
Material Point Method Solver in Houdini

Masters Project

Han Dance
MSc Computer Animation and Visual Effects

August 2020

1

Contents

1 Introduction 3

2 Previous Work 4

3 Technical Background 6

4 Implementation 12

5 Conclusion 20

6 Bibliography 23

A Graphs 25

B Code 26

C Simulation Images 28

2

1 Introduction

The research undertaken, as well as implementation of the Material Point Method (MPM)
in Houdini, will be discussed within this thesis. MPM has gained traction in recent years
due to the ability to simulate varied types of materials, as well as the ability to handle
topological changes with ease compared to other methods. A vast amount of research in
the area since its first implementation in 2013 has been undertaken, to both increase its
efficiency and simulate new objects. Houdini has no native MPM system, although SideFX
have created ones internally, proving the challenge is possible. Each of the ten MPM steps
have been implemented in Houdini using a combination of VEX and gas microsolvers.

This masters project has three goals. The main goal is to create a MPM solver within
Houdini from scratch, providing a simple basis that can be easily: accessed, understood and
built upon. The secondary goals are, firstly to use this MPM solver to simulate snow, and
secondly make a tool where a customisable snow scene can be set up and simulated. The
final outcome of the project is mostly successful. The basis for a MPM solver is fully tested,
works well and is simple to understand. Furthermore, the tool is easy to follow giving the
user basic controls to adjust the simulation. However, the forces and parameters used to
create realistic snow behaviours need to be researched in more depth, as the behaviour is
not completely similar to that of snow. Unfortunately, this could not be finalised within the
time frame of the project.

3

2 Previous Work

Sulsky et al. [1995] introduced MPM as an extension to FLIP for solid mechanics problems
that require compressibility. Similar to FLIP [Zhu and Bridson (2005)], it is a hybrid particle
and grid method that combines Lagrangian material points (particles) and a background
Eulerian grid. The general idea for MPM is to transfer particle data to the background grid,
equations of motion are then solved on the grid, data is transferred back to particles and
the particle positions are updated. MPM has many advantages over non-hybrid methods.
Firstly, the grid based integration is independent from the number of particles. Changes
in topology are easy as there is a lack of mesh connectivity between material points, and
therefore there is no problem of tangled meshes and remeshing (a typical problem in FEM).
Consequently, a broader array of materials can be simulated than a purely Lagrangian
method. Furthermore, MPM has automatic splitting and merging behaviours because of
the particle based material representation [Jiang et al. (2016)] as well as the automatic self
collision and contact. Additionally, external forces can be easily applied.

MPM was first applied to Computer Graphics by Stomakhin et al. [2013] where snow is sim-
ulated and solved using a ten step process. It was chosen and implemented for its usefulness
in simulating multiphase materials and ability to handle plasticity and fracture. The overall
ten step implementation from this paper has been followed to create the custom solver from
scratch in Houdini. Since the introduction of MPM to the graphics community, there has
been a large amount of research within the area. Stomakhin et al. [2014] looked further
at phase changing materials with the addition of heat in the context of MPM to simulate
melting. Ram et al. [2015] add a volume-preserving Oldroyd-B rate-based description of
plasticity for plastic flow of viscoelastic fluids. Klár et al. [2016] produce sand animations
using MPM due to its natural treatment of contact, whilst Wretborn et al. [2017] extend
to animating cracks, also due to the treatment of collisions. Qi et al. [2018] extend to cloth
simulations with frictional contact. A method for simulating realistic bread and other baked
foods has recently been developed accounting for the intricacies of cooking and baking [Ding
et al. (2019)]. Most recently MPM has been used to simulate anisotropic elastoplastic ma-
terial behaviours such as the dissolution of fibrous phenomena for example shedding bales
of hay [Schreck and Wojtan (2020)].

Houdini currently has no native MPM system, the current way to create snow is using
Grains, which apply Position Based Dynamics (PBD). Although this method is simple it
does not describe the details of snow completely accurately. Houdini does however have a
FLIP solver for fluid objects. The background grid is represented by fields, a box with a
position, size, and orientation, subdivided into a 3D grid of voxels, with a value stored in
each voxel [SideFX (2019b)]. The FLIP solver is very complex and mostly consists of gas
microsolvers, which perform various specific mathematical tasks to fields, wiring these solvers
together can produce complex results [Claes (2009)]. Currently Houdini has approximately
one hundred microsolvers, some of which are digital assets made up of other microsolvers.

4

A selection of microsolvers useful in the context of FLIP / MPM and their purpose include:

• Gas Field to Particle - Samples the values of a field to a geometry point attribute
using trilinear interpolation.

• Gas Field Wrangle - Runs a snippet of VEX on every voxel on the input volume. This
is a very powerful tool and a whole MPM system could be made entirely of wrangle
nodes.

• Gas Linear Combination - Combines multiple fields together with a choice of operation.

• Gas Match Field - Rebuilds a field to match the size and reference of a different field.

• Gas Particle to Field - Stamps a value of point attribute from geometry to a field using
the Elendt kernel.

• Gas Resize Field - Changes the size of fields, can be based on reference geometry.

• Gas Synchronize Field - Matches the centers and sizes of the target fields to the
reference field.

At the root of the FLIP solver is a Multiple Solver node, which causes a simulation object
to be solved by more than one solver at each time step, each solver attached to this node is
applied in order to the simulation object [SideFX (2019a)]. This allows the gas microsolver
nodes and others to be merged and input into the Multiple Solver, therefore creating a
custom solver. The custom MPM solver was created in a similar fashion to the Houdini
FLIP solver, due to the similarities and solid performance of the FLIP solver. A large
portion of the research in Houdini involved diving in to the FLIP solver to understand the
intricacies of how it works, and how the user can control different aspects of it. A simplified
FLIP solver was created from scratch using gas microsolvers and the Multiple Solver node
to put this understanding into practice.

5

3 Technical Background

To fully understand the implementation of the created MPM solver within Houdini, a de-
tailed description of the proposed ten step Material Point Method and accompanying math-
ematical theory is presented in this section. As stated MPM is a hybrid method that utilises
both Lagrangian particles (which in this case represents the snow) and a Eulerian grid (for
various calculations). Figure 1 shows an overview of the Material Point Method, where the
top row represents steps applied to particles and the bottom row steps applied to the grid.
The background grid is fixed during each time step and once the calculations are applied
to the particles the grid is reset, this means the grid does not have to be static and can be
displaced to follow the particles.

Figure 1: Overview of the Material Point Method (from Stomakhin et al. 2013)

The first step is to transfer the velocity and mass of the particles to the background grid.
This is implemented with the two equations

mn
i =

∑
p

mpw
n
i p (1)

vni =
∑
p

vnpmpw
n
i p

mn
i

(2)

where mn
i is the mass of grid node i at time n, vni is the velocity of grid node i at time

n, vnp is the velocity of the particle at time n, mp the mass of the particle and wni p is the
weighting function between particle p and grid node i at time n, calculated as the product
of one dimensional cubic B-splines such that

6

wni p = N(
1

h
(xp − i))N(

1

h
(yp − j))N(

1

h
(zp − k)) (3)

where i = (i,j,k) is the grid node position, xp is the particle position, h is the spacing between
grid nodes and

N(x) =

1
2 |x|

3 − x2 + 2
3 , for 0 ≤ |x| < 1

−1
6 |x|

3 + x2 − 2 |x|+ 4
3 , for 1 ≤ |x| < 2

0, otherwise.
(4)

This results in grid nodes only being influenced by particles that are within 2h distance in
the x, y and z directions. Figure 16 shows the graphical representation of N(x).

The gradient of the weighting function is used within later steps and is defined as:

∇wni p =

(1
h)N ′(1

h(xp − i))N(1
h(yp − j))N(1

h(zp − k))
N(1

h(xp − i))(1
h)N ′(1

h(yp − j))N(1
h(zp − k))

N(1
h(xp − i))N(1

h(yp − j))(1
h)N ′(1

h(zp − k))

 (5)

where

N ′(x) =

|x|
x

3
2x

2 − 2x, for 0 ≤ |x| < 1

− |x|x
1
2x

2 + 2x− 2 |x|x , for 1 ≤ |x| < 2

0, otherwise.
(6)

Figure 17 shows the graphical representation of N ′(x).

The second step calculates the initial volume of each particle, which will be used within a
later force calculation. Therefore, it is only executed at the first time step. The density of
each grid cell is estimated as mi

h3
and can be weighed back to the particle density as

ρp =
∑
i

m0
iw

0
i p

h3
. (7)

Therefore a particles volume can be calculated using the equation:

Vp =
mp

ρp
. (8)

The upcoming step involves the deformation gradient F , the fundamental measure of defor-
mation in continuum mechanics. It is the second order tensor which maps line elements in

7

the reference configuration into line elements (consisting of the same material particles) in
the current configuration [Kelly (2012)]. Each particle has a deformation gradient attribute
F , that is initialised as I the identity matrix at the beginning of the simulation, as this notes
lack of deformation and rotations. It is customary to separate F into an elastic part Fe and
plastic part Fp such that F = FeFp. Where elastic deformation is reversible and plastic is
permanent.

The thresholds to start plastic deformation are θc and θs, the critical compression and
the critical stretch. Initially all changes are assumed to belong to the elastic part of the
deformation gradient such that F = Fe. The singular value decomposition of F is then
calculated such that

F̂ = U Σ̂V T (9)

where Σ̂ is a diagonal matrix containing singular values. These singular values are then
clamped to a permitted range

Σ = clamp(Σ̂, 1− θc, 1 + θs) (10)

Fe and Fp are then calculated with the following formula

Fe = UΣV T and Fp = V ΣUTF. (11)

The third step computes the forces at the grid nodes which is evaluated using the following
formula.

fi(x̂) = −
∑
p

V n
p σp∇wni p (12)

where V n
p is the volume of the material occupied by particle p at time n and σp is the Cauchy

stress. V n
p = Jnp V

0
p where Jnp = Determinant(Fnp).

Cauchy stress σ is derived in the accompanying technical portion of the paper as

σ =
2µ

J
(Fe −Re)F Te +

2

λ
(Je − 1)JeI (13)

where J and Je are the determinants of F and Fe respectively. The deformation gradient
F can be written as F = RS where R is the rotation matrix and S is the symmetric
matrix describing the deformations, sources of stress [McGinty (2012)], these matrices are
calculated through polar decomposition. Therefore Re is the rotation matrix relating to the

8

elastic part of the deformation gradient. The Lamé parameters µ and λ are functions of the
plastic deformation gradient and calculated such that

µ(Fp) = µ0e
ξ(1−Jp) and λ(Fp) = λ0e

ξ(1−Jp) (14)

where ξ is the hardening coefficient. The initial The Lamé coefficients µ0 and λ0 are calcu-
lated with the following equation.

µ0 =
E0v

(1 + v)(1− 2v)
and λ0 =

E0

2(1 + v)
(15)

where E0 is the initial Young’s modulus and v Poisson’s ratio.

Step four updates the grid velocities using the equation

v∗i = vni +
∆tfni
mi

(16)

to include gravity in the simulation, the force equation (12) is updated to

fi(x̂) = −
∑
p

V n
p σp∇wni p + gmi (17)

which cancels out the mass division from (16).

The collisions are processed twice per time step. The first is on the grid velocity v∗i and is
updated as follows. First the relative velocity between the grid node and the collision object
is calculated:

vrel = v∗i − vco. (18)

The dot product between this and the normal of the collision object is taken.

vn = n · vrel (19)

If vn is positive it means the grid node and objects are moving away from each other and
the calculation can be terminated, if vn is negative then the calculation continues. The
tangential portion of the relative velocity is then calculated as

vt = vrel − nvn. (20)

Let µ be the friction coefficient. A sticking impulse is required if (‖vt‖ < −µvn) therefore
the relative velocity v′rel = 0. Else

v′rel = vt + µvn
vt
‖vt‖

. (21)

9

The final step then transforms this collision back from the relative space to real world
coordinates as such

v∗i = v′rel + vco. (22)

Step six solves the linear system explicitly such that

vn+1
i = v∗i . (23)

The deformation gradient at each particle is then updated with the following formulae

Fn+1 = (I + ∆t∇vn+1
p)Fn, (24)

∇vn+1
p =

∑
i

vn+1
i (∇wni p)T . (25)

This will be used to calculate Fe and Fp in the next time step as described above.

Velocities are then transferred back to particles using the equation

vn+1
p = (1− α)vn+1

PICp + αvn+1
FLIP p. (26)

A combination of FLIP update, where particle velocity is incremented by the delta in grid
velocity, and PIC where the particles are updated with the new grid velocity, is implemented.
The FLIP approach is better at maintaining individual particle velocities but can become
chaotic. α is the ratio of FLIP in the blend, an α of 0.95 is a common value. The FLIP and
PIC updates are calculated using the following equations

vn+1
PICp =

∑
i

vn+1
i wni p, (27)

vn+1
FLIP p = vnp +

∑
i

(vn+1
i − vni)wni p. (28)

Collisions are then processed a second time to account for any minor discrepancies. The
exact same process is used as grid collisions except collisions are particle based meaning the
update is applied to vn+1

p as opposed to the v∗i .

Finally the particle positions are updated in a standard manner.

xn+1
p = xnp + ∆tvn+1

p (29)

10

To summarise the main steps for the MPM solver are as follows:

1. Transfer particle data to the background grid.

2. Calculate initial particle volumes (first timestep only).

3. Compute forces on the background grid.

4. Update grid velocities.

5. Resolve grid collisions.

6. Solve the linear system via explicit time integration.

7. Update the particle’s deformation gradient F .

8. Transfer back from the grid to particles, updating their velocity using a combination
of FLIP and PIC.

9. Resolve particle collisions.

10. Update particle position.

11

4 Implementation

The main goal of the project is to create a Material Point Method solver from scratch in
Houdini, closely following the implementation steps described in the paper ’A material point
method for snow simulation’. Secondary goals are simulating realistic snow behaviour using
this solver and implementing an usable tool. The created tool should allow users to define
their snow objects, collision objects and the solvers parameters to change the behavior of
the generated snow.

Each of the ten simulation steps outlined in the paper are implemented in Houdini and wired
into the Multiple Solver node. This is achieved through a combination of wrangle nodes and
gas microsolvers as detailed in Section 2.

Testing of the VEX code written in the various wrangle nodes was carried out with two
main approaches. Firstly, any created functions and shorter pieces of code were tested on
SOP geometry outside the DOP context, where the input values could easily be varied and
the output was readily accessible. The second approach was running the DOP simulations
with small particle and grid samples, to test the values of parameters for each step, with
field values being accessed using the printf VEX function. Although, a simulation with just
one particle means there are sixty-four voxels surrounding it, each having separate weight
calculations that need to be checked, resulting in the checks taking a substantial amount of
time. Values at each voxel of a field are not viewable in the geometry spreadsheet compared
to particle data, this meant it was harder to access the values quickly, to test if they were
as expected, so the approach to print out values in VEX had to be taken. All implemented
VEX functions created for the custom solver have been tested with appropriate values, and
no bugs have been found.

(a) Snow Particles
(b) Collision Geometry

Figure 2: Node Network in Houdini to create the initial geometry

12

The SOP geometry for the snow particles and collision objects are created by the user and
imported into the DOP simulation as the initial state. For the former, any initial defined
geometry has points created from it using the Points From Volume node. Attributes for
velocity, mass and deformation gradient are assigned to these points using the Attribute
Create and Attribute Wrangle nodes. An optional Merge node can be included for more
complex simulations involving different initial geometries with varying initial conditions.
These points are wired into a final Null node that is called from the DOP simulation. A
similar process is used to create the collision geometry, although only the velocity attribute
is created.

Figure 3: Initialing the Geometry and Fields within the DOP network

Within the DOP network the geometry and main fields are initialised, and plugged into the
first input of the Multiple Solver node. SOP Geometry nodes are used to read the created
SOP data. Vector fields for velocity and force and a scalar field for mass are also created.
Fields within Houdini can either contain a vector or scalar, so multiple fields are needed to
represent the single background grid, this is a similar implementation of a grid to Houdini’s
native FLIP solver. Visualisation nodes allow the direction and magnitude of the velocity
and force to be viewed at each complete timestep, allowing for quick checks.

The first of the ten steps uses a Gas Resize Field node so the fields are centered on the
particles and encapsulate them. A static grid is not needed for MPM as current grid node
values are not dependent on their previous values, by employing a dynamic grid, the number
of grid nodes are drastically reduced, resulting in fewer calculations. After resizing the fields,
mass and velocity of the particles is transferred to each respective field using a Gas Field
Wrangle. Inside each wrangle the transfer equations and weighting functions have been
implemented using VEX. A point cloud is used at each grid voxel node to run a nearest
neighbour search, the data structure of a point cloud makes it faster to run computations
and takes up less space. Using the pciterate function, all the neighbour points in turn are

13

used within the summation function, which automatically stops when there are no points
remaining to iterate over. Finally, a new field oldvel is created as a duplicate of the velocity
field vni to be used in the FLIP update of step eight.

Figure 4: Step 1 Node Network.

To calculate a particle’s volume a Geometry Wrangle node is implemented to execute VEX
over each material point. To iterate over all field voxels a point cloud cannot be used as
in the previous step, this is because the voxels are not points and there are multiple fields.
Therefore, three empty arrays were created, representing the x, y and z directions and the
volumeres function was used to retrieve the size of the fields (which are identical) returned
in a vector. The corresponding components of this vector are used to populate the three
empty arrays with a custom function. This function uses a while loop and takes the size of
the volume (a) and empty array, and returns an array [0,1,..,a-1]. It only returns up to a-1
because the size of the volume will start at 1 but the index values start at 0. Three nested
for-loops that run over the x,y and z arrays are then used to access the index of each voxel.

Figure 5: Step 2 Node Network.

14

The volumeindextopos and volumesample functions access the voxels position and stored
value respectively, allowing the density at each grid cell and weighting function to be calcu-
lated. Finally, to guarantee this step only runs at the start of a simulation, an if statement
that calls the global variable @SimTime was added.

Figure 6: Step 3 Node Network.

Force calculation is executed in two sub-steps. The first uses a Geometry Wrangle node
to calculate σ (Cauchy stress) at each material point. A function was created to calculate
the The Lamé parameters. The VEX functions clamp, svddecomp and polardecomp are
implemented to limit the elastic deformation gradient, apply a singular value decomposition
to retrieve the scaling matrix and apply a polar decomposition to retrieve the rotation
matrix respectively, as detailed in Section 3. The decomposition values were tested against
an external decomposition calculator and return expected results.

The second sub-step uses a Gas Field Wrangle node on the force field. This again implements
the created weighting function, but also introduces the created function that is the gradient
of the weighting function. A point cloud is opened per voxel in the same manner as step
one to run over the particles. Finally multiplication between the sigma matrix and gradient
weight vector to retrieve the final force for each voxel is implemented through a custom
function that inputs a 3*3 matrix and a 3*1 vector and outputs the resultant 3*1 vector.

Figure 7: Step 4 Node Network.

15

Step four is implemented in a relatively quick fashion, following the paper a new field V ∗

is created as a copy of the velocity field using a Gas Match Field node. This new field is
then updated by implementing equation (16) within a Gas Field Wrangle node, the values
of the mass and force fields are accessed using the volumesamplev and volumesample VEX
functions.

Figure 8: Step 5 Node Network.

Grid based body collisions were initially going to be implemented using a collision field and
response in a similar fashion to the Houdini FLIP solver, however because of the custom
collision response presented in the paper this proved challenging. Therefore, a new approach
was utilised. At each timestep a new set of point geometry is created, this point geometry
is representative of the grid nodes. A Geometry Wrangle node accesses each voxel using the
same array and nested for loop process used in Step two. The position and velocity (obtained
from from the field V ∗) of each voxel is saved to the new geometry using the addpoint and
setpointatrrib VEX functions. A POP Collision Detect node is used to return if the newly
formed grid point geometry is colliding with the collision objects and that object’s: position,
velocity and normal are saved as attributes.

A further geometry wrangle then applies the collision response to the velocity of the newly
formed grid point geometry as described in Section 3. This velocity is then transferred back
to the field V ∗ through the means of a Gas Field Wrangle node. Making sure the points
matched back to the field voxels was very important and a at first there was a minor issue
when creating additional attributes to do this, they did not match in certain cases. However
after various tests on @ptnum of the created geometry, the correct formula to transfer back
to the voxels was found. The index of each voxel and size of the overall field is used to
create a unique id for the voxel, as shown in figure 18. This id is the same as the particle
number that matches the voxel, therefore, the velocity of that particle number equal to the
unique id is assigned to the voxel. Additionally, the new point geometry representing the
grid nodes is deleted at the start of this step.

16

Figure 9: Step 6 Node Network.

Explicit time integration is solved simply through a Gas Linear Combination node. The
velocity field value is replace with value of the field in V ∗. To save space in the future and
not follow the paper precisely, the V ∗ field could be omitted with changes from steps four
and five made to the initial vector field.

Figure 10: Step 7 Node Network.

The deformation gradient update for each particle is carried out in a Geometry Wrangle
node. It again cycles through each voxel by using nested for loops and arrays based on the
grid size. The weighting functions are again called in this node, and a new function is created
to carry out matrix multiplication. An issue was noticed at this step where accessing the
position data of the voxel with the volumeindextopos function returned a very small floating
point error, due to the spacing between voxels being a derived quality, since grid transforms
are stored as a size and origin. This floating point error of the position of each voxel meant
the symmetry around each particle was lost, and values for the gradient of the weighting
function had minor errors. Instead of values of 0 the deformation gradient had values close
to e−10. A fix was put in place to round up any errors in position but when comparing the
small floating errors had very minimal effect on the outcome so the fix was not included.

17

Figure 11: Step 8 Node Network.

Step eight, the velocity update step, uses a Geometry Wrangle node and accesses the voxel
data in the same fashion as the previous steps. The FLIP update portion uses the velocity
difference and accesses the field oldvel saved in step one.

Figure 12: Step 9 Node Network.

The particle collision step is applied using the exact same approach and VEX code as step
five, grid based body collisions. Although this time the pop collision detect and resultant
VEX code is applied to the particle data. When running the simulation with only this
collision step the particles clearly collide and respond in a clean manner, with a change in
the friction coefficient leading to a direct change in the speed of particles moving down a
slope.

18

Figure 13: Step 10 Node Network.

Each particle’s position is updated in the final step through VEX code in a Geometry
Wrangle node. This step was fairly quick to implement and test.

Figure 14 shows the implementation of user controls for the MPM solver. The grid spacing
and time step parameters control how quickly the simulation runs, however having these at
too high values can cause an unstable result. The friction coefficient changes parameters in
steps five and nine and successfully controls how easily the snow particles slide on different
surfaces. Visualisation is very important for a user of the tool, being able to see how the
velocity and force is behaving will allow users to understand what is happening with the
solver. Therefore, being able to toggle these on and off easily is desirable for the final tool.
Figures 28-30 shows these controls turned on.

Figure 14: User Controls

The VEX code works effectively and implements the ten steps properly. The custom created
functions are easy to follow and efficiently calculate the needed result, the functions gener-
ated to support the solver steps are included in the appendix. Having to include the created
functions in multiple wrangle blocks is a little messy, but the overall wrangles are still easy
to follow. The final solver is efficient in regards to the goal of closely implementing the steps
from the paper. Further development can be taken to have a faster MPM simulation in
Houdini, that deviates from the paper.

19

5 Conclusion

The main objective to implement a Material Point Method solver from scratch within Hou-
dini has been achieved successfully. The implemented solver works well, and behaves as
expected, when given simple force examples - such as gravity only. The transfer of particle
data to fields and back again using VEX is accomplished, and all tests for the solver pass
successfully, the particles change in velocity is correct after each timestep. Furthermore, the
custom collisions calculated with these simple forces behave appropriately and realistically.

Achieving realistic snow like behavior, a secondary goal, has been partially achieved. Com-
pared to real snowballs smashing, there are some similarities but also some differences. The
overall shape of the snow breaking up and separating out towards the side (figure 25) is a
noticeable similarity, and shows the overall behavior as successful. However, the response of
the snow moving up (figure 24) acts more like a bouncy fluid and less like a solid. A more
detailed understanding of the force calculation (Step 4) needs to be undertaken, as the rea-
sons are currently unknown as to why the snow is not behaving exactly as expected. There
may be an error in understanding and implementing the force calculation that is causing
this, or another calculation for the forces may need to be used. Figure 32 shows another
error where the bottom block of snow does respond to the ball by separating outwards, but
the crashing snowball bounces on top of the block and they do not mix.

Figure 15: Particle formation before and after colliding with the ground

There are many different initial conditions and parameters that affect the final outcome
of the implemented force calculation, including: grid spacing, mass, Young’s modulus and
hardening coefficient, a deeper understanding on how these relate and affect the final out-
come is needed to achieve the desired accurate snow behaviour and look, sadly this research
could not be undertaken within the time frame of the project. Small changes in some of
these values can cause the simulation to become unstable and this needs to be investigated.
Figure 27 shows the snow avoiding collision on the slope due to the grid collision response,
small dents can be seen spaced along the bottom of the snow where the grid nodes are located
and pushing the snow away. This would be less obvious with lower grid spacing, however
the solver had to run in a realistic time. Smaller grid spacing and more points would likely

20

give more realistic results as this affects the calculations, this will be tested when solver
efficiency is updated. The high grid spacing may be the reason the that the separate objects
in the collision example (figures 31 32) affected each other at a large distance and did not
mix. Finally, the fracturing of the snowball needs a level of randomness as it breaks up into
a somewhat even circle, as shown in figure 15, the paper implements a noise function for
a more grouped fracture, this would be a reasonable next step to achieve a more natural
result and would be evident with more particles.

The final secondary goal of providing a usable tool for snow simulation implemented with the
MPM method is mostly complete. The key parameters to change the simulated behaviour
of snow are given and any more could complicate the tool for the user. Giving the option
of grid sizing and timestep allows the user to control how detailed they want the simulation
to be. A more complex tool would allow the user to define multiple collision objects with
varying friction coefficients and would be a next step in upgrading it. A further improvement
would be to turn the tool into a digital asset as opposed to having changeable parameters on
the DOP node, the inclusion of a help card would dramatically increase the understanding
for the user.

Only the semi-implicit integration step (a more detailed optional part of step six) is missing
out of the ten steps. Although not compulsory the inclusion of this would result in more
accurate simulations. A next step in the project would be to implement this and compare
the outcome of the solver against the current explicit time integration, to evaluate if the
complexity of the computation is worth the benefit.

The overall solver was created in a similar fashion to the Houdini FLIP solver where multiple
fields are used alongside geometry particles. It is noted that some of the gas microsolvers used
in the FLIP solver such as the Gas Field to Particle and Gas Particle to Field nodes are not
included in the MPM solver. These steps have been undertaken in the Gas Wrangle nodes
instead to apply a custom weighting using VEX, some of the microsolvers were used in FLIP
as VEX was not available in DOPS at the time. It would be interesting to make an entire
MPM solver using only wrangles as a next step as, this lets the math be easily controlled
and followed, as opposed to the microsolvers who’s readily available documentation does not
go fully into the math being implemented.

Following the approach of the FLIP solver gets complicated in Step five (grid based body
collision) when particle geometry is created and deleted for each of the grid nodes (voxels)
at every time step. There are two directions that this solver could be taken in to avoid
having to continuously create and destroy this geometry in addition to the fields. The first
would be to implement the solver with a collison field that provides a signed distance field,
and use this to implement the custom response, this was the initial idea for the solver,
but needed more time to implement as it was not working as expected. The detection was
not finding the SOP data to collide with and implementing the custom response was more
complex than initially thought. Further research would need to be undertaken to implement

21

this approach, and if the custom response is not possible a compromise of collision response
would need to be determined. The second approach would be to not use any fields at all
and create the background grid at each time step from particles, all the field values could
be saved to one particle and point clouds would be used for all particle searches. When it
comes to very large grids with small spacing there would be a lot of particles that take up
a substantial amount of memory.

Both of these approaches would then be compared thoroughly to investigate which is the
most efficient. A final note on the efficiency of the solver is that wni p and∇wni p are calculated
between a particle and grid node four and two times throughout each simulation step,
investigating a way to save these values would greatly increase simulation time, if the memory
pay off was worth it.

The main goal in developing this project further would be to create a tool that solves a
wide variety of simulations within Houdini using the created MPM solver, such as sand
and baked objects as mentioned in Section 2. A solid basis of an MPM solver has been
provided, therefore it should be relatively easy to appended and adjusted for simulating
these materials, as well as the outcome from future research.

22

6 Bibliography

Claes P., 2009. Controlling Fluid Simulations with Custom Fields in Houdini, [online]. Avail-
able from: https://nccastaff.bournemouth.ac.uk/jmacey/MastersProjects/MSc09/
Claes/thesis/PeterClaesThesis.pdf [Accessed: 18 August 2020] .

Ding M., Han X., Wang S., Gast T. F. and Teran J. M., November 2019. A thermomechanical
material point method for baking and cooking. ACM Trans. Graph., 38(6).

Guo Q., Han X., Fu C., Gast T., Tamstorf R. and Teran J., July 2018. A material point
method for thin shells with frictional contact. ACM Trans. Graph.

Jiang C., Schroeder C., Teran J., Stomakhin A. and Selle A., 2016. The material point
method for simulating continuum materials. In ACM SIGGRAPH 2016 Courses, SIG-
GRAPH ’16, New York, NY, USA. Association for Computing Machinery.

Kelly P., 2012. Solid Mechanics Part 3, [online]. Available from: http:
//homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_
III/Chapter_2_Kinematics/Kinematics_of_CM_02_Deformation_Strain.pdf [Ac-
cessed: 18 August 2020] .

Klár G., Gast T., Pradhana A., Fu C., Schroeder C., Jiang C. and Teran J., July 2016.
Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph., 35(4).

McGinty B., 2012. Polar Decomposition, [online]. Available from: https://www.
continuummechanics.org/polardecomposition.html [Accessed: 18 August 2020] .

Ram D., Gast T., Jiang C., Schroeder C., Stomakhin A., Teran J. and Kavehpour P., 08
2015. Material point method for viscoelastic fluids, foams and sponges.

Schreck C. and Wojtan C., 2020. A practical method for animating anisotropic elastoplastic
materials. Computer Graphics Forum, 39(2), 89–99.

SideFX , 2019a. Multiple Solver dynamics node, [online]. Available from: https://www.
sidefx.com/docs/houdini/nodes/dop/multisolver.html [Accessed: 18 August 2020] .

SideFX , 2019b. Volumes, [online]. Available from: https://www.sidefx.com/docs/
houdini/model/volumes.html [Accessed: 18 August 2020] .

Stomakhin A., Schroeder C., Chai L., Teran J. and Selle A., July 2013. A material point
method for snow simulation. ACM Trans. Graph., 32(4).

Stomakhin A., Schroeder C., Jiang C., Chai L., Teran J. and Selle A., July 2014. Augmented
mpm for phase-change and varied materials. ACM Trans. Graph., 33(4).

Sulsky D., Zhou S.-J. and Schreyer H. L., 1995. Application of a particle-in-cell method to
solid mechanics. Computer Physics Communications, 87(1), 236 – 252. Particle Simulation
Methods.

23

Wretborn J., Armiento R. and Museth K., December 2017. Animation of crack propagation
by means of an extended multi-body solver for the material point method. Comput.
Graph., 69(C), 131–139.

Zhu Y. and Bridson R., July 2005. Animating sand as a fluid. ACM Trans. Graph., 24(3),
965–972.

24

A Graphs

Figure 16: y = N(x)

Figure 17: y = N’(x)

25

B Code

Figure 18: Pseudocode for velocity transfer back to grid voxels.

Figure 19: Code to access all voxels.

26

Figure 20: Code to iterate over all points within a 4h spacing.

Figure 21: Matrix and vector multiplication.

Figure 22: Vector and vector multiplication.

27

C Simulation Images

Figure 23: Snowball at the start of a simulation above horizontal plane.

Figure 24: Impact of snowball with the flat plane.

Figure 25: Rest state of the snowball

28

Figure 26: Snowball at the start of a simulation above a slope.

Figure 27: Snowball rest state on the slope.

29

Figure 28: Grid node visualisation turned on.

Figure 29: Velocity field visualisation turned on.

30

Figure 30: Force field visualisation turned on.

Figure 31: Snow collision start state.

Figure 32: Snow collision end state.

31

