
Report of Implementation on ODE-based C2
Continuous Surface Creation Technique

Junheng Fang
s5212191@bournemouth.ac.uk

Bournemouth University

ABSTRACT
Current storage methods of 3D models are mostly based on
saving the data of all vertices, which spend massive storage
space of hard drives. Besides, plenty of physics-based skin
deformation algorithms have been provided to improve the
realism of facial animation. Thus, the main purpose of this
report is to (1) using ordinary differential equation (ODE)-
based method to rebuild the 3D models, (2) blending the
surface creation technique with different interpolation meth-
ods to calculate the keyframe models in between, and then
compare the animations to demonstrate the feasibility to
apply it in surface deformation.

1 INTRODUCTION
Recently, the twomost significant and interlinked challenges,
which limit the development of game production, are geo-
metric modelling and computer animation. As the game
industry focuses more and more on scene realism and perfor-
mance, the game capacity has shown geometric multiplier
growth especially after the 3D model techniques have been
widely used. For instance, Super Mario Bros., released in
1985, spent only 64 KB to store the whole game. After over
10 years, Super Mario Bros. Deluxe, released in platform
GBC in 1999, took 342 KB, which is only approximately 6
times the size of the former game, remaining the 2D scene.
However, when it comes to the 21st century, as the 3D mod-
els are introduced into the game industry, the size of New
Super Mario Bros, released in platform NDS in 2006, came
to 10 MB, which is nearly 30 times compared with the 1999’s
one. Markedly, the size surged 250 times i.e. 2.5 GB in 2012
released New Super Mario Bros. U, with both the scene and
models using 3D techniques.
As is widely agreed, to achieve accurate and fine models

and natural animation, rich details are required for good real-
ism, which involves abundant design parameters, i.e. surface
vertices of polygon models.

Nevertheless, problems are deservedly brought out when
managing those massive data, causing a large increase of the
time used in shape manipulation, animation disposing and
rendering. Besides, transmitting is also an important issue of
online games. As the large data of geometric models or ren-
dered images transmitted among the game players over the
Internet, the transmission time is noticeably increased and

the real-time performance of game playing is reduced due to
the limitation of the communication technology. Apart from
the above problems, the size of the current games, with high
storage cost, has placed a great burden on the hard drives,
like video gameCall of Duty: InfiniteWarfare which uses
over 130 GB of storage to maintain its game, when the aver-
age capacity of the mainstream SSD is only 120 GB. Sufficient
example models with good realism and abundant details are
required by data-driven techniques based advanced games,
which spend heavy human involvement, high cost and cause
inefficient game production.
As for animation, if it follows the underlying physics of

object movements and deformations, the requirement of
high computational resources and much computational time,
which would directly affect the performance of real-time
games, is inevitable. These are all challenges for techniques
related to real-time animation, including modelling and skin
deformation.

The widely used surface creation approaches are polygon,
patch modellings like subdivision and NURBS. The poly-
gon technique manipulates surface vertices of simple geo-
metric primitives to generate complex models. The patch
technique divides the complicated models into plenty of
simple patches and after processing them separately, com-
bines them together to fulfil the model. The subdivision
technique separates the polygonal faces into smaller pieces
by approximating or interpolating schemes to build a denser
mesh of the model. However, these techniques require fur-
ther improvements, for example how to reduce tedious and
time-consuming manual operations when stitching sepa-
rated patches together as well as considering continuity be-
tween adjacent ones, how to manipulate the global shape
of complicated patches, and how to apply physics of object
deformations in the rebuilt model.

Both the academia and industry practices in the animation
field regard skin deformation techniques as the standardized
approaches when forming real-time animation. Among all
the different skin deformation methods, the major charac-
teristics have not been changed, realism and efficiency. To
achieve realism, more and more details are required to be
stored, i.e. sufficient vertices, which causes plenty of redun-
dancy that is not used often in computation. Physics-based
techniques can not avoid numerical computation, which

costs high sources of CPU, and reduces efficiency. Therefore,
how to solve the above challenges has become an urgent
problem in developing advanced game techniques.

2 LITERATURE REVIEW
For commercial available graphics package, the widely recog-
nized method to build models is polygon modelling and skin
surface creation, which could exhibit details and branches,
as well as assign UV texture coordinates (Russo 2006). Nev-
ertheless, it is difficult to create curved surfaces. Instead, ap-
proximate curved surfaces are used to visualize them, which
reduces the precision. Though polygon modelling is more
easily to generate hard edges, NURBS modelling could cre-
ate curved objects with smoother surfaces and more readily
edit the patches with fewer control curves (Piegl and Tiller
2012). This advantage makes it welcome in building real-
istic models. However, stitching adjacent patches requires
tedious manual operations to tackle the continuity problem.
Another method to build models is subdivision modelling. It
first creates a rough polygonal model, and then uses approx-
imating or interpolation to subdivide each face into smaller
ones to finally get a denser mesh. It could easily create com-
plicated geometry with more efficiently rendering, whilst
the insufficient underlying parametrization makes it hard
to elaborate the accuracy. Besides, Várady et al. (2012) have
declared a method based on in-curved network for further
shape controls, which is particularly used to revise the inside
of transfinite patches.

For generating more realistic models, physics-based mod-
elling is provided with the physical laws underlying its sur-
face deformation. Nealen et al. (2005) have made a review
of multifarious physics-based modelling methods, including
finite difference method, mass-spring system and reduced
deformable models using modal analysis etc.
ODEs, as an important branch of modern mathematics

and an effective tool for people to solve various practical
problems, have been generally used to represent the under-
lying physics in the computer graphics field. Take free-fall
motion of a bouncing ball as an instance, Newton’s second
law 𝐹 = 𝑑𝑃/𝑑𝑡 = 𝑑 (𝑚𝑣)/𝑑𝑡 = 𝑚𝑑𝑣/𝑑𝑡 = 𝑚𝑎 actually uses
the differential of velocity 𝑣 with respect to time 𝑡 to denote
acceleration 𝑎, and then times mass𝑚 to describe force 𝐹 .
Its introduction could generate physically realistic facades
as well as deformations of 3D models. According to the re-
search from NCCA, ODE-based sweeping surfaces (You et al.
2007), ODE-based surface deformations(You et al. 2010) and
ODE-based sweeping blending (Chaudhry et al. 2013) have
already been developed. ODE-based methods provide users
with a higher-level control to manipulate the surfaces via
parameters and boundary condition, whilst the traditional
surface modelling approaches use a vast number of control
points. This achieves an easy implementation of interactive

modelling package, whereas it is not easy to get the solu-
tion of the corresponding ODE efficiently, forming the most
significant issue of these approaches.
Chaudhry et al. (2010) have made a review of significant

skin deformation techniques. Surface-based techniques are
widely used in computer animation field as they are much
simpler with still achieving reasonable skin deformation,
including purely geometric techniques, which ignore the
underlying physics but only manipulate vertices to change
the shape, and physics-based techniques, which have more
natural performance but heavy computational expenses.

The simplest method of geometric deformation is the lin-
ear interpolation, which is always used to emphasis the bet-
ter results of other methods. However, due to its bad per-
formance, it is barely used in pipelines. Among the other
geometric techniques, free form deformation (FFDs), provide
by Sederberg and Parry (1986), is popular due to its simplic-
ity and modelling speed, and then was developed into the
Lattice and Wrap deformers in Maya. Other methods like
joint-related approaches , where the skin is treated as using
an explicit function of the skeleton to move the shell, skele-
ton subspace deformation (Magnenat-Thalmann et al. 1988),
which introduces vertex weights for smooth transformation
of bones, and example-based techniques, which use existing
poses as the base to interpolate the keyframes (Allen et al.
2002).
The physics-based deformation techniques are based on

the anatomy and biomechanics of skin deformation deriving
from the action of muscles. It uses the mass-spring system,
finite element method (FEM) and finite volume method to de-
termine contractile muscle forces andmuscle geometry trans-
formation. Simulation of elastics, elastoplastic fracturing
materials, skeleton-driven deformation and physics-based
rigging will prefer to use FEM (Debunne et al. 2001), while
the mass-spring system is more used for interactive anima-
tion of deformable models (Platt and Badler 1981). The finite
volume method is more used to simulate the deformable
movement of skeletal muscles. These methods are all based
on partial differential equation (PDE), though they approxi-
mate PDEs by different equations. Bian et al. (2019) have also
provided another PDE-based skin deformation model, which
reduces the numerical calculations and creates physically
realistic skin deformations with high efficiency by including
vertex identification on iso-parametric curves, Fourier series
conversion and the analytic solution to a formulated model
with underlying physics.

3 ALGORITHM THEORY
Bian et al. (2020) have claimed an ODE-based C2 contin-
uous surface creation technique to use the solution to a
vector-valued ordinary differential equation with boundary
constraints to generate a surface. As shown in Figure 1, it

uses only 6 curves to control the shape of surface patches:
two boundary curves, representing the position of the patch,
and four control curves, describing the tangent and curva-
ture of each vertex on the boundary curves to calculate the
iso-parametric lines.

Figure 1: Algorithm Overview

This technique is used as the basic algorithm of this re-
port, which will be discussed further in the following. It
contributes mainly to four aspects: (1) Avoiding the manual
operation when stitching the adjacent patches together, but
achieves the continuities when they are generated. (2) Signif-
icantly reducing the data size of 3D models. (3) Much easier
to control the global shape of each patch compared with
the polygon method. (4) Based on physics, as differential
equations characterizing natural physical process are used
to control the representing curves of each patch.
This section will explain the mathematical model of sur-

face reconstruction, how to get the closed-form complemen-
tation solution and how to achieve continuities between
adjacent patches respectively to be used for rebuilding mod-
els.

Mathematical Model
The vector-valued mathematical equation 𝑋 = 𝑆 (𝑢, 𝑣) could
represent any 3D parametric surface, where 𝑢 and 𝑣 , as coor-
dinates parametric variables, are defined in the interval [0,
1], 𝑋 is a vector-valued position function with three com-
ponents in each direction 𝑥 , 𝑦 and 𝑧. When 𝑣 is fixed as the
constant 𝑣𝑖 , the equation could be written as 𝑐𝑖 = 𝑆 (𝑢, 𝑣𝑖) ,
with 𝑢 controlling one single curve of the surface. Thus, a
set of parametric curves 𝑐0, 𝑐1, 𝑐2, . . . , with 𝑣𝑖 changing from
0 to 1 continuously, form the surface 𝑋 = 𝑆 (𝑢, 𝑣). That is to
say, the modelling of any 3D parametric surface could be
separated into a set of parametric curves to deal.

As mentioned above, the continuity problem is significant
when creating contiguous patches. Hence, to make two adja-
cent surface patches achieve the C2 continuities, the same
position function, and first and second partial differential
with respect to 𝑢 at their borders, i.e. 𝑢 = 0 and 𝑢 = 1, must
be shared. If 𝑐 𝑗 (𝑣) (𝑗 = 1, 2, 3, 4, 5, 6) represents the six func-
tion at the joints, the boundary constraints satisfied by a C2

continuous surface patch could be defined as

𝑢 = 0 𝑆 (0, 𝑣) = 𝑐1 (𝑣)
𝜕𝑆 (0, 𝑣)

𝜕𝑢
= 𝑐2 (𝑣)

𝜕2𝑆 (0, 𝑣)
𝜕𝑢2 = 𝑐3 (𝑣)

𝑢 = 1 𝑆 (0, 𝑣) = 𝑐4 (𝑣)
𝜕𝑆 (0, 𝑣)

𝜕𝑢
= 𝑐5 (𝑣)

𝜕2𝑆 (0, 𝑣)
𝜕𝑢2 = 𝑐6 (𝑣)

(1)
where 𝑐1 (𝑣) and 𝑐4 (𝑣) stand for position function, and 𝑐2 (𝑣),
𝑐5 (𝑣) and 𝑐3 (𝑣), 𝑐6 (𝑣) stand for the first and second partial
differential at the boundaries respectively. Thus, determining
the mathematical equation of these curves which satisfies
Equation (1) at boundaries becomes the aim of surface mod-
elling.

For the parametric curves, NURBS is used due to its smooth-
ness and convenience. Since ODEs are usually applied to
represent the underlying physics of curve-like objects defor-
mation like beams and members, the realism of the model
appearance could be improved with ODEs introduced. Be-
sides, it is known that to meet the constraints of two position
functions, the accurate solution of second order ODEs has
two unknown constants, whilst that of fourth order ODEs
has four unknown constants to meet the extra two first par-
tial differentials. Fairly, the solution of sixth order ODEs
owes six unknown constants as described by Equation (1).
Thus, the vector-valued six order ODE is introduced as

𝜌𝑑6𝑆 (𝑢, 𝑣𝑖)
𝑑𝑢6 + 𝜂𝑑4𝑆 (𝑢, 𝑣𝑖)

𝑑𝑢4 + 𝜆𝑑2𝑆 (𝑢, 𝑣𝑖)
𝑑𝑢2 = 𝐹 (𝑢) (2)

where 𝜌 , 𝜂 and 𝜆 denote shape control parameters, and 𝐹 (𝑢)
stands for the virtual sculping force function also with three
components in three directions 𝐹𝑥 (𝑢), 𝐹𝑦 (𝑢), 𝐹𝑧 (𝑢).
The task of generating the curves is then to compute the

solution to Equation (2) meeting boundary constraints Equa-
tion (1). A particular solution and a complementary solution
of the associated homogeneous equation of Equation (2) form
the complete solution, whilst only the former is addressed
in Bian’s work.
First, to create the boundary constraints, the key is to

generate two boundary curves 𝑐1 (𝑣) and 𝑐4 (𝑣) at 𝑢 = 0 and
𝑢 = 1, as well as the other four control curves at 𝑢2 (0 <

𝑢2 < 𝑢3), at 𝑢3 (𝑢2 < 𝑢3 < 𝑢4), at 𝑢5 (𝑢4 < 𝑢5 < 𝑢6), where 𝑢4
and 𝑢4 are two different values, and 𝑢6 at 𝑢6 (𝑢5 < 𝑢6 < 1).
Geometric transformations including translation, scaling and
rotation could be applied in boundary curves to generate the
control curves.

The next step is to compute the first differential at points
𝑐1 (𝑣𝑖) and for each point on the boundary curve 𝑐1 (𝑣) at
position 𝑣𝑖 by the following forward difference formula

𝑐2 (𝑣𝑖) =
𝑐2 (𝑣𝑖) − 𝑐1 (𝑣𝑖)

𝑢2

𝑐 ′2 (𝑣𝑖) =
𝑐3 (𝑣𝑖) − 𝑐2 (𝑣𝑖)

𝑢3 − 𝑢2

And also, the second differential at the point 𝑐1 (𝑣𝑖),

𝑐3 (𝑣𝑖) =
𝑐 ′2 (𝑣𝑖) − 𝑐2 (𝑣𝑖)

𝑢2

=

𝑐3 (𝑣𝑖)−𝑐2 (𝑣𝑖)
𝑢3−𝑢2

− 𝑐2 (𝑣𝑖)−𝑐1 (𝑣𝑖)
𝑢2

𝑢2

=
𝑢2𝑐3 (𝑣𝑖) − 𝑢3𝑐2 (𝑣𝑖) + (𝑢3 − 𝑢2)𝑐1 (𝑣𝑖)

𝑢22 (𝑢3 − 𝑢2)
Then the same method could be used to get the first dif-

ferential at points 𝑐4 (𝑣𝑖) and 𝑐6 (𝑣𝑖) as well as the second
differential at point 𝑐4 (𝑣𝑖),

𝑐5 (𝑣𝑖) =
𝑐4 (𝑣𝑖) − 𝑐6 (𝑣𝑖)

1 − 𝑢6

𝑐 ′6 (𝑣𝑖) =
𝑐6 (𝑣𝑖) − 𝑐5 (𝑣𝑖)

𝑢6 − 𝑢5

𝑐6 (𝑣𝑖) =
𝑐5 (𝑣𝑖) − 𝑐 ′6 (𝑣𝑖)

1 − 𝑢6

=

𝑐4 (𝑣𝑖)−𝑐6 (𝑣𝑖)
1−𝑢6

− 𝑐6 (𝑣𝑖)−𝑐5 (𝑣𝑖)
𝑢6−𝑢5

1 − 𝑢6

=
(𝑢6 − 𝑢5)𝑐4 (𝑣𝑖) + (1 − 𝑢6)𝑐5 (𝑣𝑖) − (1 − 𝑢6)𝑐6 (𝑣𝑖)

(1 − 𝑢6)2 (𝑢6 − 𝑢5)
As 𝑣𝑖 monotonously changes in the interval [0, 1], the

tangents and curvature of the boundary are continuous func-
tions of the parametric variable 𝑣 . Hence, 𝑐2 (𝑣), 𝑐3 (𝑣), 𝑐5 (𝑣)
and 𝑐6 (𝑣) could be written as

𝑐2 (𝑣) =
𝑐2 (𝑣𝑖) − 𝑐1 (𝑣𝑖)

𝑢2

𝑐3 (𝑣) =
𝑢2𝑐3 (𝑣𝑖) − 𝑢3𝑐2 (𝑣𝑖) + (𝑢3 − 𝑢2)𝑐1 (𝑣𝑖)

𝑢22 (𝑢3 − 𝑢2)

𝑐5 (𝑣) =
𝑐4 (𝑣𝑖) − 𝑐6 (𝑣𝑖)

1 − 𝑢6

𝑐6 (𝑣) =
(𝑢6 − 𝑢5)𝑐4 (𝑣𝑖) + (1 − 𝑢6)𝑐5 (𝑣𝑖) − (1 − 𝑢6)𝑐6 (𝑣𝑖)

(1 − 𝑢6)2 (𝑢6 − 𝑢5)
With the above representations, surface with constraints

Equation (1) could be generated.

Closed Form Complementary Solution
The shape control parameters of Equation (2), 𝜌 , 𝜂, 𝜆 and
the differentials of Equation (1) are used to manipulate the
surface generated by the complementary solution of Equa-
tion (2). The particular solution allows further deformation
control since it involves a sculpting force 𝐹 (𝑢). However,
it is not addressed in this report due to the time limitation.
Therefore, Equation (2) could be rewritten as

𝜌𝑑6𝑆 (𝑢, 𝑣𝑖)
𝑑𝑢6 + 𝜂𝑑4𝑆 (𝑢, 𝑣𝑖)

𝑑𝑢4 + 𝜆𝑑2𝑆 (𝑢, 𝑣𝑖)
𝑑𝑢2 = 0 (3)

Introducing 𝑆 (𝑢, 𝑣𝑖) = 𝑑2𝑆 (𝑢, 𝑣𝑖)/𝑑𝑢2 into Equation (3),
the sixth order ODE equation changes into a fourth one,

𝜌𝑑4𝑆 (𝑢, 𝑣𝑖)
𝑑𝑢4 + 𝜂𝑑2𝑆 (𝑢, 𝑣𝑖)

𝑑𝑢2 + 𝜆𝑆 (𝑢, 𝑣𝑖) = 0 (4)

Then considering 𝑆𝜙 (𝑢, 𝑣𝑖) = 𝑒𝑟𝑢 (𝜙 = 𝑥,𝑦, 𝑧), Equation (4)
could be transformed into an algebra equation,

𝜌𝑟 4 + 𝜂𝑟 2 + 𝜆 = 0 (5)

Substituting 𝑞 with 𝑟 2, Equation(5) could be rewritten as
a quadratic equation,

𝜌𝑞2 + 𝜂𝑞 + 𝜆 = 0

whose roots are (without considering the condition 1 −
4𝜌𝜆/𝜂2 < 0)

𝑞1,2 =
−𝜂 (1 ±

√
1 − 4𝜌𝜆

𝜂2)
2𝜌

Introducing 𝜉1,2 =

√
𝜂 (1 ±

√
1 − 4𝜌𝜆/𝜂2)/(2𝜌) into equa-

tion 𝑞 = 𝑟 2, the four roots of the quartic Equation (5) are
gained,

𝑟1,2 = ±𝑖𝜉1 𝑟3,4 = ±𝑖𝜉2

Thus, the complementary solution to Equation (4) could
be written as

𝑆 (𝑢, 𝑣𝑖) = 𝑏1𝑐𝑜𝑠𝜉1𝑢 + 𝑏2𝑠𝑖𝑛𝜉1𝑢 + 𝑏3𝑐𝑜𝑠𝜉2𝑢 + 𝑏4𝑠𝑖𝑛𝜉2𝑢 (6)

where 𝑏𝑘 (𝑘 = 1, 2, 3, 4) stands for vector-valued unknown
constants.
The following solution to the sixth ordered ODE Equa-

tion (3) could be obtained by inserting Equation (6) into the
second ordered ODE Equation 𝑆 (𝑢, 𝑣 (𝑖)) = 𝑑2𝑆 (𝑢, 𝑣𝑖)/𝑑𝑢2,

𝑆 (𝑢, 𝑣𝑖) =𝑏1𝑐𝑜𝑠𝜉1𝑢 + 𝑏2𝑠𝑖𝑛𝜉1𝑢 + 𝑏3𝑐𝑜𝑠𝜉2𝑢

+ 𝑏4𝑠𝑖𝑛𝜉2𝑢 + 𝑏5𝑢 + 𝑏6
(7)

where 𝑏𝑘 (𝑘 = 1, 2, ..., 6) stands for different constants.
Substituting Equation (7) into Equation (1) and putting the

results back into Equation (7), a function of a 3D parametric
surface with boundary constraints are achieved,

𝑆 (𝑢, 𝑣) =𝑔1 (𝑢)𝑐1 (𝑣) + 𝑔2 (𝑢)𝑐2 (𝑣) + 𝑔3 (𝑢)𝑐3 (𝑣)
+ 𝑔4 (𝑢)𝑐4 (𝑣) + 𝑔5 (𝑢)𝑐5 (𝑣) + 𝑔6 (𝑢)𝑐6 (𝑣)

(8)

where

𝑔1 (𝑢) = − 𝑑1𝑐𝑜𝑠𝜉1 − 𝑑4𝑠𝑖𝑛𝜉1𝑢 + 𝑑1 (𝑒11 + 1)𝑐𝑜𝑠𝜉2𝑢

+ 𝑒9𝑠𝑖𝑛𝜉2𝑢 − (𝜉2𝑒9 − 𝜉1𝑑4)𝑢 − (𝑒11𝑑1 − 1)
𝑔2 (𝑢) = − (𝑑1 + 𝑑2)𝑐𝑜𝑠𝜉1𝑢 − (𝑑3 + 𝑑4)𝑠𝑖𝑛𝜉1𝑢

+ (𝑒9 + 𝑒10)𝑠𝑖𝑛𝜉2𝑢 − 𝑒11 (𝑑1 + 𝑑2)
− [𝜉2 (𝑒9 + 𝑒10) − 𝜉1 (𝑑3 + 𝑑4) − 1]𝑢

𝑔3 (𝑢) = − 𝑑5𝑐𝑜𝑠𝜉1𝑢 − 𝑑7𝑠𝑖𝑛𝜉1𝑢 + 𝑑10𝑐𝑜𝑠𝜉2𝑢

+ (𝑒5𝑒9 + 𝑒6𝑒10 + 𝑒12/𝜉2)𝑠𝑖𝑛𝜉2𝑢

− [𝜉2 (𝑒5𝑒9 + 𝑒6𝑒10) − 𝜉1𝑑7 + 𝑒12]𝑢
− (𝑒11𝑑5 − 1/𝜉2

2)
𝑔4 (𝑢) =𝑑1𝑐𝑜𝑠𝜉1𝑢 + 𝑑4𝑠𝑖𝑛𝜉1𝑢 − 𝑑1 (𝑒11 + 1)𝑐𝑜𝑠𝜉2𝑢

− 𝑐9𝑠𝑖𝑛𝜉2𝑢 + (𝜉2𝑒9 − 𝜉1𝑑4)𝑢 + 𝑒11𝑑1

𝑔5 (𝑢) =𝑑2𝑐𝑜𝑠𝜉1𝑢 + 𝑑3𝑠𝑖𝑛𝜉1𝑢 − 𝑑2 (𝑒11 + 1)𝑐𝑜𝑠𝜉2𝑢

− 𝑒10𝑠𝑖𝑛𝜉2𝑢 + (𝜉2𝑒10 − 𝜉1𝑑3)𝑢 + 𝑒11𝑑2

𝑔6 (𝑢) = − 𝑑6𝑐𝑜𝑠𝜉1𝑢 − 𝑑8𝑠𝑖𝑛𝜉1𝑢 + 𝑑6 (𝑒11 + 1)𝑐𝑜𝑠𝜉2𝑢

+ (𝑒7𝑒9 + 𝑒8𝑒10 − 𝑒13/𝜉2)𝑠𝑖𝑛𝜉2𝑢

− [𝜉2 (𝑒7𝑒9 + 𝑒8𝑒10) − 𝜉1𝑑8 − 𝑒13]𝑢 − 𝑒11𝑑6

(9)

𝑑1 =𝑒1/(𝑒1𝑒3 − 𝑒2𝑒4)
𝑑2 = − 𝑒2/(𝑒1𝑒3 − 𝑒2𝑒4)
𝑑3 =𝑒3/(𝑒1𝑒3 − 𝑒2𝑒4)
𝑑4 = − 𝑒4/(𝑒1𝑒3 − 𝑒2𝑒4)
𝑑5 =𝑑1𝑒5 + 𝑑2𝑒6

𝑑6 =𝑑1𝑒7 + 𝑑2𝑒8

𝑑7 =𝑑4𝑒5 + 𝑑3𝑒6

𝑑8 =𝑑4𝑒7 + 𝑑3𝑒8

𝑑9 =(𝑒11 + 1) (𝑑1 + 𝑑2)
𝑑10 = − 1/𝜉2

2 + (𝑒11 + 1)𝑑5

(10)

and

𝑒1 =𝜉1 (𝑐𝑜𝑠𝜉1 − 1) + 𝜉1
2𝑠𝑖𝑛𝜉1 (1 − 𝑐𝑜𝑠𝜉2)/(𝜉2𝑠𝑖𝑛𝜉2)

𝑒2 =𝑠𝑖𝑛𝜉1 − 𝜉1 + 𝜉1
2𝑠𝑖𝑛𝜉1 (1/𝑠𝑖𝑛𝜉2 − 1/𝜉2)/𝜉2

𝑒3 =𝑐𝑜𝑠𝜉1 − 1 + 𝜉1
2 (1 − 𝑐𝑜𝑠𝜉2)/𝜉2

2

+ 𝜉1
2 (𝑐𝑜𝑠𝜉2 − 𝑐𝑜𝑠𝜉1) (1/𝜉2 − 1)/𝑠𝑖𝑛𝜉2)/𝜉2

𝑒4 =𝜉1 (−𝑠𝑖𝑛𝜉1 + 𝜉1𝑠𝑖𝑛𝜉2/𝜉2)
+ 𝜉1

2 (𝑐𝑜𝑠𝜉2 − 𝑐𝑜𝑠𝜉1) (𝑐𝑜𝑠𝜉2 − 1)/(𝜉2𝑠𝑖𝑛𝜉2)
𝑒5 =(1/𝜉2 − 𝑐𝑜𝑠𝜉2/𝑠𝑖𝑛𝜉2)/𝜉2

𝑒6 =(𝑠𝑖𝑛𝜉2 + 𝑐𝑜𝑠2𝜉2/𝑠𝑖𝑛𝜉2 − 𝑐𝑜𝑠𝜉2/𝑠𝑖𝑛𝜉2)/𝜉2

𝑒7 =(1/𝑠𝑖𝑛𝜉2 − 1/𝜉2)/𝜉2

𝑒8 =(1 − 𝑐𝑜𝑠𝜉2)/(𝜉2 − 𝑠𝑖𝑛𝜉2)
𝑒9 =𝜉1

2 [𝑑4𝑠𝑖𝑛𝜉1 − 𝑑1 (𝑐𝑜𝑠𝜉2 − 𝑐𝑜𝑠𝜉1)]/(𝜉2
2𝑠𝑖𝑛𝜉2)

𝑒10 =𝜉1
2 [𝑑3𝑠𝑖𝑛𝜉1 − 𝑑2 (𝑐𝑜𝑠𝜉2 − 𝑐𝑜𝑠𝜉1)]/(𝜉2

2𝑠𝑖𝑛𝜉2)
𝑒11 =𝜉1

2/𝜉2
2 − 1

𝑒12 =𝑐𝑜𝑠𝜉2/(𝜉2𝑠𝑖𝑛𝜉2)
𝑒13 =1/(𝜉2𝑠𝑖𝑛𝜉2)

(11)

Continuity At The Joint Between Adjacent Patches
To make the appearance of the 3D model smooth, the con-
tinuities in both 𝑢 and 𝑣 parametric directions have to be
maintained where the adjacent patches are connected. This
part will explain how the continuities are achieved through
this algorithm.

Continuity in parametric direction u. First assume two neigh-
bour patches 𝑆 (𝑢, 𝑣) and 𝑆 (𝑢, 𝑣), which are all defined by
Equation (1) and Equation (2), with different shape control
parameters 𝜌, 𝜂, 𝜆 and 𝜌, 𝜂, 𝜆 respectively. The surface patch
𝑆 (𝑢, 𝑣) could be generated by these six curves:

𝑆 (0, 𝑣) = 𝑐4 (𝑣)
𝜕𝑆 (0, 𝑣)

𝜕𝑢
= 𝑐5 (𝑣)

𝜕2𝑆 (0, 𝑣)
𝜕𝑢2 = 𝑐6 (𝑣)

𝑆 (1, 𝑣) = 𝑐4 (𝑣)
𝜕𝑆 (1, 𝑣)

𝜕𝑢
= 𝑐5 (𝑣)

𝜕2𝑆 (1, 𝑣)
𝜕𝑢2 = 𝑐6 (𝑣)

(12)

As mentioned above, the two patches must share the same
boundary curve as well as the first and second differential
for fulfilling the continuities at the joint, i.e. satisfying the
constraints 𝑆 (1, 𝑣) = 𝑆 (0, 𝑣), 𝜕𝑆 (1, 𝑣)/𝜕𝑢 = 𝜕𝑆 (0, 𝑣)/𝜕𝑢 and
𝜕2𝑆 (1, 𝑣)/𝜕𝑢2 = 𝜕2𝑆 (0, 𝑣)/𝜕𝑢2.

Continuity in parametric direction v. Like creating surfaces
in 𝑢 direction according to Equation (8), the similar method
could be used when considering the continuity in direction
𝑣 . The first and second partial differential of 𝑆 (𝑢, 𝑣) with

respect to the parametric variable 𝑣 could be unified as

𝑆 (𝑖) (𝑢, 𝑣) =𝑔1 (𝑢)𝑐 (𝑖)1 (𝑣) + 𝑔2 (𝑢)𝑐 (𝑖)2 (𝑣)

+ 𝑔3 (𝑢)𝑐 (𝑖)3 (𝑣) + 𝑔4 (𝑢)𝑐 (𝑖)4 (𝑣)

+ 𝑔5 (𝑢)𝑐 (𝑖)5 (𝑣) + 𝑔6 (𝑢)𝑐 (𝑖)6 (𝑣)

(13)

where 𝑖 = 0, 1, 2 stands for the surface, its first and second
partial differential in direction 𝑣 respectively.
Thus, to achieve continuities, the condition 𝑆 (𝑖) (𝑢, 1) =

𝑆 (𝑖) (𝑢, 0) (𝑖 = 0, 1, 2) must be satisfied, which leads to satisfy-
ing 𝑔 (𝑖)

𝑘
(𝑢) = 𝑔

(𝑖)
𝑘

(𝑢) (𝑖 = 0, 1, 2;𝑘 = 1, 2, ..., 6) and 𝑐 (𝑖)
𝑘

(1) =
𝑐
(𝑖)
𝑘

(0).
To guarantee 𝑔 (𝑖)

𝑘
(𝑢) = 𝑔

(𝑖)
𝑘

(𝑢) (𝑖 = 0, 1, 2;𝑘 = 1, 2, ..., 6),
according to Equation (9), 𝑑𝑙 = 𝑑𝑙 (𝑙 = 1, 2, ..., 10) could be
achieved, and then it is satisfied when 𝑒𝑝 = 𝑒𝑝 (𝑝 = 1, 2, ..., 13)
depending on Equation (10).
Finally, from Equation (11), the task has changed into

ensuring 𝜉𝑛 = 𝜉𝑛 (𝑛 = 1, 2, 3, 4). In another word, when 𝜉𝑛 =

𝜉𝑛 (𝑛 = 1, 2, 3, 4) and 𝑐 (𝑖)
𝑘

(1) = 𝑐
(𝑖)
𝑘

(0), the two patches 𝑆 (𝑢, 𝑣)
and 𝑆 (𝑢, 𝑣) also satisfy the continuity with respect to the
parametric variable 𝑣 .

Patch Separation
After elaborating how to generate signal surfaces as well as
how to achieve the C2 continuities among different patches
to make the whole model smooth, it could not be ignored
how to create complex objects with the above approach.
There are two different ways to be addressed to use. The

first is to decompose the objects into small parts. It is conve-
nient for creating objects whose each surface patch shares
the same boundary curves and same control curves with its
neighbour at the edges. As shown in Figure 2, the dog is de-
composed into parts including rear legs, front legs, tail, torso,
neck and head, with some parts further divided into patches.
Every two adjacent patches share the same boundary and
control curves at the joint.

Figure 2: Model Patches Separation

The second way is more used for detailed models like hu-
man face: separating the patches according to the sketched

curves which define 4-sided and 3-sided patches. This ap-
proach will be explicated in the Implementation part.

Interpolation
Two disparate approaches are used in this project for inter-
polation, as comparison. One is linear interpolation, which
is purely geometric without considering underlying physics.
The other is a method stemmed from Newton’s second law,
written as

𝑚𝑎 = 𝑓 (14)

where𝑚 stands for mass, 𝑎 denotes the acceleration which
has three components 𝑎 (𝑖) (𝑖 = 1, 2, 3) with 𝑎1 = 𝑎𝑥 , 𝑎2 = 𝑎𝑦
and 𝑎3 = 𝑎𝑧 , and 𝑓 stands for the external force also with
three components in each direction 𝑓 (𝑖) (𝑖 = 1, 2, 3).
The acceleration 𝑎 is related to the position change 𝑥 as

𝑎 =
𝑑2𝑥

𝑑𝑡2 (15)

where the position change 𝑥 has three components 𝑥 (𝑖) (𝑖 =
1, 2, 3) with 𝑥 (1) = 𝑥 , 𝑥 (2) = 𝑦, and 𝑥 (3) = 𝑧.

Substituting Equation (15) into Equation (14), the follow-
ing formula could be obtained in the form of components,

𝑚
𝑑2𝑥 (𝑖)

𝑑𝑡2 = 𝑓 (𝑖) (𝑖 = 1, 2, 3) (16)

The next step is to compute the interpolation values as the
model varies from the first model to the second one with time
𝑡 changing. Assume the first model is defined by the polygon
vertices 𝑥𝑛 (𝑛 = 1, 2, 3, ..., 𝑁), and the second one is defined
by ¯̄𝑥𝑛 (𝑛 = 1, 2, 3, ..., 𝑁). It is easy to get that, the position
change 𝑥 at the 𝑡 = 0 is zero, i.e. 𝑥𝑛 = 0(𝑛 = 1, 2, 3, ..., 𝑁) and
is 𝑥𝑛 = ¯̄𝑥𝑛 − 𝑥𝑛 at 𝑡 = 1.

If we assume that the rate of the position change at 𝑡 = 0
is zero, i.e. 𝑑𝑥𝑛/𝑑𝑡 = 0, the boundary conditions could be
gained

𝑡 = 0 𝑥𝑛 = 0
𝑑𝑥𝑛

𝑑𝑡
= 0

𝑡 = 1 𝑥𝑛 = ¯̄𝑥𝑛 − 𝑥𝑛

(𝑛 = 1, 2, 3, ..., 𝑁)

(17)

In the form of components, Equation (17) could change
into

𝑡 = 0 𝑥𝑛
(𝑖) = 0

𝑑𝑥𝑛
(𝑖)

𝑑𝑡
= 0

𝑡 = 1 𝑥𝑛
(𝑖) = ¯̄𝑥𝑛 (𝑖) − 𝑥

(𝑖)
𝑛

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)

(18)

Replacing 𝑥 (𝑖) with 𝑥𝑛
(𝑖) in Equation (16), we can get

𝑚
𝑑2𝑥𝑛

(𝑖)

𝑑𝑡2 = 𝑓𝑛
(𝑖)

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)
(19)

Dividing both sides of Equation (19) by𝑚, we obtain

𝑑2𝑥𝑛
(𝑖)

𝑑𝑡2 =
𝑓𝑛

(𝑖)

𝑚

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)
(20)

Integrating Equation (20) with respect to time 𝑡 twice, we
can gain

𝑥𝑛
(𝑖) =

𝑓𝑛
(𝑖)𝑡2

2𝑚
+ 𝑐0𝑡 + 𝑐1

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)
(21)

where 𝑐0 and 𝑐1 are unknown constants.
Then introducing Euqation (21) into Equation (18), and

solving for the two unknown constants 𝑐0 and 𝑐1 as well as
the external force 𝑓𝑛 (𝑖) , we have

𝑐0 = 𝑐1 = 0

𝑓
(𝑖)
𝑛 = 2𝑚[¯̄𝑥𝑛 (𝑖) − 𝑥

(𝑖)
𝑛]

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)
(22)

Substituting Equation (22) into Equation (21), we reach
the following position change formula

𝑥𝑛
(𝑖) = [¯̄𝑥𝑛 (𝑖) − 𝑥

(𝑖)
𝑛]𝑡2

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)
(23)

Finally, by adding 𝑥𝑛 (𝑖) to the position values 𝑥 (𝑖)
𝑛 of each

point of the first model, we could get the interpolated posi-
tion values 𝑥 (𝑖)

𝑛 at any poses between the first and second
model as,

𝑥
(𝑖)
𝑛 = 𝑥

(𝑖)
𝑛 + [¯̄𝑥𝑛 (𝑖) − 𝑥

(𝑖)
𝑛]𝑡2

(𝑖 = 1, 2, 3; 𝑛 = 1, 2, 3, ..., 𝑁)
(24)

With time 𝑡 changes in the interval [0,1], we obtain a set
of different position values of the model, and then they are
used to form a deformation animation.

4 IMPLEMENTATION
Compared with other motion animation, face deformation is
more crucial since it requires higher precision to be regarded
as realistic. Thus, in order to demonstrate the result of the
implementation, two face models in the same topological
structure with different expressions are chosen as Figure
3. I first use the ODE-based approach to recreate the two
different models and then use linear interpolation to calcu-
late the keyframes in between. Finally, form an animation
between the two different reconstructed expression models
to demonstrate the algorithm implementation as well as how
it could be applied in face deforming animation.

(a)laugh (b)reference

Figure 3: Original Models

Patch Separation
The first step of dealing the model is separating the face
into small 4-sided or 3-sided patches according to the theory
part. In fact, it is the most time-consuming step in the whole
project since I have to manually record the coordinates of
every point on the sketched curves to extract the wireframe
of the face model. Besides, I have met problems like surface
distortion, details missing and soon on, which are shown in
Figure 4.

(c)distortion (d)details missing

Figure 4: Mistakes When Rebuilding Models

However, after becoming more and more familiar with the
face topological structure, I finally extracted a set of sketched
curves which are relatively good as shown in Figure 5.

Paul et al. (2002) have provided the Facial Action Coding
System (FACS) to use corresponding parameters to control
disparate face shapes. Hamm et al. (2011) claimed that, the
facial appearance could be used to encode the action of each
facial muscles with marginally imperative changes. Further-
more, any anatomically possible facial expression could be
encoded by FACS through deconstructing it into temporal
segments and action units (Freitas-Magalhães 2013), which
could be used for further interpolation to adapt to any intel-
ligent environment.

Figure 5: Sketched Curves

Therefore, based on this system, I separate the face model
into seven different patches in Figure 6: eye socket, eye bone,
nose bridge, nostril, cheek, mouth and outer face frame.

Figure 6: Patche Separation

Surface Recreation
After adding the relative control curves for each boundary
curve to calculate the tangent and curvature of points on it,
each surface is computed according to Bian’s C2 continuity
ODE-based method as Figure 7.

Figure 7: Wireframe

Figure 8 and 9 are the comparison between the original
model and the recreated model of laugh pose and reference
pose respectively.

Figure 8: Comparison of Laugh Model

Figure 9: Comparison of Ref Model

It has to be noticed that, the width of the nose bridge has
some difference. That is caused by the asymmetric face of
the laugh model as the left face in Figure 8 whose axle wire
is not unified in the direction 𝑥 . My implementation is just
to demonstrate the feasibility of the ODE-based algorithm
and it takes double work to recreate the other sides without
making too much sense. Therefore, I only recreate the left-
side face with the axle wire unified to a proper value in the
𝑦-𝑧 coordinate plane and mirror it to the other side. Since the
two models share the same topology, the reference model is
changed relatively. Moreover, if more specific details require
to be added, like the nasolabial folds, further subdivision on
the cheek patch could achieve that, though I did not finish
that due to the time limitation.

Anyway, as is easy to see that, the faces on the right hand
do not lose too many details compared with the left-hand
ones, whilst the former only use six curves to generate each
patch. Furthermore, the original model takes 15378 polygons
to store whilst the recreated model has only 4236 polygons,
which is only 28% of the original one. That is to say, the ODE-
based recreated model compresses 72% of the data size. Thus,

compared with the polygonmodelling method, this approach
could greatly save the data storage space with remaining the
quality of the original model. This approach also provides a
convenient way to quickly manipulate the face shapes and
expressions through modifying the boundary curves and
control curves.

In addition, by observing the generatedmodels, the surface
remains smooth since this technique achieves up to curvature
continuities naturally. There is no extra manual operation
to stitch different patches, which saves massive work.

Face Deforming Animation
To better demonstrate the advantage of this algorithm in fur-
ther face deforming operation, I use the linear interpolation
and Newton second law-based interpolation to generate the
30 keyframe models in between. The course is to calculate
the six curves of each patch for keyframes. Then the com-
puted boundary curves and control curves of each frame are
used to recreate the interpolated models with the same sur-
face recreation algorithm. After getting all the frames, I put
them into Houdini to generate simple animations. Finally,
the two animations with different interpolation methods
are compared to show the advantage of the physics-based
approach.
Figure 10 and 11 are the keyframe models of linear and

Newton second law-based interpolation results respectively.

Figure 10: Linear Interpolation Keyframes

As could be seen, the face deformation is natural and
smooth, which indicates that with the same topology, the
ODE-based recreated models could adapt the deformation
operations. Moreover, compared between the two figures, the

Figure 11: Physics-based Interpolation Keyframes

change of expression of Figure 11 starts later than Figure 10,
with a smoother change, and the amplitude of the variation is
also smaller. That is to say, the physics-based approach could
better describe the natural variation of the facial expressions.

5 CONCLUSION
In this master project, I implement the algorithm, which
is based on the mathematical model using C2 continuous
boundary constraints and a vector-valued sixth order ODE, to
recreate the surfaces of two face models in the same topology
with different expressions. The smooth appearance demon-
strates that, when the adjacent patches satisfy sharing the
same constraints of the position, and the first and second
differentials, the boundary continuities could be achieved. Be-
sides, this method is fairly convenient to control the shapes
of each patch by only manipulating six key curves, rather
than modifying all vertices through polygon modelling, so
that the work of stitching patches could be left. Most signifi-
cantly, this method greatly saves the storage space without
losing the quality of the original model. Furthermore, I blend
it with skin deformation techniques to form facial variation
animations. From the comparison between two animations,
it is easy to figure out that physics-based techniques could
create more natural and smooth interpolation keyframes.
However, there could be some developments like how to

reduce the work in extracting the wireframes, which spent
the most time of this master project, whether I could finish
this procedure procedurally, and how to blend the surface
creation approach with more advanced skin deformation
methods like Bian et al. (2019)’s PDE-based algorithm. I wish
I could make more progress in my further study.

Anyway, I am grateful for this period of study since it let
me have a better understanding of face modelling techniques,
face deformation techniques andODEs as well as its powerful
function in 3D model sculpting.

REFERENCES
[1] Allen B., Curless B. and Popović Z., 2002. Articulated body deformation

from range scan data. ACM Transactions on Graphics (TOG), 21(3),
612–619.

[2] Bian S., Deng Z., Chaudhry E., You L., Yang X., Guo L., Ugail H., Jin X.,
Xiao Z. and Zhang J. J., 2019. Efficient and realistic character animation
through analytical physics-based skin deformation. Graphical Models,
104, 101035.

[3] Bian S., Maguire G., Kokke W., You L. and Zhang J. J., 2020. Efficient c2
continuous surface creation technique based on ordinary differential
equation. Symmetry, 12(1), 38.

[4] Chaudhry E., You L. and Zhang J. J., 2010. Character skin deforma-
tion: A survey. In 2010 Seventh International Conference on Computer
Graphics, Imaging and Visualization. IEEE, 41–48.

[5] Chaudhry E., You L., Jin X., Yang X. and Zhang J. J., 2013. Shape
modeling for animated characters using ordinary differential equations.
Computers & graphics, 37(6), 638–644.

[6] Debunne G., Desbrun M., Cani M.-P. and Barr A. H., 2001. Dynamic
real-time deformations using space & time adaptive sampling. In
Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, 31–36.

[7] Freitas-Magalhães A., 2013. The face of lies. Leya.
[8] Hamm J., Kohler C. G., Gur R. C. and Verma R., 2011. Automated facial

action coding system for dynamic analysis of facial expressions in

neuropsychiatric disorders. Journal of neuroscience methods, 200(2),
237–256.

[9] Magnenat-Thalmann N., Laperrire R. and Thalmann D., 1988. Joint-
dependent local deformations for hand animation and object grasping.
In In Proceedings on Graphics interface’88. Citeseer.

[10] Nealen A., Müller M., Keiser R., Boxerman E. and Carlson M., 2005.
Physically based deformable models in computer graphics. In EURO-
GRAPHICS 2005 STAR–STATE OF THE ART REPORT. Citeseer.

[11] Paul E., Joseph C H. and Wallace V F., 2002. Facial action coding system.
Salt Lake City : A Human Face.

[12] Piegl L. and Tiller W., 2012. The NURBS book. Springer Science &
Business Media.

[13] Platt S. M. and Badler N. I., 1981. Animating facial expressions. In
Proceedings of the 8th annual conference on Computer graphics and
interactive techniques, 245–252.

[14] Russo M., 2006. Polygonal modeling: basic and advanced techniques.
Jones & Bartlett Learning.

[15] Sederberg T. W. and Parry S. R., 1986. Free-form deformation of solid
geometric models. In Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, 151–160.

[16] Várady T., Salvi P. and Rockwood A., 2012. Transfinite surface inter-
polation with interior control. Graphical models, 74(6), 311–320.

[17] You L., Yang X., You X. Y., Jin X. and Zhang J. J., 2010. Shape manipu-
lation using physically based wire deformations. Computer Animation
and Virtual Worlds, 21(3-4), 297–309.

[18] You L., Yang X., Pachulski M. and Zhang J. J., 2007. Boundary con-
strained swept surfaces for modelling and animation. In Computer
Graphics Forum, volume 26. Wiley Online Library, 313–322.

	Abstract
	1 Introduction
	2 Literature Review
	3 Algorithm Theory
	Mathematical Model
	Closed Form Complementary Solution
	Continuity At The Joint Between Adjacent Patches
	Patch Separation
	Interpolation

	4 Implementation
	Patch Separation
	Surface Recreation
	Face Deforming Animation

	5 Conclusion
	References

