Self Adapting Plant Models

Thomas Ashby
August 18, 2019

1 Abstract

Presented is a method for dynamic interaction of large numbers of unique
trees with triangulated meshes at near real-time speeds. The method uses
ray collisions, branch transformations, culling, and mass redistribution to
provide an approximation of a plants reaction to light, arguably the most
important tropism affecting plant growth. This approach is much faster
than existing approaches such as space colonisation methods, or biologically
based simulation based techniques.

Contents
1 Abstract 2
2 Introduction 4
3 Previous work 5
3.1 Plant Interactions 6
3.2 Shadow Approximation 9
4 Implementation 10
4.1 Tree generation 10
4.1.1 Exemplar 11
4.2 Tree Placement 13
4.2.1 Growth 13
4.2.2 Placement Algorithm 13
4.2.3 User Placement 14
4.3 Dynamic Interaction00 14
4.3.1 Collision detection 14
4.3.2 bendingo 14
4.3.3 pruningo 15
4.3.4 energy redistribution 15
4.4 mesh generationo 16
441 Exporting 17
5 Evaluation 18
6 Results 19

7 Conclusion and Future Work
7.1 Conclusion
7.2 Future Work
8 Bibliography
9 Appendix
9.1 User Manual
9.2 Glossary

20
20
20

21

2 Introduction

Simulation of plants and their interaction with each other and their envi-
ronment is a complex and open topic in simulation and computer graphics.
In this paper I present a method for creating communities of plants which
are able to interact with their environment in an efficient manner. Many ex-
isting applications extensively model light interaction, resource availability,
root systems, and growth over time. I present a method which approximates
much of this and uses ray intersections for object avoidance yielding adequate
results at near real-time speeds with the potential for further performance
increases with the use GPU computation. Ray intersection for plant growth
could prove useful in the near future with the advent of real-time ray tracing
capabilities on graphics cards. I also present an intuitive method of reduc-
ing asset size using the camera position to decide the level of detail when
exporting to digital content creation tools.

The motivation behind this project would be to create an efficient means
to allow large numbers of trees to interact with meshes created in digital
content creation tools. This allows existing scenes to be populated with
communities of plants bushes and trees quickly and easily, and also with the
flexibility to define any number of type of plants, with the resulting vegetation
having minimal storage requirements. The need for for this is ever increasing
in the animation industry. With films such as The Lion King (2019) which
features 92 distinct species populated around 921 unique assets, and many
other recent feature films containing huge amounts of computer generated
vegetation, the need for an efficient method to place these assets is ever more
apparent and the ability to remove some of this burden from modellers and
layout artists is a valuable asset. Simply placing vegetation is not sufficient.
Models need to be adapted to suit their environment, the most important
adaptation being light availability. This paper focuses on this adaptation
as it is the most important in deciding plant structure, and ignore elements
such as precipitation levels, ground nutrient contents, and biome simulation,
as it can be assumed that the user has already selected suitable plants based
on real world examples.

3 Previous work

L-Systems or Lindenmayer-systems are a formalism created by Astrid Lin-
denmayer, a Biologist, in 1968. They were created as a model of biological
development based on axioms, an early attempt at representing plants al-
gorithmically using a turtle graphics style system. They have found uses in
many area of computer graphics, not just for plants, and are the basis of
many systems which model nature and vegetation growth.

In The Algorithmic Beauty of plants [1] many variations to the classic
rewriting are detailed. In order to represent branching axial trees one such
modification is suggested, a special data structure using a stack to store the
current position of the l-system at a branching point. axial trees can be
represented using strings with brackets [Prusinkiewicz et al. 1996, p. 24].
These brackets perform operations to push the current state of a 'turtle’ to
a stack, or to pop the current state from the stack.

To add to the realism of created structures many implementations use
non-deterministic approaches to create variations in the generated structures.
Eliminating artificial looking regularity can be achieved by randomising the
turtle interpretation, the l-system, or both[Prusinkiewicz et al. 1996, p. 28|.
Randomisation of the turtle interpretation changes geometric aspects of the
plant such as branch length and branch angles. The stochastic application
of string replacements has the effect of changing both the geometry and
topology of the plant.

This stochastic application of rules can be defined as the ordered quadru-
plet G, = (V,w, P, 7). where V is the alphabet, w is the axiom, P is a set of
productions, and 7 represents the function 7 : P — [0, 1]. This is the prob-
ability distribution which maps the set of productions to the probabilities.
The sum of the probabilities for each letter should equal 1. this is based off
of a definition by Peter Eichhorst, Walter J. Savitch [2].

The modeling of realistic trees can be achieved using extensions to stochas-
tic l-systems. de Reffye[3] modeled the activity of buds over time using the
following rules:

1. do nothing
2. die
3. become flower

4. become an internode (ending with an apex and containing 1+ lateral
shoots ending in leaves)

These behaviours can be modeled with string replacements in stochas-
tic l-systems. They are often combined with growth functions to simulate
the change in a plant structure over time. Two main growth functions are
suggested, Square-root growth and a sigmoidal growth function. It may be
possible to estimate the distribution in plant sizes using this function for a
specified time without the need for complex and expensive growth simula-
tions.

Extensions were also proposed by Honda [4]. One such extension was a
shortening of child segments by r1 72 in relation to the parent branch. The
origins of computer modeling of trees can be linked to Honda’s paper for
this recursive module size reduction ad the use of parameters for branching
angles. Honda’s model formed the basis of Aono and Kunii [5], which added
bias in a particular direction to mimic effects of strong wind, or tropisms,
without the need for expensive simulations.

Improvements to generated the geometry of these models were made by
Bloomenthal [6] by using curves in lieu of straight line segments to represent
branches of maple trees, which yields a more natural look.

To model the topology of particular trees we can look at the detailed plant
models described in Halle, Oldeman and Tomlinson[7]. therein is a definition
of 23 common tree architectures and descriptions of their characteristics. One
of which will be referred to in this work, Attims’ model, which incorporates
plants of the genus Alnus.

3.1 Plant Interactions

Literature detailing the interplay of biological phenomena when simulating
plants is widely available, and is an ongoing topic in computing. Most re-
cently Makowski et al. [8] describe a multi-scale method for large scale ecosys-
tems which captures tropisms, interactions with objects and other trees, and
resource competition.

Figure 1: Example from Makowski et al. [§]

The paper mentions the importance of an adequate level of detail algo-
rithm in simulating large amount numbers of plants, and how few approaches

both simplify geometry whilst adhering to plant structure. One method it
refers to to represent plants at a different level of abstraction is the use of
points and lines from Gilet et al[9]. A main focus of the Makowski et al. pa-
per is to use grouping of branch structures to enable instancing on the GPU
for greater performance. The paper not only models tree-tree interactions,
but also tree-object interactions. Their method for local shadow approxima-
tions is taken from the propagation method of Palubicki et al[12] described
in section 3.2. Their work is very broad and covers multiple levels of plant
simulation across different environments with many environmental factors.
Their work is an amalgamation of works across various domains in plant
simulation and provides a means of generating large forest systems without
direct control over

Attempts at intuitive methods for plant modeling and placement were
made in 2009 by Benes et al.[10] Their implementation features intuitive
placement and plant generation techniques which don’t rely on large numbers
of input parameters.

Figure 2: Example from Benes et al. [10]

Their method models interactions between plants and between plants and
objects. The 3D meshes are calculated using spline interpolation of growing
bud locations, and uses generalised cylinders to represent branches. Collision
detection is computed from radii associated with branch apices which are
checked against a voxel space. a box of n % n voxels to be used as a new
bud location is checked for potential collisions. This voxel space method has
O(n) complexity. Collision detection is recognised as the cost critical part of
the simulation.

For the simulation of tree - object interactions Pirk et al.[11] offer an ap-
proach which builds on the work Benes et al. It uses interacting self adapting
botanical tree models. This technique has complex tree models interacting
with their environment in real time. It models light distribution, proxim-
ity to solid obstacles, and to other trees to approximate biologically moti-
vated changes in the tree structure. This method ensures transformations
are only performed when required, thus has a performance advantage over

space colonisation based systems. It also has yields a performance increase
over previous works and reduces computation time from minutes to near real
time speeds. As trees react almost exclusively to changes in local lighting,
they model light received by each of the leaf clusters in order to model both
the effects of shadows cast by other leaf clusters, and from shadows cast by
other objects such as walls. For walls this is achieved by creating a shadow
volume which intersects the tree. In order to enable real time placement of
trees, the adaptation and deformation is turned off whilst the tree is being
placed, and the tree is adapted once placed. The pruning method in this
adaptation is based on the amount of light the leaf clusters receive. Wood or
plant organs are produced based on the amount of received light. If a bud is
in shadow for an extended period of time then it will eventually die off.

Figure 3: Example from Pirk et al. [11]

Their approach is to use the sum of node distances to all leaf nodes [,
and the amount of resources gathered by child leaf clusters ;. A branch
is pruned when the ratio (;/l; is smaller than some threshold value called
pruning factor ¢. For a given branch segment s, the gathered amount of
resources (ts is computed from the light that is received on the leaf clusters
Cs that are located on the child nodes of a branch segment s[11]:

G, =Y 2nlrli,

ceC

Where r. is the radius of a given leaf cluster and i, is the normalized
amount of light that the cluster receives.

At every stage of tree growth a local pruning factor is computed for each
branch segment: (). The individual pruning factor for each branch is:

7VDSmm = Clﬂ'min(wrefa Tf{;’in(@bs (t)))

Once they have performed transformations, resource allocation is per-
formed, for all branches of a set age. Finally, all branches and child branches
with resources less than 1), . are deleted.

Input data for this system is taken from laser scans of trees which adds an
additional step when compared to previous work. They attempt to reverse

the environmental changes of the input tree in order to find out what it would
have looked like in perfect conditions, this must be performed before any of
the previously mentioned steps to prevent the scanned mesh from effecting
results.

Pirk models leaf clusters for efficiency, these clusters are populated with
leaves using the GPU once transformations are complete. They define the
relationship between normalized cluster density p; and incoming light @ is:

Ply .
P = —F7-pP
oil) (i)
This is for a cluster [of density p;, for light value 7,
The translucency values for these clusters «. is updated when changes to

the structure are made with ~.°

Their method is not perfect as leaf clusters are only approximately filled
by the GPU, so some branches may enter obstacles. They allow this as it’s
effect is not significant, but mention it as a potential future work to prune
these branches.

Ray plane intersection for recognising collisions between plants and ob-
jects has so far seen use in generating climbing plants[14]. Knutzen uses ray
plane intersections with bounding volume hierarchies and achieves similar
speeds to the voxel based methods of Greene[15]

3.2 Shadow Approximation

many dynamic plant growth and placement algorithms, including those al-
ready covered, account for light levels. An efficient shadow propagation
method is implemented in Self-organizing tree models for image synthesis
[12]. A voxel space of shadow values is used to estimate the light received at
each bud, a method suggested by Palubicki [13].

Figure 4: Palubicki et al. [12]

Each voxel (i, j, k) is assigned a shadow value with an initial value zero. a
pyramidal penumbra is created which propagates downwards. Voxels in this

penumbra have indices (i, j, k) = (I £p, J —q, K £ p) where ¢ = 0,1, ..., ¢maz
and p = 0,1,...,q. The shadow value in affected voxels in increased by
As = ab™. a > 0 and b > 1 are defied by the user. Light exposure is
calculated as @ = maz(C — s+ a,0) where C' is complete exposure.

4 Implementation

The implementation is a program written in c++ and openGL. GLFW is
used as the OpenGL container and to handle keyboard inputs. The testing
framework chosen to ensure the accuracy and robustness of generated trees
and meshes is Google test. Tree description files are loaded according to a
central JSON scene description file and expanded to form full skeletal trees.
These are then placed and reacted with the loaded geometry.

4.1 Tree generation

For the generation of trees the implementation uses a text based description
of the skeleton to be generated. The specification for the files are as follows:

1. Number of generations
2. Angle specification (Radians)
Thickness

Axiom

SANEE S

Rule = Replacement : Probability

A full set of rules for describing stochastic l-systems is implemented. The
set of available symbols is based loosely on those used in SideFX Houdini[16]
and are as follows:

RULE REPLACEMENT
Create a node / move the turtle forward.
Create a new branch.
End the current branch.
Create a leaf.
Rotate the turtle clockwise.
Rotate the turtle Anticlockwise.
Pitch the turtle up.
Pitch the turtle down.
Roll the turtle left.
Roll the turtle right.

B+ S ——

SIS

10

For each plant type the description file is loaded into memory and rule
objects are created and populated. The axiom is then expanded based on
these rules. For stochastic rules a replacement is returned based on the
specified probability. Probabilities are represented by floating point numbers
between 0 and 1.0 and it can be assumed that the sum of probabilities for
all replacements of each rule equals 1.0. once the full string is generated we
parse this to build our recursive skeleton structure. Each node stores a list
of its children and a pointer to its parent. Vectors representing the start and
end positions, as well as branch radius are stored. Segment type is decided
to be either trunk or lateral segment by checking if we are on a branch.

For our multi scale modeling as in Makowski et al[8] we specify the plants
to be loaded and their quantities in a JSON format scene description file.
This file enables a user to load any number of plants into the simulation,
generating woods and forests. It is in this file where we also specify the .obj
collision meshes for the simulation of tree object interaction.

Data in the program is stored in such a manner that is is flexible enough
for data to be passed between branches easily and efficiently, and also so
that the computers central processing unit and memory can handle the data
as quickly as possible. The tree’s structure is stored as branch object in a
recursive structure. All lists are stored as std::vector to ensure the elements
are stored in contiguous memory to help make the code more cache friendly.

4.1.1 Exemplar

In order to more faithfully model real plants an exemplar is taken as a ref-
erence. I have chosen a plant which is described by Attim’s model in Halle
et al [7]. Alnus glutinosa or common alder is in the alnus family which has
characteristics most similar to Attim’s model. The tree architecture is char-
acterised by axes with continuous growth of trunk and branches. Axes are
differentiated into a monopoidal trunk and equivalent branches. Branching
takes place continuously or diffusely. Flowering is always lateral and does not
affect shoot construction [7]. Examples of this tree can be seen to exhibit
photo-tropism across the main structure, it will tend to move towards areas
with a higher average light intensity and thus avoid obstacles.

The common alder in figure 5 exhibits a 17 degree lean from the vertical
axis. It also shows a return to the vertical axis once a height is reached where
more light is available.

Another common tree which exhibits leaning characteristics is the London
Planetree (Platanus acerifolia) [Figure 6]. This archaeophyte is generally
thought to be a hybrid of Platanus orientalis (oriental plane) and Platanus
occidentalis (American sycamore), its family Platanaceae is not listed in halle

11

Figure 5: Common Alder. August 3 2019. f/2, 1/850, 3.58mm

et al but seems to exhibit architectural characteristics of either Ruah or
attim’s model. It again shows a monopoidal trunk and develops tiers of
branches which are morphogenetically similar to the trunk. It also has lateral
flowers which do not effect the growth of shoots. Studied examples show non-
rhythmic growth of meristems which would likely also place this in Attim’s
model.

Figure 6: London Planetrees, Lomanstraat, Amsterdam. May 2014. Google.

12

4.2 Tree Placement
4.2.1 Growth

My implementation is for producing trees or groups of trees as a climax
community of mostly fully grown trees. For this reason it is not necessary
to simulate any type of tree growth, somewhat simplifying generation. In
order to simulate variation in the size of mature plants scale is varied using
a random floating point number giving around a 5 percent variation in plant
size. A sigmoid-like function is also used to vary the scale and number of
generations in a small number of plants. The function used is 2 (x/(1+x)).
Where x is a random floating point number between 0 and 1, and the result is
clamped to 1 The function represents a fast approximation of a sigmoid curve
for positive numbers, as we do not have the need for negative tree sizes. The
result of this function is a population of trees which are mostly fully grown
with a few which are mid growth, and even fewer adolescent trees. With large
tree populations this presents a feature seen in Makowski et al[8], where trees
dying and leaving space for new growth are simulated. By creating a very
small number of small trees in a large population, this gives an effect similar
to Makowski et al at any fixed point in their simulation, a population of
mature trees with a few saplings taking advantage of renewed space. It is
important to note that simulation is not involved in this process and thus it
is only an approximation.

4.2.2 Placement Algorithm

the algorithm used for tree placement is random scattering approach where a
tree is moved to another position if it gets too close to another object. This is
more efficient for populations of different sized trees than other methods such
as mass-spring or particle systems. Since for most of the placement operation
there are very few collisions the complexity of the operation is close to O(n2).

The domain for tree placement is decided in the JSON scene description
file. Once the placement domain is decided a random position is decided on
the plane. This position is checked against all existing plants to make sure it
is not within the bounding cylinder of any plant. If a collision is found then
it will try again. This will repeat up to 50 times. If no collision is found then
the tree is generated in that position. This still allows for some overlapping
of the trees as a free point may be found on the edge of a bounding cylinder.
This just ensures a denser forest can be generated can easily be altered to
yield thinning forests. It if following these steps when a random rotation is
added to the plant. The placement for that plant is now complete and the
steps are repeated for the remaining plants.

13

4.2.3 User Placement

After the initial plant placement is complete the results are displayed to the
user. For small numbers of plants, plants can be selected with the square
bracket keys and the currently selected plant is highlighted in orange, the
plant can then be moved with the arrow keys and with update according to
surrounding objects once the arrow keys are released. For larger numbers of
plants the meshes can be exported and altered in a digital content creation
tool.

4.3 Dynamic Interaction
4.3.1 Collision detection

For collisions with objects the branches are treated as rays and are checked
for collisions against a triangulated collision mesh. The MollerTrumbore
intersection algorithm is used for its efficiency. This method can be easily
parralelised and runs on multiple threads using OpenMp. It also has potential
to be calculated on the GPU for even greater speeds. The branches are
checked for ray triangle collisions against the meshes and hits are noted. The
sum of the direction of these collisions is then computed, and the direction
reversed in order to find the bending angle.

4.3.2 bending

We bend the skeletal mesh by recursively transforming the branches by the
defined maximum bending angle and multipliers.

The first step in the process is to straighten the tree by removing any pre-
vious transformations. This allows for repeated bending of the tree without
losing the original shape.

After this is completed a collision manager class will check collisions of
each branch and store pointers to the colliding branches.

If any collisions have occurred then the average direction of those colli-
sions from the root of the plant is calculated. This is then used to calculate
an approximation of the phototropism direction and to bend the plant. The
tree is then rotated branch by branch away from the collided object. The
rotation is started at the root of the plant with all children inheriting the
transformation of the parent. The rotation amount can be modified branch
by branch using the bend multiplier to gradually reduce the amount of bend-
ing through the plant. With more bending seen in the lower branches and the
trunk similar results are produced to the photographed examples in figures
5 and 6. This product also aligns with biological rules where new shoots are

14

less likely to bend towards light as they have had less time to adjust to light
availability.

4.3.3 pruning

Once the transformations have been performed the initial colliding branches
once again checked for collisions. Branches which still collide are rendered
invisible along with their children. The use of a recursive structure simplifies
this to a single function call. It is possible that with some convex meshes,
branches which did not initially collide with any mesh will be colliding after
the plant has been transformed. In most cases this is not noticeable and only
checking colliding branches has been chosen for performance reasons.

4.3.4 energy redistribution

using Honda’s model we can redistribute energy elsewhere in the simula-
tion when branches are pruned. We add up the total lengths of the pruned
branches and divide by the number of remaining branches. We can then dis-
tribute this saved energy by 'growing’ the remaining branches towards the
sunlight by transforming their lengths. This represents an approximation of
the model which is believable enough for our purposes. The process is as
follows:

grow():
for all visible branches:
growthLength = energySaved / numberOfVisibleBranches;
branchVector endOfBranch - m_startOfBranch;
normalize (branchVector) ;
branchVector *= growthLength;
branch4x4Matrix[3] = branchVector;
for all children:
grow() ;

This method ensures that all energy saved from pruning a plant is redis-
tributed elsewhere in the structure, conserving the amount of plant mass.

The results of the collision detection, bending, pruning and energy redis-
tribution steps are shown in figures 7 and 8. This angle of deviation shown
is the result of a max bed of 0.1 and a bend multiplier of 0.9 as specified in
the scene description file. The trunk angle in figure 8 is comparable to the
trunk of the exemplar in figure 5.

15

Figure 7: Before

Figure 8: After

4.4 mesh generation

Meshes are exported in Wavefront Obj format for use in digital content cre-
ation tools. One .obj file is exported containing multiple objects. Branches
are turned into cylinders with the user defined thickness adapted according
to the recursion depth. Thickness t is defined as t = i * m®. Where i is
the initial thickness, m is the thickness multiplier, and b is the number of
branching points before the current branch.

To construct cylinders of branch length a vector perpendicular to the
branch direction is found and set to 1/2 thickness. A quaternion is then cre-
ated with the branch direction as the axis and is repeatedly created according
to 360.0f/a where a is the axial resolution.

16

4.4.1 Exporting

In order to reduce the size of the exported meshes the program has an auto-
matic level of detail algorithm implemented. Using the OpenGL camera as
the view direction, level of detail is calculated based on the distance of each
tree to the camera. Closer meshes have an axial resolution of 8, meaning
there are 8 faces to each cylinder, further meshes have an axial resolution of
3. This greatly reduces storage costs for exported meshes and is ideal for use
in scenes with a fixed camera position. To reduce mesh size we reduce the
axial resolution(the number of faces on each cylinder) which in turn reduces
the number of vertices and indices which need to be exported.

17

5 Evaluation

Seen in figures 9 and 10 the results are similar to those of Pirk et al. The
trees in Pirk et al were obtained through laser scans of real trees. Comparing
their results with my own prove challenging due to the difficulties of creating
their scanned trees with my l-system. Figure 10 shows a roughly similar tree
being deformed in similar environments.

Figure 10: My results

18

6 Results

The system was implemented in C++4 using OpenGL. It was developed and
run on a system with an intel i3-5010u CPU @ 2.10GHz an intel HD 5500 in-
tegrated GPU. The speed of the algorithm could be improved with geometry
instancing but yields quick results due to the simple nature of the displayed
geometry. A population of 1000 trees takes 4 minutes and 16 seconds to
generate on the specified hardware.

Once exported the trees were rendered in cycles using a particle system
to instance leaves. What has been created is the beginnings of a pipeline
to generate large amounts of trees interacting with any number of specified
objects with believable results, with the option to edit the plants at real time
speeds. Figure 10 shows the type of results which can be expected from the
pipeline which has been set up. Various phenomena are captured by the
program such as phototropism, the competition for space, the direction of
energy through the plant structure towards the plant tropisms, and to an
extent the senescence of plant branching structures do to the lack of light
through the pruning algorithm. Through careful use of the program, human
effects on trees can also be simulated. Tree surgery operations such as side
pruning, slope pruning, v-pruning, and crown reduction can be performed to
direct the shape of the tree. Collision meshes can be imported to selectively
remove branches from target plants. This is useful in situations where branch
growth is not desirable but cannot be prevented by other means. Examples
of this is around power lines or into roads, where humans would typically
prune trees. These effects can be achieved by importing a collision mesh
representing an area where growth in not desirable, then removing it later in
the pipeline so it is not visible in the final render.

The speed of the simulation is currently limited by the complexity of the
colliding meshes. Current tests have typically used fewer than 100 triangles.
The program can scale to larger meshes but is currently prohibitively expen-
sive, and would benefit from optimisations such as octrees or axis aligned
bounding boxes for initial collision checking before comprehensively checking
all triangle collisions.

Currently the algorithm does not take into account the height of the colli-
sions between branches and objects. For some cases this can yield inaccurate
results. When simulating a tree whose trunk typically returns to the verti-
cal axis once above the obstruction. This model will continue to grow away
from the obstruction. This is not unheard of but does not fit all cases. It
is however adequate in this case and the speed savings from the removal of
light simulation gives its own benefits.

19

7 Conclusion and Future Work

7.1 Conclusion

I have presented a multi scale tree and forest creation method which in-
tegrates plant movement, pruning, and vigor through energy distribution.
Through my methods, meshes are exported which react to unknown obsta-
cles efficiently and produce unique meshes with minimal storage costs. With
modifications this project could be ideal for use in a film pipeline where the
only alternative would be to manually sculpt and deform vegetation. My
method is highly scalable and has potential to be used to perform real time
dynamic plant positioning.

7.2 Future Work

There are some noteworthy gaps and flaws in my work. One area which is
lacking is the user interface. With the addition of an intuitive user interface
this program could form an easy to use tool for creating plastic forests with
few parameters, and would align the implementation closer to that of Pirk et
al[11]. For potential further speed improvements the population of trees could
be reduced to a smaller number and these could be repeated with varying
scales and rotations which would minimise the computation time required to
generate unique trees, something seen in Makowski et al. The application of
this method would also reduce storage costs if the unique trees were stored
individually and loaded into digital content creation tools using a script to
only instance the trees when required. The program currently uses OpenMP
to great benefit allowing the collision detection to run on all CPU cores.
This has potential to be further accelerated using the GPU to calculate ray
triangle intersections for collisions, and would be an interesting application
for real-time ray-tracing technologies. Elements have been borrowed from
recent literature on the topic of plant creation to create a program which
could fit within a vegetation creation pipeline, but the application is certainly
not ready for use in a production environment.

20

10.

11.

Bibliography

. Prusinkiewicz, P., Lindenmayer, A. 1996, The algorithmic beauty of

plants. , Springer .

Eichhorst, P., Savitch, W., 1980. Growth functions of stochastic Lin-
denmayer systems, Information and Control, Volume 45, Issue 3, Pages
217-228.

. de Reffye P., Barthlmy D., Blaise F., Fourcaud T., Houllier F. 1997.

A functional model of tree growth and tree architecture. Silva Fennica
vol. 31 no. 3

Honda, H. 1971. Description of the form of trees by the parameters of
the tree-like body: Effects of the branching angle and the branch length
on the shape of the tree-like body. Journal of Theoretical Biology 31,
331-338.

. Aono m., Kunii T., Botanical tree image generation. IEEE Computer

Graphics and Applications, 4(5):10-34, 1984.

Bloomenthal J., Modeling the mighty maple. Proceedings of SIG-
GRAPH 85 (San Francisco, California, July 22-26, 1985) in Computer
Graphics, 19, 3 (July 1985), pages 305-311, ACM SIGGRAPH, New
York, 1985.

F. Halle, R. A. A. Oldeman, and P. B. Tomlinson. Tropical trees and
forests: An architectural analysis. Springer-Verlag, Berlin, 1978.

Makowski M., Hadrich T., Scheffczyk J., Michels D. L., Pirk S., Palu-
bicki W. 2019. Synthetic silviculture: multi-scale modeling of plant
ecosystems. ACM Trans. Graph. 38, 4, Article 131 ,July 2019.

Gilet G., Meyer A., and Neyret F., 2005. Point-based Rendering of
Trees (NPHO05). 67-73

Benes, B., Andrysco, N.,Andstava, O., 2009. Interactive modeling of
virtual ecosystems. Eurographics Workshop on Natural Phenomena,
Eurographics Association, 9-16.

S. Pirk, O. Stava, J. Kratt, M. A. M. Said, B. Neubert, R. Mch, B.
Benes, and O. Deussen. 2012. Plastic trees: interactive self-adapting
botanical tree models. ACM Trans. Graph. 31, 4, Article 50 (2012),
10 pages.

21

12.

13.

14.

15.

16.

Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Mech, R.,
Prusinkiewicz, P. 2009. Self-organizing tree models for image synthesis.
In Proceedings of SIGGRAPH 09, 1-10.

Palubicki, W. 2007. Fuzzy plant modeling with OpenGL. VDM Verlag,
Saarbrucken.

Knutzen J. 2009. Generating Climbing Plants Using L-Systems.

Greene, N. 1989. Voxel space automata: modeling with stochastic
growth processes in voxel space. In SIGGRAPH 89: Proceedings of
the 16th annual conference on Computer graphics and interactive tech-
niques, pages 175-184.

Side Effects Software Inc., Houdini, Version 17.5, March 2019, www.sidefx.com

22

9 Appendix

9.1 User Manual

The program is built with gMake in qt creator and requires the following
dependencies to be installed to run on linux:

-lassimp -fopenmp -1IGLEW -lglfw -1GL -1X11 -1Xi -IXrandr -1Xxf86vm
-1IXinerama -1Xcursor -Irt -lm -pthread -1dl

When starting the program it will hang for a few seconds whilst building
the tree skeletons before displaying anything.

The program is controlled using a keyboard and mouse. The camera can
be panned by clicking and dragging the left mouse button, and moved using
the W A S,D keys.

The current selected tree is shown in orange and can be changed using the
square bracket keys. The selected tree can be repositioned with the arrow
keys and will be updated when the keys are released.

The T key will export tree trees from the current camera view to out-
put.obj in the output folder.

23

9.2

1.

Glossary

Apex - pl. apices: The tip; point
furthest from the point of at-
tachment.

. Archaeophyte: A non-native plant

which has been present in the
geographic location for an ex-
tended period of time.

Crown: The upper layer of a
plant.

Senescence: The biological age-
ing and deterioration of an or-
ganism.

Shoot: A young branch growing
from the main plant structure.

. Tropism: The orientation or growth

of an organism in response to
a stimulus (phototropism: re-
sponse to light. Gravitropism:
response to gravity).

. Vigor: The vitality and perfor-

mance of a plant.

24

