

4.1.3 Debugging 
As the application utilizes graphics implementation with shaders and GPU related 
functionality, not only there was a need for C++ debugging which the development editor 
could already provide, but a combination of other debugging applications was needed in 
different scenarios to debug per frame shader data and other graphics and rendering related 
functions. 

So, NSight from NVIDIA and RenderDoc an MIT Licensed Open-Source graphics debugger along 
with Vulkan Validation Layers were used providing very useful information in quite complex 
situations. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 - Implementation 

10 
 

4.1.4 Windowing System 

4.1.4.1 SDF Graph Viewport 
As the name suggests, this 
viewport manages editing the 
node-based graph for SDF 
Raymarched models and pushing 
them through to the renderer to 
compile and load on the actual 
scene viewport (Vulkan 
Window). 

The structure that makes this 
modelling system possible is 
illustrated in Figure 4-3. It 
basically uses a Node tree to 
recursively traverse through, and 
serialize the shader instructions 
into a single, final, and valid 
SPIRV-compatible GLSL shader 
and then compile. 

Each Node in the tree represents 
a specific shader 
instruction/function which can 
take a course to connect to other 
relevant intermediary nodes (i.e., 
3D Primitive Geometries and 
Boolean Operations), specifying 
the shader functions execution 
control flow. 

Once this execution control flow specified, it needs to be finalized by connecting to the final 
output node which represents a map function in the shader, that its result is the SDF Model 
based on the Primitive Geometries combined with the specified Boolean Operations. 

The node editor library provides a data model class for any type of node data, which are used 
here to represent the 3D Primitive Data Models and the Operation Data Models. 

The Object-oriented architecture for this graph is naturally following the same pattern of the 
library itself as it uses inheritance with abstract classes which at certain points serve as pure 
interfaces that force the subclass to implement the function of their superclass owner. 

 

Figure 4-3 – SDF Graph Basic Architecture 
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The graph needs to push shader data to the scene once compile them through nodes. It is a 
relatively complex and delicate data flow to achieve an efficient runtime shader load through 
the Vulkan pipelines while being aware of running command buffers per frame.  

This process is illustrated in Figure 4-4, which represents an asynchronous multithreaded data 
flow while creating new pipelines and destroying the olds ones when the command buffers 
finished using them. 

4.1.4.2 Scene Viewport (Vulkan Window) 
This viewport is the glue between the Main Window and the Renderer, which, as mentioned 
briefly earlier, it pushes the rendered scenes and events through to the Main Window after 
they’re processed. 

As with the main Window, this Window also uses a signal-slot event system to handle widget-
based events and allow for interactivity through the session. 

 

 

 

Figure 4-4 – SDF Graph Async Data Flow Model using Vulkan Pipelines 
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4.1.5 Renderer 
This is the core of the application, where the rendering engine operates. In an abstract view, 
the Renderer consists of Resource Initializers and per-frame Command Buffers Generation & 
Draw Calls. As shown in Figure 4-1, Resource Initializers handle the Pipeline and Swapchain 
resources at the start of the application and before the frame loop, while Command Buffers & 
Draw Calls manage the Render Pass and any Sub-Passes if available, after the resource 
initialization and per frame. 

4.1.5.1 Pipelines 
The entire workflow of the Renderer as with any Vulkan implementation is through creation 
and execution of the pipelines as it was briefly mentioned earlier. So, the core structure of the 
application must be optimized to respond to this requirement as to manage multiple pipelines 
efficiently and to allow for introducing new pipelines as and when needed. 

Therefore, by introducing structured generic pipeline data containers that can be reused and 
customized, the application’s complexity can be reduced to an abstracted reusable container 
which holds data for each specific pipeline and with attributes that correspond to main 
components of render-able 2D or 3D objects. These components form what most Game 
Engines and DCC tools call a Material. 

Figure 4-5 – Vulkan Pipeline Architecture 
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Pipelines use these materials to carry over their required data throughout the entire lifecycle 
of the Vulkan application and execute their command buffers and draw calls by these data 
containers. As materials need to expose data instantly to the Vulkan functions, the best 
approach is to make them as simple structs serving a similar purpose to PODs (though with 
constructors that are explicitly required to create shaders and textures). 

A Material struct has these main following properties: 

- Shaders (Vertex, Fragment, Compute) 
- Texture 
- Descriptors 
- Push Constants 
- PSOs 
- Shader Stage Infos 
- Pipeline Layout 
- Pipeline 
- RenderPass 

4.1.5.2 SPIR-V Compiler 
This functionality uses GLSLang library to compile GLSL Vulkan compatible shaders into SPIR-V 
bytecodes at runtime. As briefly stated earlier, it is required for the SDF Graph to Compile the 
generated nodes into shader instructions. The workflow and architecture of this construct is 
illustrated in Figure 4-6. 

GLSLang basically uses the same API as the glslc compiler that is used for command line 
compilation of shaders to SPIRV bytecodes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 – SPIRV Compiler Architecture 
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4.2 Depth Buffer with SDF Raymarching 
To sort the depth between the Raymarched objects and a rasterized mesh object, there must 
be a mechanism to calculate the depth in one render pass through the model view and project 
data of the vertex shader and send it over through as a texture sampler to the second pass’s 
fragment shader, where the rasterization and SDF raymarching happen. 

This mechanism, illustrated in Figure 4-7, through Vulkan takes a journey through two 
pipelines. A rasterization Pipeline, known as Depth Only Pass and a SDF Raymarching Pipeline 
which is basically a full colour pass.  

The required data which needed to be initialized and prepared for running the pipelines are 
first to acquire the Near and Far clipping planes from the projection matrix. And, second to 
create an image view and a texture sampler to hold the depth data and its consumption. 

Once the required resources initialized and the pipelines were created (in this case in parallel), 
the Command Buffers take over and execute the pipeline. In the buffer generation step the 
pipeline need to bind to rasterization pass via Uniform Buffer Objects (UBOs) and bind to 
Raymarching pass Descriptor Sets, so that the data can be applied to the pass accordingly.  

Figure 4-7 - Depth Texture Buffer Calculation and Multi-pass Transfer Model 
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In the Draw Calls step the depth buffer Is calculated through the fragment shader’s zBuffer and 
to apply it to the world space, it needs to be linearized by the near and far clipping planes 
which were acquired by the perspective projection data earlier on. Then in the SDF 
Raymarching Pass, the Combined Image Sampler or texture Sampler can be sent to the 
fragment shader and from there on used with the texture coordinates to apply the depth per 
each ray casting. 

The entire process within Vulkan requires a quite in-depth understanding for when and where 
the resources are needed to be created and consumed and understanding of the correct 
creation of descriptor sets and layouts to lay out the structure of the buffers to be used later in 
the draw calls.  

This process has been implemented and available within the project. Although the depth 
texture is available for consumption through the raymarching pass, the calculation of the ray 
casting with the depth buffer has not been implemented at the time as the scope of the 
project was becoming larger due to the extensive requirement of handling every little detail 
manually, as was proposed at the beginning of this thesis. Therefore, a fine line was drawn to 
limit the scope of the implementation to a minimum proof of concept. 
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Chapter 5 Conclusion 
As a result of this project, a basic proof of concept is provided demonstrating how efficient SDF 
raymarching can be in real-time using the right tools along with a modelling toolset that 
enables the user to create multiple objects in the scene while potentially can interact with 
different elements of the engine (Figure 5-1). 

Also, it is worth noting that, regardless of complexities involved with Vulkan implementation 
and the learning curve that it might require, the benefits of applying such implementation for 
complex scenarios such as real-time Ray Tracing and Raymarching are evident outside the 
current academic context, as the examples of which are provided in the Appendices in this 
thesis. 

It should be noted that despite the complexity of the topic and intricacies of efficiency and 
performance for a real-time renderer that essentially contribute to what is known as a Game 
Engine, the author was able to dive deep into the subject area and manage to achieve 
interesting results, while some are outside the scope of this current project. 

As a follow up for this project, there could be further improvements as suggested, in the 
earlier chapters, in using storages buffer to allow for more efficient CPU to GPU 
communication and implement more advanced optimization techniques for the SDF 
raymarching algorithm. 

This project can be considered as base for game engine development as it touches the 
essential parts of a real-time rendering engine. Also, it is hoped that the project could be used 
as a motivation to adopt the fundamentals of Vulkan or a similar graphics API in the academic 
context’s teaching agenda and their syllabus, encouraging students for better understanding 
of the graphics pipeline. 

Figure 5-1 – SDFR Project Demo 
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Appendix B List of SDF-based Implementations 

Name Type Year 
Introduced/Published 

Dreams Game/Game Creation System 2015-2020 

4D Explorer Game (Platformer/Puzzle) 2020 

MarbleMarcher Game (Fractal Racing) 2019 

Claybook Game (Puzzle) 2017 

 

 

 

 

 

 

 

Vulkan 
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Appendix C Non-exhaustive List of Vulkan-based 
Engines 

Name Type Year Vulkan 
Supported 

Unreal Engine 4+ Game Engine February 2016 

Unity Engine 5.6+ Game Engine  

CryEngine Game Engine  

Source 2 Game Engine  

Valheim Game (Sandbox/Survival) February 2021 

Star Citizen Game  

Dota 2 Game  

Ashes of the Singularity: Escalation Game (RTS) Next Version 

Ballistic Overkill Game (FPS) May 2017 

Doom Game (FPS) July 2016 

Doom 3 Game (FPS) August 2017 

F1 2017 Game (Racing) - 

Mad Max Game (Action-Adventure) - 

Quake Game (FPS) July 2016 

Quake III Arena Game (FPS) May 2017 

Counter-Strike: Global Offensive Game (FPS) Will transfer to 
Vulkan (Source 2) 

Rise of the Tomb Rider Game (Adventure) November 2017 

Serious Sam VR: The Last Hope Game (FPS) 2017 

The Talos Principle Game (Puzzle) - 

Total Ware Saga: Thrones of Britannia Game (RTS) 2018 

Warhammer 40,000: Dawn of War III Game (RTS) 2017 

Wolfenstein II The New Colossus Game (Action) 2017 

 


